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1 ABSTRACT

I will give a broad overview of recent work on the equation of state of DNA in aqueous
monovalentsalt solutions. The picture that I will develop shows that at non-negligeable
monovalent salt concentrations the direct electrostatic interactions between DNA molecules
are almost always masked by the thermal conformational fluctuations of the DNA chains.
These thermal fluctuations act to boost the magnitude as well as the spatial range of the
electrostatic interactions. This renormalization of the bare electrostatic interactions is a
salient feature of dense systems composed of flexible polyelectrolyte moleclues.

2 INTRODUCTION

In the phase diagram of DNA in aqueous solutions there is a range extending from the
DNA crystal at densities corresponding to interaxial separations below≈ 24 all the way
to the nematic - isotropic transition at densities corresponding to interaxial separations
≈ 120 (for a bathing solution of 0.5 M NaCl) where DNA is orientationally ordered or
even shows long range hexatic order perpendicular to the long axes of the molecules but
is positionally still a liquid with only short range positional order [1]. This is in particu-
lar valid for long∼ µm fragments of DNA. The local structure of these DNA arrays is
presented on Fig. 2. In this part of the phase diagram, the equation of state,i.e. the de-
pendence of the osmotic pressure on the macromolecular (DNA) concentration, has been
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studied very carefully [2]. In this lecture I will give a comprehensive introduction to the
equation of state for DNA under various solution conditions with monovalent salts and
counterions and make an attempt to explain in some detail the theoretical underpinnings
of its equation of state.
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Figure 1. The schematic geometry of an array of DNA molecules with long range orien-
tational order and short range positional order. Drawn approximately to scale.R is the
average interaxial separation between the molecules.

3 ELECTROSTATIC INTERACTIONS

Electrostatic interactions between charged macromolecules are one of the two pillars
of the DLVO theory of colloid stability [3, 4]. The other one being the Lifshitz - van
der Waals electromagnetic fluctuation forces [5]. In DLVO theory both contributions are
assumed to be additive. In general however, the van der Waals forces and the electrostatic
interactions are coupled through thes.c. zero-order term of the Lifshitz formula [5].
This coupling is important in cases where counterion correlations make a large attractive
contribution to the total interaction ase.g. in the case of polyvalent counterions.

In what follows I will dwell exclusively on the electrostatic component of the DLVO
theory, assuming that the van der Waals forces are negligeable in the context of DNA
interactions, their magnitude being always much smaller then the magnitude of the elec-
trostatic interactions. I will also not discuss the water-mediated structural interactions
that make their mark on the equation of state at very high DNA densities and/or high salt
concentrations.
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3.1 Poisson-Boltzmann theory

In our investigation of the electrostatic interactions between charged macromolecules we
will start by writing down the expression for the non-equilibrium mean-field free energy
density (f ) of a gas of mobile charged particlesi.e. counterions and salt ions. It can be
written as a difference of the electrostatic field energy density (w) and the ideal entropy
density of the mobile charge carriers (s) [6]. The electrostatic field energy density can be
written as

w(E(r), ρi(r)) = − 1
2εε0∇φ(r)2(r) +

∑
i zieini(r)φ(r), (1)

whereE(r) = −∇φ(r) is the local electrostatic field andε is the static dielectric constant
andni is the density of the charged speciesi, of chargeziei. The total charge density is
thus

∑
i ρi(r) =

∑
i zieini(r). After minimizing this expression w.r.t.φ(r) one remains

with the standard Poisson equation and the usual form of the electrostatic filed energy
density.

Let us assume furthermore that there areN mobile ionic species with chargesziei,
whose densities areni whilen0

i is the particle density of the same mobile charged species
in the bulk with which the system is in chemical equilibrium. Then the entropy difference
between the volume under consideration and the bulk is given by

s(ni(r)) = −kB

∑
i

(
ni(r) log

(
ni(r)
n0

i

)
−
(
ni(r)− n0

i

))
, (2)

wherekB is the Boltzmann constant. The complete non-equilibrium free energy differ-
ence is then defined as a volume integral

F =
∫

d3r f(E(r), ni(r)) =
∫

d3r (w(E(r), ni(r))− Ts(ni(r))). (3)

By minimizing the free energy Eq. 3 with respect to the electrostatic potential one first
obtains the Euler - Lagrange equation in the form

∇
(

∂f

∂∇φ

)
+

∂f

∂φ
= 0 wherefrom εε0 ∇E(r) =

∑
i

zieiρi(r). (4)

This is obviously nothing but the Poisson equation. By furthermore minimizing the free
energy Eq. 3 with respect to ionic densitiesni one obtains the Euler - Lagrange equation
in the form

∂f

∂ni
= 0 wherefrom zieiφ(r) + kBT log

(
ni(r)
n0

i

)
= 0. (5)

Taking into account the Poisson equation Eq. 4, one can rewrite the above equation as
the Poisson - Boltzmann equation

∇2φ(r) = − 1
εε0

∑
i

ρi(φ(r)) = − e0

εε0

∑
i

zin
0
i e
−βzie0φ(r), (6)

that gives the equilibrium (mean-field) profile of the electric field in the system. If one in-
tegrates the Poisson equation over the whole volume available to the mobile ionic species
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and takes into account the theorem of Gauss- Ostrogradsky, one gets

εε0

∮
∂V

(E · n) d2r =
∫

V

∑
i

eiρi(r)d3r =
∮

∂V

σd2r. (7)

Here a further assumption is that the system is overall electroneutral and thus the total
volume charge should be matched by the neutralizing surface charge of surface charge
densityσ on the boundaries of the volume. Further details on the derivation of the Pois-
son - Boltzmann (PB) equation can be found in [6],

If the magnitude of the surface charges is not too large, one hasβe0φ(r) � 1 in the
whole accessible volume. Assume further the we have only two mobile charged species:
e1 = e0 ande2 = −e0, together withn1 = n+ andn2 = n−, in equilibrium with a bulk
reservoir withn0

i = n0. In this case the Poisson-Boltzmann equation can be linearized
and reduced to the Debye - Hückel equation [6]

∇2φ(r) = −e0n0

εε0

∑
i

zie
−βzie0φ(r) ≈ −e0n0

εε0

∑
i

(zi−β(zi)2e0φ(r)+. . .) = κ2
Dφ(r).

(8)
By assumption

∑
i zi = 0 and

∑
i(zi)2 = 2. Above we have introduced

κ2
D = 8π`Bn0 where `B = e2

0/4πεε0kBT (9)

is the Bjerrum length, defined to be the separation between two elementary charges at
which their electrostatic interaction energy equals the thermal energy. At room temeper-
ature and water as solvent it’s value is7.1. The constantκD = λ−1

D is interpreted as the
inverse Debye screening length. For monovalent salts at room temperature with concen-
tration expressed in moles [M] per liter,λD = 3.05/

√
[M ] in Å. The salient feature of

electrostatic interaction on the linearized PB equation level is the screening quantified by
the Debye lengthλD, leading to an approximately exponential decay of the interactions
as a function of the separation between the charges. This picture of screened interactions
has to be drastically modified in the case of polyvalent counterions [7].

The linearization of the PB equation is usually justified at asymptotic conditions,
meaning usually a small surface charge and/or a large separation between charged macroions
as well as by the fact that it is easily amenable to analytic solutions. The full non-linear
PB equation represents a much tougher mathematical problem analytically solvable only
for special geometries.

3.2 The cell model

In many colloidal systems, most notably in the case of ordered DNA phases, one sel-
dom deals with isolated molecules in ionic solutions. Quite often one has a phase of
densely packed macroions which complicates the problem of evaluating the electrostatic
interactions even further. A simple way around this problem is the polyelectrolyte cell
model [8], being a variant of the Wigner - Seitz model of electron in the crystalline
lattice, which substitutes the complicated colloidal geometry with a cell, containing a
single colloid. The effect of the rest is assumed to be mimicked by the cell wall where
the electrostatic potential should have a zero derivative by symmetry.
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For a long cylindrical molecule such as DNA in a dense phase where molecules are
on the average oriented in one direction, a cylindrical cell model should capture the main
features of the molecular environment. There are nevertheless important caveats that one
has to be aware of in the context of the cell model [9]. The linearized PB equation in
cylindrical coordinates(r, θ, z) reads

1
r

d

dr

(
r
dφ

dr

)
= κ2

Dφ, (10)

with the boundary condition at the inner wall, (i.e. at the surface of the central molecule
with a radiusa) being

dφ

dr
(r = a) = − σ

εε0
= − e0

2πεε0ab
, (11)

wherb is the length of the molecule per one elementary charge on the surface. For DNA
its structural charge would correspond to one charge per1.7 Å. The boundary condition
at the outer surface of the cell, assumed to be located atr = R, is by symmetry

dφ

dr
(r = R) = 0. (12)

The radius of the cellR is obtained from the macromolecular density of the system. If the
density of the macromolecules isnM , thennM

−1 = π(R2 − a2)b. The macromolecular
density thus determines the radius of the cell.

Obtaining a solution of the linearized Poisson - Boltzmann equation in cylindrical
cell model is quite straightforward and leads to the electrostatic potential that can be
expressed via the cylindrical Bessel functionsK0(x) andI0(x) as

φ(r) =
e0

2πεε0b (κDa)
K0(κDr)I1(κDR) + I0(κDr)K1(κDR)
K1(κDa)I1(κDR)− I1(κDa)K1(κDR)

. (13)

From here we get for the radial component of the electrostatic field the expression

Er(r) = −dφ

dr
=

e0

2πεε0ba

K1(κDr)I1(κDR)− I1(κDr)K1(κDR)
K1(κDa)I1(κDR)− I1(κDa)K1(κDR)

. (14)

One should note here that for a single cylinder, thus in the limit ofR −→ ∞, the elec-
trostatic potential and the electrostatic field reduce to

lim
R−→∞

φ(r) =
e0

2πεε0b (κDa)
K0(κDr)
K1(κDa)

and lim
R−→∞

Er(r) =
e0

2πεε0ba

K1(κDr)
K1(κDa)

.

(15)
Additional terms in the cell model solution Eq. 13 and 14 are thus due to the finite
concentration of the DNAs and obviously depend on its density via the radius of the
outer cell wallR. One should note here that the linearized solutions of the PB equation
are quite accurate in the case that the salt concentration is not too small [10]. The non-
linear PB equation has an analytical solution [11] only for a single cylinder in infinite
ionic solution,
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3.3 Osmotic pressure

The forces between macromolecules mediated by the equilibrium distribution of counte-
rions and salt ions between them can be obtained via the stress tensor at the outer surface
of the cell, which gives the force acting on this surface. This force per unit area of the cell
is obviously nothing but the osmotic pressure. The stress tensor contains the Maxwell
electrostatic part and the osmotic part [12],

σij = εε0
(
EiEj − 1

2E2δij

)
− kBT

∑
i

ni(φ(r))δij . (16)

The last term is simply the van’s Hoff ideal gas pressure, corresponding to the ideal gas
entropy in the free energyansatz. The negative sign comes from the general continuum
mechanics argument that positive pressure should lead to a decrease in volume.

We can evaluate the stress tensor on any plane of cylindrical symmetry witin the cell.
In many cases it is simplest to take the stress tensor at the surface of the central macro-
molecule, in which case the forces are obtainedvia a contact theorem [12]. Equivalently
we can take the stress tensor at the outer wall of the cell where by symmetry the electric
field is zero and thus the stress tensor contains only the van’t Hoff part. Since the latter
case is simpler we thus find for the radial components of the stress tensor (all the other
ones vanish at the outer wall)

σrr = −kBT
∑

i

ni(r = R). (17)

The osmotic pressureΠ(R) in the cell isvia the mechanical equilibrium, equal to minus
the force per surface area on the outer wall, thus

Π(R) = −σrr = kBT
∑

i

ni(r = R). (18)

We can use this expression to derive the form of the osmotic pressure in the case of the
linearized PB equation in a cylindrical cell. Remember that we have assumed that we
have only two mobile charged species:e1 = e0 ande2 = −e0, together withn1 = n+

andn2 = n−, in equilibrium with a bulk reservoir wheren0
1 = n0

2 = n0. The osmotic
pressure difference between the cell and the bulk reservoir, which alone is measurable,
can be evaluatedvia the expression Eq. 18

Π = kBT (n+(r = R) + n−(r = R))− 2kBTn0 =
= 2kBTn0 (coshβe0φ(r = R)− 1) . (19)

This is the complete expression for osmotic pressure difference between the inside of the
cell and the bulk. Obviously here the only molecular species contributing to the osmotic
pressure are the mobile ions. The macromolecule itself does not contribute to the osmotic
pressure. We will see later that this point of view is not entirely correct.

Another approach to the evaluation of the osmotic pressure, independent of the cell
model, would be to calculate the complete equilibrium free energyF from Eq. 3via a
volume integral over all the space available to the mobile charges

F [nM ] =
∫

d3r f(E(r), ni(r)) (20)
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where the electrostatic field and the densities of the mobile charges are obtained from the
solution of the full or linearized Poisson - Boltzmann equation Eq. 6. This free energy
is of course a function of the concentration of the macromoleculesnM . The osmotic
pressure in the system would then be obtained from the standard thermodynamic relation

Π = −
(

∂F(nM )
∂VM

)
T,µ

. (21)

Constant temperature and chemical potential of the mobile charged species are of course
assumed in the above expression. In the case that the macromolecular solution is ordered
and exhibits certain symmetries, this expression can be simplified even further. If we
again assume that the effects of the packing symmetry of the molecules can be captured
by a cylindrical cell model of radiusR and that the length of the molecules isL, we can
write for the osmotic pressure

Π = −
(

∂F(nM )
∂VM

)
T,µ

= −
(

∂(F(R)/L)
2π R∂R

)
T,µ

. (22)

Eq. 22 connects the expression for the osmotic pressure in the cell model with the one
obtained from the complete partition function. Discrepancies between the values for
osmotic pressure obtained from the two expressions are due to the approximate nature of
the cell model.

3.4 Interaction between cylindrical macromolecules

Let us now investigate the osmotic pressure in the cylindrical cell model on the level of
the linearized PB equation. In this case Eq. 19 can be written as

Π = 2kBTn0 (coshβe0φ(r = R)− 1) =
= 2kBTn0(βe0)2φ2(r = R) + . . . = κ2

Dεε0φ
2(n = R) + . . . , (23)

and represents the osmotic pressure difference between the wall of the cell and the bulk
reservoir. Using now the solution of the linearized PB equation Eq. 13, we end up with
the following expression forΠ

Π =
σ2

εε0K2
1 (κDa)

K2
0 (κDR) p2(κDR, κDa), (24)

where we introduced the correction factorp(x, y) as

p(κDR, κDa) =
1 + K1(κDR)I0(κDR)

I1(κDR)K0(κDR)

1− K1(κDR)I1(κDa)
I1(κDR)K1(κDa)

. (25)

The factorp2(κDR, κDa) obviously represents the effect of the finite concentration of
the macromolecules, i.e. DNA, or in other words the effect of the walls of the cell. For
small DNA densities this correction factor goes to unity, since in that limit only the first
neighbors of the central molecule are important. This would be equivalent to taking only
the first neighbors into account in the evaluation of the free energy.
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Eq. 24 for osmotic pressure is relatively complicated. In order to avoid the details
that will later prove to be irrelevant, we investigate only its asymptotic form, valid for
large values ofκDR or small values of the macromolecular concentration. In this limit
we havep(κDR, κDa) −→ 1 and the approximate form of the osmotic pressure can be
derived as

Π ∼ σ2

εε0K2
1 (κDa)

K2
0 (κDR) =

σ2

εε0K2
1 (κDa)

π

2
e−2κDR

κDR
, (26)

where we have taken into account the asymptotic form of the Bessel functionK0(x) −→√
π
2 exp(−x)x−1/2. From the expression for osmotic pressure Eq. 22 we can now derive

the interaction free energy per unit length between the central molecule and its neighbors.
We obtain

F(R)/L ∼ π2

2
σ2

εε0κ2
DK2

1 (κDa)
e−2κDR = kBT

`B

b2
e−2κDR. (27)

Here we introduced an effective separationb between charges along the cylinder1/b =
πσλD/

√
2e0K1(a/λD) [14] ( for DNA b ∼ lPO4 , wherelPO4 ∼ 1.7 Å, is the separa-

tion between the phosphate charges along DNA [15]). This expression derived via the
cell model with cylindrical symmetry is very close to the expression derived via a pair-
interaction energy evaluated on the linearized PB level [14]. This is not surprising since
apart from geometric factors the cell model and the pairwise free energy should give the
same result at vanishing macroion concentrations.

In the case of very large surface charges the nonlinearities of the Poisson-Boltzmann
equation effectively change the surface charge density entering the above equation Eq. 27
via b −→ `B while leaving the separation dependence largely unaltered [6]. Sometimes
these non-linearity effects, that become pronounced depending on whether the s.c. Man-
ning parameterζ = B/b is larger or smaller than one, would be referred to as Manning
condensation [13].

4 EQUATION OF STATE: NO THERMAL FLUCTUA-
TIONS

An equation of state in general means a connection between the osmotic pressureΠ and
the macromolecular densitynM of an assembly

Π = Π(nM ) (28)

and can in principle be obtained exactlyvia a complete statistical mechanical treatment
of a solution composed of cylindrical macromolecules and the bathing medium. Since
this is usually not feasible, a helpful shortcut is to evaluate the osmotic pressure in the
cell model, that mimmicks the finite meacromolecular density as explained above.

The system that we are studying is composed of macomolecules that have intermolec-
ular as well as intramolecular degrees of freedom since they are usually not infinitely
rigid. A most naive approach to the equation of state would be to simply forget the in-
tramolecular degrees of freedom, assume that the macromolecules are ideally rigid and
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that they assemble into a crystal of hexagonal symmetry with perfect positional order. In
this case the osmotic pressure of such a system can be obtainedvia Ewald force sum-
mation (in the case of short range interactions even this is dispensable) involving the
intermolecular potentials leading directly to the equation of state or again via the cell
model; the latter approach being certanly simpler then the Ewald summation since it is
effectively a single particle model. The osmotic pressure, i.e. the equation of state, in the
cell model would be given by

Π(nM ) = −
(

∂(F(R)/L)
2π R∂R

)
T

F(R) = kBT
`B

b2
e−2κDR. (29)

L is the length of the molecules in the array. As already stated in writing this free en-
ergy we assumed that the van der Waals interactions as well as the short range, non-
electrostatic structural nteractions do not make an essential contribution to the equation
of state. For the latter this is true only at not very high ionic concentrations and not too
high concentration of the macromoleculs (for details see [19]).

We can now take this equation of state and compare it to experiments performed
on DNA [19] at various solution conditions. After performing this type of exercise,
one is immediately convinced that something crucial is missing as there is practically
no correspondence (except at very high densities) between the experiment and this type
of simpleminded theory, see Fig. 2. In the case of DNA the magnitude of the surface
charge is taken at the Manning value [15], thusb = `B . Obviously this equation of
state underestimates the energetics of the system. In the following section we will try to
ammend it by taking into consideration also the intramolecular degrees of fredom of the
macromolecular ions.

Figure 2. A comparison of the equation of state Eqs. 29 with DNA experimental data
[19]. This form of the equation of state assumes that the molecules are infinitely rigid and
crystalline. The magnitude of the electrostatic part of the interaction is obtained by as-
suming that the charge density of the DNA is correctly given by the Manning value [15].
Obviously there are large discrepancies on this level between the theoretical predictions
and actual data.



10 Rudolf Podgornik

5 EQUATION OF STATE: THE EFFECT OF THER-
MAL FLUCTUATIONS (1)

While the intermolecular degrees of freedom are taken into account through interaction
potentials described in the previous section, the intramolecular degrees of freedom are
usually treated within a mesoscopic elastic model that substitutes macroscopic elasticity
for the complicated short-range intramolecular potentials acting between different seg-
ments of the macromolecules [17]. Elastic models for cylindrical macromolecules have
been well worked out [18]. The general idea is that the trace over all the microscopic
degrees of freedom is assumed to result exactly in the mesoscopic Hamiltonian itself,
that one then uses in the partition function to evaluate the trace over mesoscopic degrees
of freedom.

Because in the regime of relevant densities the hexagonal array is either in the line
hexatic or the cholesteric phases [19] I can use the mesoscopic elastic Hamiltonians per-
taining to them. The goal here will be to combine the effects of thermally driven elastic
fluctuations of the macromolecules with the interactions between them and calculate their
combined effect on the equation of state. This approach is based on ideas first introduced
by Helfrich in the ’70’s and later worked out in detail by Lipowsky, Leibler and others
in the ’80’s [20], who showed in the context of membranes that thermal conformational
fluctuations can have a profound effect on interactions between flexible macromolecules.

5.1 A macroscopic theory of the equation of state in an ordered
macromolecular array

Let us first consider the elastic free energy of a nematic: a three dimensional liquid with
long-range orientational order with an average directorn along the z-axis. Such phases
are typically formed by solutions of rod-like or disc-like objects. There are three kinds
of deformations in quadratic order ofn with symmetryC∞h: splay, twist and bending.
The corresponding elastic constants for these deformations are the Frank constantsK1,
K2 andK3 [17].

FN = 1
2

∫
d2r⊥drz

[
K1 (∇ · n)2 + K2 (n · (∇× n))2 + K3 (n× (∇× n))2

]
(30)

For small deviations of the director fieldn(r) around its average orientation along thez
axisn(r) ≈ (δnx(r), δny(r), 1), the free energy assumes the form

FN = 1
2

∫
d2r⊥dz

[
K1 (∇⊥ · δn)2 + K2 (∇⊥ × δn)2 + K3 (∂zδn)2

]
, (31)

where∇ = (∇⊥, ∂z). For polymer nematics we now have to consider that the director
field and the density of polymers in the (x,y)-planeρ = ρ0 + δρ are coupled [21, 22].
If the polymers were infinitely long and stiff the coupling is given by the continuity
equation:

∂zδρ + ρ0∇⊥ · δn = 0 (32)

This constraint, however, is softened if the polymer has a finite lengthL or a finite per-
sistence lengthLp. The persistence length is defined through the bending modulus of a
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single chainKC asKC = kBT Lp. For DNA the persistence length isLp ∼ 50nm.
The total bending elastic constant then has the formK3 = ρMKC , whereρM is the 2D
density of the polymers perpendicular to their long axes.

On length scales larger thanLp the polymer can either fill the voids with its own ends
or fold back on itself [23]. On these length scales the polymer nematic can splay without
density change. Following [24] this can be expressed by introducing G, a measure of
how effectively the constraint is enforced. Density changes are expanded to second order
in density deviationsδρ(r⊥, z) = ρ(r⊥, z)−ρ0. B is the bulk modulus for compressions
and dilations normal to the chains. The total free energy can now be written as

F = F0(ρ0) + 1
2

∫
d2r⊥dz

[
B
(

δρ
ρ0

)2

+ G (∂zδρ + ρ0∇⊥ · δn)2
]

+ FN (33)

where G is given byG = kBTL
2ρ0

whereL can not exceedLp [24]. In the limit of
finite polymer length G is also finite and can be obtained from the observation that
∂zδρ + ρ0∇⊥ · δn equals the difference between the number of polymer heads and tails
[22]. From here one derives thatG is the concentration susceptibility for an ideal mix-
ture of heads and tails thusG = kBT/(ρH + ρT ), whereρH andρT are the average
concentrations of heads and tails, withρH , ρT = ρM . The macromolecular density on
the other hand equalsρM = ρ0/L, wherefromG = kBT`/2ρ0. The corresponding
structure factor can be written as

S(q⊥, qz) = <|δρ(q⊥, qz)|2> = kBT
ρ2
0q

2
⊥ + kBT K(q)

G

Bq2
⊥ + kBT

(
B

Gρ2
0

+ q2
z

)
K(q)

, (34)

where we defined

K(q) =
K1q

2
⊥ + K3q

2
z

kBT
. (35)

For long-fragment DNA the limitL −→∞ is appropriate, leading to the structure factor
proposed by Selinger and Bruinsma [25]

S(q⊥, qz) = kBT
ρ2
0q

2
⊥

K1q2
⊥q2

z + K3q4
z + Bq2

⊥
. (36)

In order to calculate the contribution to the free energy due to fluctuations in nematic
order we have to sum over all the density modes, obtaining

F = 1
2 kBT

∫∫
d2q⊥dqz

(2π)3 log
(
K1q

2
⊥q2

z + K3q
4
z + Bq2

⊥
)
. (37)

The problem here is that the above integral requires a cutoff and that the higher order
terms inq⊥ are more important than the ones we have kept here. For a moment let us
assume that this free energy is valid and we may calculate

∂F
∂B

= 1
2 kBTV

∫∫
q⊥dq⊥dqz

(2π)2
q2
⊥

K1q2
⊥q2

z+K3q4
z+Bq2

⊥
. (38)

Theqz integral can be done straightforwardly and we remain with

∂F
∂B

= 1
2 kBT V

(2π)2
π
2

∫ q3
⊥dq⊥√

Bq2
⊥

√
K1q2

⊥+2
√
BK3q2

⊥

. (39)
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This integral depends essentially on the upper cutoff forq⊥ = q⊥max and we obtain

∂F
∂B

= kBT
V

4π

BK3

K2
1

√
BK1

F

 q⊥max

2
√
BK3
K2

1

 , (40)

where the functionF (x) has been defined as

F (x) =
∫ x

0

u3/2du√
1 + u

= 1
4

(√
x
√

1 + x(2x− 3) + 3 areasinh
√

x
)

=

{
2
5x5/2 ;x � 1
1
2x2 ;x � 1

.

(41)
From here we obtain the two limiting forms of the free energy as

F ' kBT V

5× 23/2π
4

√
B
K3

q
5/2
⊥max + . . . ; q⊥max � 2

√
BK3

K2
1

(42)

F ' kBT V

16π

√
B
K1

q2
⊥max + . . . ; q⊥max � 2

√
BK3

K2
1

. (43)

Obviously the long-wavelength physics is very complicated and depends crucially on the
values of typical polymer length and the ratios of elastic constants. However it is also
dependent on theq⊥ cutoff. We have to either eliminate the cutoff by including higher
order terms in the original Hamiltonian or choose a meaningful cutoff. Higher order
terms will capture the short-wavelength physics and remove the divergence [19].

One can show [19] that a consistent value of the cutoff has to be proportional to
the Brillouin zone radiusq⊥max ' π

D , whereD is the effective separation between the
polymers in the nematic phase. This is a physically meaningful and appropriate cutoff
because the underlying macroscopic elastic model has, by definition, to break down at
wavelengths comparable to the distance between molecules.

Putting in the numbers valid for DNA arrays one realizes that in the regime of densi-
ties considered here we are always in the Eq. 42 limit. We would now have to derive the
mesoscopic elastic moduli from the microscopic interactions describedvia a pair poten-
tial F(R) (the interaction free energy) between the segments of the macromolecules. At
present this program is too ambitious and we simply exploit the standardansatz for the
different elastic moduli [21] expressed via the cell model free energy

K1 = K2 ' F(R)/R

K3 ' ρ0KC + F(R)/R

B ' V
∂2F(V )

∂V 2
=

1
4π

(
∂2(F/L)

∂2R
− 1

R

∂(F/L)
∂R

.

)
, (44)

whereρ0 is the 2D density of the macromolecules perpendicular to their long axes,KC

is the elastic rigidity modulus of a single polymer molecule and we assumed that the
polymers have an average separationR between first neighbors [19].

The macroscopic free energy Eq. 42 together with the values of elastic constants
Eq. 44 already points to the salient features of the fluctuation modified equation of state.
Obviously the thermal fluctuations make the free energy much longer ranged than the
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underlying microscopic interaction potential. If the interaction potential decays expo-
nentially with characteristic lengthλ, then the free energy Eq. 42 decays with four times
the characteristic length! The factor of four is a simple consequence of mesoscopic elas-
ticity.

We now use the form of the bare interaction free energyF(R) appropriate for a DNA
array Eq. 29. One can see that at all relevant densitiesK3 ' ρ0KC . We are now able
to fit the calculated equation of state obtained from Eq. 42 to the experimental equation
of state [19], see Fig. 3. The values for the DNA bending rigidity and the Debye length
obtained from such a fit are comfortably within the expected range [19]. Let me just
mention here that the effective charge evaluated from the fit is about half the amount
expected on the basis of the Manning condensation theory. A fundamental drawback

Figure 3. A fit of the lowest order fluctuation equations of state, Eqs. 42, to DNA [19]
data. Dashed line - theory without fluctuations as on FIg. 2. Full line - theory with
conformational fluctuations of the molecules taken into accoumt on a harmonic level,
42. The value of the effective charge on the DNA surface is obtained from the fit to
experiment and is found to be about half the Manning condensation value.

of this formulation for the equation of state in an assembly of flexible molecules is most
clearly seen in theansatz Eq. 44. The elastic moduli are not really calculated on the same
level as the free energy but are assumed to have a form, that at least for the compressibility
modulus, would be strictly valid only for rigid molecules. The above formulation is thus
not completely self-consistent and we will make an attempt to improve it in the next
section. The failure of this attempt will make us aware of some fundamental properties
of the nature of the positional order in DNA arrays.
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6 EQUATION OF STATE: THE EFFECT OF THER-
MAL FLUCTUATIONS (2)

At this point one can use any of the advanced theories that take into account the thermal
fluctuations at a deeper level than the macroscopic theory of the previous section and
that allow also for the thermal fluctuation effects that can modify the compressibility
modulus itself [26]. Such theories are well worked out also in other areas of physics such
as e.g. magnetic vortex arrays in type II superconductors. There are different approaches
that one can follow. One could either formulate the problem in the language of the
functional renormalization group [26] or on the level of a variational calculation of the
compressibility modulus in the Feynman - Kleinert style [27]. To remain as close as
possible to the approach outlined before, we chose the second,i.e. variational, approach.
It usually fares quite well even when compared to the more powerful renormalization
group approach.

Figure 4. A fit of the variational equation of state to the experimental data. Here the
values of the elastic moduli are obtained self consistently and also include a fluctuation
contribution. Surprisingly this fit with a variational equation of state for DNA obtained
from Eq. 54 fares much worse than the macroscopic fluctuation theory, see Fig. 3. The
reason lies in the nature and range of the positional order in an ordered assembly of
DNA, see main text.

6.1 Variational calculation of the osmotic pressure in a hexagonal
array

For a system with a hexagonal local symmetry I follow closely the calculation of Volmer
and Schwartz [28] derived for the system of magnetic vortex lines in type II supercon-
ductors. Apart from the difference between elastic energies of a vortex line vs. a flexible
polymer the two cases are analogous. The interaction Hamiltonian of an oriented DNA
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polymer array with hexagonal local symmetry can be written in the form

H = 1
2KC

∞∑
n,m=1

∫
dz
(

∂2r⊥
(n,m)(z)
∂z2

)2

+ 1
2

∞∑
n,m 6=n′m′

∫
dz V

(
r⊥(n,m)(z)− r⊥(n′,m′)(z)

)
,

(45)
wherer⊥(n,m)(z) is the local displacement of a polymer chain at the(n, m) lattice po-

sition perpendicular to the long axis ,z, while V
(
r⊥(n,m)(z)− r⊥(n′,m′)(z)

)
is the

interaction potential between different macromolecules at the same value ofz. In prin-
ciple the indicesn, m would run through all the positions of the polymers at a certain
planar cross section through the nematic but because of the short range nature of the in-
teraction and computational convenience I restrict them to nearest neighbors [28].KC

is of course the elastic modulus of DNA given byKC = kBTLP , whereLP is the
persistence length.

Instead of using this nonharmonic Hamiltonian I will take a simpler reference Hamil-
tonian of a general harmonic form. Let us start with the following parametrization

r⊥(n,m)(z) = Rnm + u(n,m)(z),

u(n,m)(z) =
∑

Q⊥,qz

u(Q⊥, qz)eiqzz+iQ⊥Rnm (46)

whereRnm = na1 + ma2, with a1 anda2 the two basis vectors of the macomolecular
lattice perpendicular to the long axisz of the molecules andQ⊥ the appropriate recipro-
cal lattice vectors. I take the reference Hamiltonian in the general harmonic form in the
reciprocal Fourier space

H0 = 1
2

∑
Q⊥,qz

(
KCq4

zδik + Bik(Q⊥)
)
ui(Q⊥, qz)uk(−Q⊥,−qz) + V0(a), (47)

whereBik(Q⊥) = Bik

∑
a 4 sin2 Q⊥a

2 and the sum overa refers to summation over the
positions of nearest neighbors.

The idea of the Feynman - Kleinert variational principle is now to use the Hamilto-
nian Eq. 47 as an harmonicansatz whose effective parameters, likeBik andV0(a) are
determined variationally by minimizing the upper bound for the free energy [27] . This
approach has already been used in the context of multilamellar systems [29].

Let us start with what is usually referred to as the Gibbs - Bogolyubov inequality.
Taking the exact free energy, corresponding to the HamiltonianH and an approximate
one, corresponding toH0, it is straightforward to derive

F ≤ F0 + 〈H −H0〉H0
. (48)

The average〈. . .〉H0
is performed with respect to the Hamiltonian Eq. 47. Obviously the

above inequality defines an upper bound for the free energy. By evaluating explicitly the
terms in Eq. 48 with the reference Hamiltonian given by Eq. 47, one is left with

F0 = 1
2

∑
Q⊥,qz

(
KCq4

zδik + Bik(Q⊥)
)
〈ui(Q⊥, qz)uk(−Q⊥,−qz)〉H0

+ V0(a), (49)
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where the positional correlation function is given by

〈ui(Q⊥, qz)uk(−Q⊥,−qz)〉H0
= σik(Q⊥, qz) =

kBT

KCq4
zδik + Bik(Q⊥)

, (50)

via the equipartition theorem since we have a general quadratic form of the reference
Hamiltonian. On the other hand the second term of Eq. 48 can be derived as

〈H −H0〉H0
= 1

2Vσij(Q⊥,qz)(a)− 2Bij

∑
Q⊥,qz

∑
a sin2 Q⊥a

2 σik(Q⊥, qz)− V0(a).
(51)

where in the first term of the above expression we introduced the fluctuation modified
form of the interaction potential given by

Vσij(Q⊥,qz)(a) =
∫

d2r⊥ V (r⊥)
∑
a

∑
k

e

(
ik(a−r⊥)−2βkikj

∑
Q⊥,qz

sin2 Q⊥a

2 σij(Q⊥,qz)

)
.

(52)
This simply follows from the fact thatH0 is a quadratic function for which one has〈
eiAiui

〉
H0

= e
− 1

4AiAk 〈uiuk〉H0 . All this is very closely related the analysis of Volmer
and Schwartz [28] for the system of magnetic vortex lines in type II superconductors.
The only difference is in the conformational energy of a polymer (elastic energy) and a
vortex line (tension energy). The above variational formulation is obviously based on
two parameters:σik(Q⊥, qz) andV0(a).

What the Feynman - Kleinert variational principle is aiming at is to minimize the
second term of Eq. 48. Let us first consider the minimal value ofV0(a). Clearly the
second term of Eq. 48 is non-negative. It is in fact minimal if

V0(a) = 1
2Vσij(Q⊥,qz)(a)− 1

2

∑
Q⊥,qz

Bik(Q⊥) σij(Q⊥, qz), (53)

making thusF = F0 or in extenso

F0 = −kBT log
〈
e−βH0

〉
= V0(a) +

kBT

2
Tr

∑
Q⊥,qz

log
(

δik +
Bik(Q⊥)
KCq4

z

)
. (54)

It is obvious from the above expression what the fluctuations do to the free energy on this
level of approximations. Without the thermal noise the second term of Eq. 54 would be
zero, and we would be back to the equation of state without any intramolecular degrees
of freedom. The fluctuations again, just as in the previous section, effectively boost the
bare intermolecular interactions this time quantified byV0(a).

As for the second parameter that needs to be minimized, one gets simply

2Bij

∑
a

sin2 Q⊥a
2

= 1
2

∂Vσij(Q⊥,qz)(a)

∂σij(Q⊥,qz) . (55)

Equations Eq. 53 and 55 represent the solution to the minimization problem. Very similar
equations have already been derived in the case of magnetic vortex arrays [28].
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The most important quantity of the above formulation of the fluctuational renormal-
ization of the interactions in a macromolecular array is the pair interaction potential per

unit length between two polymer segmentsV
(
r⊥(n,m)(z)− r⊥(n′,m′)(z)

)
given again

by Eq. 29, that enters Eq. 54. One should appreciate the main difference between the
calculation described in this section and the previous section: before the elastic moduli
were given by different expressions, involving only thebare interaction Eq. 44; now the
elastic modulus is given as a function of fluctuation renormalized interaction, Eq. 55.
The last calculation should thus in principle be more accurate in describing the effect of
thermal fluctuations.

However, when we compare the equation of state obtained from Eq. 54 with the
macroscopic fluctuation equation of state from Eq. 42, we see that it fares much worse
when compared with experiments, see Fig. 4. This fact is surprising, since the whole idea
was to get an even better estimate of the fluctuation effects, and demands an explanation.

The reason for this discrepancy is found out to be quite simple. The variational
ansatz based on positional correlation functionσik(Q⊥, qz) only makes sense if this
quantity itself is well defined, thus ifσik(Q⊥, qz) < ∞. This constraint fits best the
description of a solid, with long range positional order, and finite correlations between
any two macromolecular positions. DNA however, at the relevant densities, is not a solid.
It is a hexatic liquid crystal with only short range positional order and is thus more akin to
a fluid. For a fluid of course, with only short range positional correlations, the positional
correlations (as opposed to density correlations which of course remain finite) diverge
in the thermodynamic limit and can not be described with a finite correlation function.
Therefore the variational theory, strictly applicable only to a hexagonal crystal, fares
much worse than the mesoscopic fluctuation theory of the previous section, if applied to
a DNA array at densities between the crystalline and isotropic phases.

A variational theory similar in spirit to what I developed above was also put forth by
de Vries [30] basing his analysis on previous work by Odijk [31]. Numerical results of
this approach are indistinguishable from those presented above.

7 CONCLUSION

I have given a broad overview of the work on the equation of state of DNA in aque-
ous ionic solutions. Most of what I described applies only to monovalent salt solutions.
Higher valency salts have a very different effect on the properties of DNA [15] falling
outside of my immediate interests. The picture that I developed here shows that depend-
ing on the monovalent salt concentration, conformational fluctuations mask the direct
electrostatic interactions at all but very low salt. It might thus come as a surprise that
for DNA, which is a very highly charged polyelectrolyte, the effect of electrostatic in-
teractions on the equation of state is modified in an essentail way by the conformational
fluctuations of DNAs. Direct electrostatic effects for this highly charged polyelectrolyte
are thus counterintuitively discernible only in a very limited range of salt concentrations.
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