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Abstract. In the spin model of a helix-coil transition in polypeptides a preferred value of spin has to be
assigned to the helical conformation, in order to account for different symmetries of the helical vs. the coil
states, leading thus to the Generalized Model of Polypeptide Chain (GMPC) Hamiltonian as opposed to
the Potts model Hamiltonian, both with many-body interactions. Comparison of explicit transfer matrix
secular equations of the Potts model and the GMPC model reveals that the largest eigenvalue of the
Potts model with ∆ many-body interactions coincides with the largest eigenvalue of the GMPC model
with ∆−1 many-body interactions, indicating the identity of both free energies. In distinction, the second
largest eigenvalues in both models do not coincide, indicating a different behavior for the spatial correlation
length that in its turn defines the width of the helix-coil transition interval. We explore in detail the
thermodynamic consequences, resulting from spin models with and without the built-in spin anisotropy,
that should indicate which model to favour as a more appropriate description of the equilibrium physical
properties pertaining to the helix-coil transition.

1 Introduction

Though effective one-dimensional spin models have only a
limited relevance for hard condensed matter systems [1,2],
recently discovered examples of low-dimensional quantum
systems such as the one-dimensional spin liquids and elec-
trons in quantum wires [3,4], followed by low-dimensional
macromolecular soft matter systems, hold promise for re-
vitalising the importance of one-dimensional spin model
description. In particular for the latter case, phenomena
such as helix-coil transition in polypeptides [5,6] or in-
deed the stretch-induced B-to-S conformational transition
in DNA [7,8] can both be described within a spin model
dictionary with the proviso that the ordered state is being
realized only when spins have a set, preferred direction [9].
Specifically, for the helix-coil transition the description of
polypeptide conformations can be reduced to a considera-
tion of a pair of torsional angles, pertaining to each of the
peptide units [10]. Ramachandran’s plot [11,12] of accessi-
ble vs. not accessible regions of these two torsional angles
shows that helix formation is promoted only when both
assume preferred values from a well-defined α-helical lacu-
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nae in this plot. When modeled in terms of spins the im-
plication of the Ramachandran’s plot is then that a helix
can be formed locally only when spins take on a set, pre-
ferred value, which is exactly the situation we alluded to
above. The situation with mechanical stretch induced B-
to-S DNA conformational transformation, where the more
compact B-form is reorganised into a more extended S-
form of DNA, is in fact similar and has been described
within models of the helix-coil variety pertaining to the
same model universe [7,8].

In these and similar contexts the preferred direction
of spins could be formalised within the Potts-like many-
valued spin models that naturally allow for a preferred
direction, distinguishing it by a selected spin value. The
Potts-like model with preferred spin direction is funda-
mentally different from the classical Potts variety without
any assigned preferred direction and one needs to eluci-
date in what ways, if at all, they differ between themselves
in terms of the predicted equilibrium properties, in order
to assess their appropriateness for description of real sys-
tems. This is the problem we set ourselves to clarify in
this work.

A preferred direction of the spin is not the only feature
differentiating these Potts-like models. The range of many-
body interactions that one needs to consider is another
one. Specifically, while in the case of a polypeptide chain
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Fig. 1. (Color online) Schematic view of a polypeptide chain in a trans conformation. Parallelograms indicate the plane of the
virtual peptide bond. a) Polypeptide chain where the main-chain atoms are represented as rigid peptide segments, linked by
virtual bonds through the Cα atoms. Each segment has two degrees of freedom due to the rotation around the Cα–C′ (torsional
angle φ) and N–Cα (torsional angle ψ) bonds. R stands for the amino acid residues, while all other atoms have the corresponding
chemical labels. b) Coarse-grained representation of a polypeptide chain: the conformation of the i-th repeating unit is described
with the help of bond length li, bond angle θi and a pair of torsional angles φi, ψi.

spin model it is essential that three successive spins all be
in a chosen conformation corresponding to a single helix-
inducing hydrogen bond (see fig. 1) [5], the description of
DNA overstretching implies that up to ten successive spins
be engaged in a double helix-engendering hydrogen bond
between opposing strands [13]. It is thus clear from both
examples that it is necessary to consider some finite range
of interactions and thus a finite number of nearest spins,
Δ, as being crucial for the local formation of an ordered
state —a hydrogen bond in the considered case.

There are thus two distinguishing features of the one-
dimensional spin models worthy of further consideration:
the existence of a preferred spin orientation pertinent to
the ordered state, and the number of nearest spins entering
into the local formation of an ordered state. The effects of
the latter can be analyzed within the many-valued Potts
spin model with an arbitrary but finite range of many-
body interactions, while the former provides the basis of
Generalized Model of Polypeptide Chain (GMPC) that ac-
counts for the preferred spin orientation. GMPC has been
formulated several decades ago [14–16] and has been ex-
tensively studied specifically in the context of the helix-
coil transition [9,17–19]. It was shown that the Zimm-
Bragg model [20] and the Lifson-Roig model [21] both
correspond to particular cases of the GMPC variety with
Δ = 2 and Δ = 3, respectively [9,16]. The Wako-Saito-
Munoz-Eaton (WSME) model, widely applied to protein
folding (see [22–28]), can also be shown to be related to
the GMPC model as will be elaborated later. On the other
hand, if no preferred spin value is taken into consideration,
the standard one-dimensional Potts model has been solved
exactly [1,2] but only with nearest-neighbor interactions
Δ = 2, with no known solutions for Δ > 2, and was
then applied to a helix-coil transition by Goldstein [29].
Furthermore, models that do not even allow for a spin
Hamiltonian description have also been traditionally used
to describe the statistical characteristics of the helix-coil
transition [6,20,21].

As there obviously exists a spectrum of models that
fall within the same class as the GMPC model it seems to
be appropriate to know and understand the differences in
the equilibrium properties implied by these various mod-

els. For this it is necessary to analyse their solutions and
compare them. Our first task will therefore be to embark
on a detailed study and comparison of the solutions of the
GMPC model with preferred spin direction and the classi-
cal Potts variety for different values of the range of many-
body spin interactions, Δ, by analysing the respective ex-
plicit transfer matrix secular equations. Specifically, we
will show by a detailed but general analysis that the lowest
eigenvalues of the two models coincide but the next higher
eigenvalues do not! This non-trivial result has fundamen-
tal repercussions for the equilibrium states described by
the two models which in general do not coincide.

2 Helix-coil model formulation in terms of

spin variables

Statistical description of polypeptide chain conformations
involves important coarse-graining on the level of the Cα

atoms, because of the planar configurations of the atomic

groups (C
(α)
i−1, Ci−1, Oi−1, Ni) due to specific bond hy-

bridizations. The planar structure of these groups (pep-
tide groups) allows the introduction of virtual bonds,
connecting the neighboring asymmetric carbon atoms
(fig. 1(a)) [5,30]. The configuration of a polypeptide chain
can then be described with the sequence of (virtual) bond
vectors {li} [10,31,32], related to its backbone. In this
description the bond lengths {li}, i = 1 . . . N − 1, bond
(valence) angles {θi}, i = 1 . . . N −2, and pairs of {φi, ψi}
torsional angles can be associated with each repeating
unit. This description can be further simplified by taking
into account that bond lengths and angle values usually
vary within very narrow intervals (average fluctuation of
±3–5% at room temperature) and their fluctuations can
be ignored [10]. The only relevant variables remaining are
thus the {φi, ψi} torsional angles (fig. 1(b)).

The conformational partition function of the repeating
unit can be represented as a finite sum after discretiza-
tion of the torsional angles (approximation of rotational
isomers) [33], opening up a possibility for a spin-based de-
scription of the polypeptide conformations. Assume that
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Fig. 2. (Color online) Schematic representation of a 10-mer with spins assigned to each repeating unit. Spins are shown as
red arrows with Q = 8 possible orientations. (Top) Assigned energy (U) in the nearest-neighbor (∆ = 2) GMPC model (with
the red dotted line indicating the preferred orientation of the spin). (Bottom) Potts model as in ref. [29]. The Potts energy
assignment results in a higher energy of the sample spin sequence.

spin γi describing the conformation of the i-th repeating
unit can take one of the Q(≥ 2) values; γi = 1 correspond-
ing to values of the torsional angles {φi, ψi} from the he-
lical region of the Ramachandran map, while the other
Q − 1 values correspond to torsional angles from allowed
(non-helical) region. The magnitude of Q (number of spin
orientations) can be identified with the ratio of the allowed
region area vs. helical region area on a Ramachandran
map. According to the polypeptide chain geometry the
equilibrium hydrogen bond formation can be established
between the NH and CO groups, separated by three asym-
metric carbon atoms [5]; the energy U is associated with
every formed hydrogen bond corresponding to a coupling
constant W = exp (U/T ), where T is the temperature (in
units where kB = 1 for the Botzmann constant). One hy-
drogen bond thus restricts three {φ, ψ} pairs of rotation
angles and establishes the structure with screw symmetry
(α-helix) [34]. Within the spin language this means that
the hydrogen bond fixes three successive spin values along
the chain. On the other hand, hydrogen bonds in double-
stranded DNA are formed between repeating units on the
opposite strands and are approximately perpendicular to
the DNA axis. Creation of hydrogen bonds in one pair of
opposing bases thus applies restrictions to conformational
states of ∼ 10 neighbors (on the scale of single-strand
Kuhn length) [13]. It thus makes sense to generalize and
consider that one hydrogen bond formation restricts arbi-
trary (but finite) Δ number of spins [16], corresponding
to many-body interactions. As helix formation comes at
an entropic cost [32], the larger is Δ, the higher is such
an entropic cost [16]. The transformation from a coil to
a helical conformation is energetically favorable (negative
hydrogen bond energy is gained) but entropically unfavor-
able (the number of micro-states, available for repeating
unit in a helical macro-state is decreased, as compared
to the coil). As we show below, the compensation of en-
ergetic and entropic costs engenders a transition at the
temperature corresponding to exp(U/T ) = Q.

To summarize, statistical description of the helix-coil
transition requires three basic parameters: an energetic
parameter, W = exp(U/T ), where U is the energy of a
hydrogen bond; an entropic parameter, Q, that stands for
the number of spin values; and a geometric parameter, Δ,
that describes the many-body geometry of the hydrogen
bond formation. The corresponding Hamiltonian can thus
be built in terms of the γi spins [9,14–16,18,19] and corre-
sponds to the GMPC model if the proper helix formation
demands that Δ successive γ’s are all in the same pre-
ferred conformation, e.g., 1 (see fig. 2, top). In the case
of no preferred spin assignment to the helix formation we
are then back to the Potts model (see fig. 2, bottom). In
what follows we consider both types of spin Hamiltoni-
ans and discuss similarities and differences between the
ensuing thermodynamics.

3 Generalized model of polypeptide chain in

the transfer matrix formalism

3.1 Hamiltonian

The Hamiltonian for the Generalized Model of Polypep-
tide Chain (GMPC) is defined as

−βH = J
N∑

i=1

δ(γi−2, 1)δ(γi−1, 1)δ(γi, 1), (1)

where J = U/T is the reduced energy of the hydrogen
bond. The strength of the hydrogen bond is between the
valence bond and the van der Waals interactions. By defi-
nition, the energy of hydrogen bond formation is negative.
δ(a, b) is the Kronecker symbol. When generalized to any
finite Δ, the above Hamiltonian assumes the form

−βH = J

N∑

i=1

0∏

k=∆−1

δ(γi−k, 1) = J

N∑

i=1

δ
(∆)
i , (2)

where δ
(∆)
i =

∏0
k=∆−1 δ(γi−k, 1) is the product of Δ Kro-

necker symbols for neighboring repeating units.
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3.2 Transfer matrix approach and characteristic
equation

A transfer matrix can be constructed corresponding to the
Hamiltonian eq. (2) for the Δ = 2, Δ = 3 and Δ = 4 cases
and in fact any finite 1 < Q < ∞. The algorithm for larger
values of Δ is similar to that for the Δ = 3 and Δ = 4
cases.

Starting at Δ = 2 it is straightforward to show that
the Q × Q transfer matrix reads

Ĝ(2) =

⎛

⎜⎝

eJ 1 . . . 1
1 1 . . . 1

. . . . . . . . . . . .
1 1 . . . 1

⎞

⎟⎠ , (3)

and contains many (Q − 1) identical rows and columns.
At Δ = 3 the situation is more complicated, since many-
body interactions start to play an important role, and a
direct construction of the transfer matrix is not possible in
this form. However, the goal can be achieved by using the
following preliminary transformation. Instead of the three
spin variables γi−2, γi−1, γi, one introduces a pair of two-
index variables Ωi−1 = (γ′

i−1, γi) and Ωi = (γi−1, γi) and

sets to zero all elements of the matrix
(
Q2 × Q2

)
for which

γ
′

i−1 �= γi−1 [10]. This allows us to write the Hamiltonian
in the form

−βH = J

N∑

i=1

δ(γi−2, 1)δ(γi−1, 1)δ(γ
′

i−1, 1)δ(γi, 1)

= J

N∑

i=1

δ(Ωi−1, 1)δ(Ωi, 1), (4)

with the statistical weight

g(Ωi−1Ωi) = e−βHδ(γ
′

i−1γi−1). (5)

Then the (Q2 × Q2) transfer matrix reads:

Ĝ(3)=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

eJ 1 . . . 1 0 0 . . . 0 . . . . . . 0 0 . . . 0
0 0 . . . 0 1 1 . . . 1 . . . . . . 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 0 0 . . . 0 . . . . . . 1 1 . . . 1
1 1 . . . 1 0 0 . . . 0 . . . . . . 0 0 . . . 0
0 0 . . . 0 1 1 . . . 1 . . . . . . 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 0 0 . . . 0 . . . . . . 1 1 . . . 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 1 . . . 1 0 0 . . . 0 . . . . . . 0 0 . . . 0
0 0 . . . 0 1 1 . . . 1 . . . . . . 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 0 0 . . . 0 . . . . . . 1 1 . . . 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(6)
Here again, there are many (Q2 − Δ) identical rows and
columns. At Δ = 4 there are 4 spin variables and we add
another 2, following a similar trick as above, so that a pair
of three-index variables reads Ωi−1 = (γi−3, γ

′

i−2, γ
′

i−1)

and Ωi = (γi−2, γi−1, γi). The statistical weight is then
prescribed as

g(Ωi−1Ωi) = e−βHδ(γi−2, γ
′

i−2)δ(γi−1, γ
′

i−1). (7)

The resulting transfer matrix has dimensions (Q3 × Q3)
and is by its structure similar to eq. (6). For larger Δ’s
it is necessary to group γ’s into Ωi−1 and Ωi in a similar
way. The procedure can be generalized and the appropri-
ate statistical weight can be written as

g(Ωi−1, Ωi) = e−H/T
1∏

k=∆−2

δ
(
γ

′

i−k, γi−k

)
, (8)

resulting in a transfer matrix Ĝ(Δ) of dimensions (Q∆−1×
Q∆−1). Since there are (Q∆−1 − Δ) identical rows and

columns, the characteristic equation for Ĝ(Δ) turns out
to be quite simple

PGMPC(λ,W,Q,Δ) = λQ∆−1
−∆ × pGMPC(λ,W,Q,Δ)

= 0, (9)

where

pGMPC(λ,W,Q,Δ) = λ∆ − (W − 1 + Q)λ∆−1

+(W − 1)(Q − 1)

∆∑

k=2

λ∆−k. (10)

Obviously, there are only Δ non-trivial eigenvalues, so that
it is sufficient to consider a transfer matrix of a much
smaller (Δ×Δ) size to derive the thermodynamics. Such
a matrix has been derived in [14] by elementary transfor-

mations of Ĝ(Δ) and has the form

ĝ(Δ) =

⎛

⎜⎜⎜⎜⎜⎝

W − 1 W − 1 . . . W − 1 W − 1 W − 1
1 0 . . . 0 0 0
0 1 . . . 0 0 0

. . . . . . . . . . . . . . . . . .
0 0 . . . 1 0 0
0 0 . . . 0 1 Q

⎞

⎟⎟⎟⎟⎟⎠
.

(11)
One can construct the corresponding transfer matrix by
noting that:

– all elements of the first row are equal to W−1 = eJ−1;
– all elements of the first lower pseudo-diagonal are 1;
– the element (Δ,Δ) is Q;
– all other elements are zero.

Alternative elementary transformations lead to

ĝ∗(Δ) =

⎛

⎜⎜⎜⎜⎜⎝

W 1 0 . . . 0 0 0
0 0 1 . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 1 0
0 0 0 . . . 0 0 Q − 1
1 1 1 . . . 1 1 Q − 1

⎞

⎟⎟⎟⎟⎟⎠
. (12)
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Both ĝ(Δ) and ĝ∗(Δ) have a much smaller size than Ĝ(Δ)
and result in the same characteristic eq. (10). By adding
an artificial λ = 1 root, eq. (10) can be written in a more
compact form,

pGMPC(λ,W,Q,Δ) =

λ∆−1(λ − W )(λ − Q) − (W − 1)(Q − 1) = 0. (13)

4 One-dimensional Potts model with

many-body interactions in the transfer matrix

formalism

4.1 Hamiltonian

Unlike the previous GMCP case, Goldstein’s formula-
tion [29] starts from a standard Potts model with Δ many-
body interaction without any distinction between spin val-
ues as

−βH = J

N∑

i=1

1∏

k=∆−1

δ(γi−k, γi−k−1). (14)

One can notice that for the same Δ many-body interac-
tions the Hamiltonian of Potts model contains the product
of Δ−1 Kronecker symbols instead of exactly Δ as in the
case of the GMPC model. This fact has important conse-
quences, as we will show below.

4.2 Transfer matrix approach and characteristic
equation

The transfer matrix corresponding to the Hamiltonian
eq. (14) can be constructed seriatim for Δ = 2, Δ = 3,
Δ = 4 and then for any finite 2 < Q < ∞. The algorithm
for larger values of Δ is similar to that for the Δ = 3 and
Δ = 4 cases.

At Δ = 2 the Q × Q transfer matrix reads

Ĝ(2)Potts =

⎛

⎜⎝

eJ 1 . . . 1
1 eJ . . . 1

. . . . . . . . . . . .
1 1 . . . eJ

⎞

⎟⎠ . (15)

At Δ = 3 we use the same transformation discussed
above for implementing the transfer matrix of the GMPC
model. Instead of the three spin variables γi−2, γi−1, γi,
we now introduce a pair of two-index variables Ωi−1 =
(γi−2, γ

′

i−1) and Ωi = (γi−1, γi) and set to zero all ele-

ments of the matrix
(
Q2 × Q2

)
for which γ

′

i−1 �= γi−1 [10].

This results in the transfer matrix

Ĝ(3)Potts =
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

eJ 1 . . . 1 0 0 . . . 0 . . . . . . . . . . . . 0 0 . . . 0
0 0 . . . 0 1 1 . . . 1 . . . . . . . . . . . . 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 0 0 . . . 0 . . . . . . . . . . . . 1 1 . . . 1
1 1 . . . 1 0 0 . . . 0 . . . . . . . . . . . . 0 0 . . . 0
0 0 . . . 0 1 eJ . . . 1 . . . . . . . . . . . . 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 0 0 . . . 0 . . . . . . . . . . . . 1 1 . . . 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 1 . . . 1 0 0 . . . 0 . . . . . . . . . . . . 0 0 . . . 0
0 0 . . . 0 1 1 . . . 1 . . . . . . . . . . . . 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 0 0 . . . 0 . . . . . . . . . . . . 1 1 . . . eJ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(16)

At Δ = 4 there are 4 spin variables and we add another 2,
as above. The statistical weight is prescribed according to

g(Ωi−1Ωi) = e−βHP ottsδ(γi−2, γ
′

i−2)δ(γi−1, γ
′

i−1). (17)

The resulting transfer matrix has dimensions (Q3 × Q3)
and is by its structure similar to eq. (16). For larger Δ’s
it is necessary to group γ’s into Ωi−1 and Ωi accord-
ingly. The procedure can be generalized and the statistical
weight would be written as

g(Ωi−1, Ωi) = e−H/T
1∏

k=∆−1

δ
(
γ

′

i−k, γi−k

)
, (18)

resulting in a transfer matrix Ĝ(Δ)Potts of dimensions
(Q∆−1×Q∆−1). This matrix differs from the GMPC case
(see eq. (6)) in that all the diagonal elements are mul-
tiplied by eJ , while in eq. (6) only the element (1, 1) is
multiplied by this factor. Here again, there are a(Q,Δ) =
Q∆−1 −Q(Δ− 1) identical rows and columns. The corre-
sponding characteristic equation is obtained as a product
of three terms and can be rewritten as

PPotts(λ,W,Q,Δ) = λa(Q,∆) × pPotts(λ,W,Q,Δ) = 0,
(19)

or, after the elimination of trivial eigenvalues,

pPotts(λ,W,Q,Δ) = pGMPC(λ,W,Q,Δ − 1)

×pGMPC(λ,W, 0,Δ − 1)Q−1

= 0, (20)

and pGMPC(λ,W,Q,Δ) has been defined in eq. (10). Un-
fortunately, it is not possible to derive a single compact
transfer matrix, as for the GMPC, that would correspond
to such characteristic equation. According to eq. (20),
the characteristic equation of the Potts model can be ex-
pressed in terms of the characteristic polynomials of the
GMPC model. We have explicitly checked eq. (19) to be
true up to Δ = 7 by direct brute force calculations.
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5 Results and discussion

5.1 Comparison of characteristic equations for the
GMPC and Potts models

The transfer matrix, being a matrix of statistical weights,
is non-negative. Then Frobenius-Perron theorem ensures
that there exists a positive, non-degenerate largest eigen-
value λ1. Upon solving the characteristic equation and
assuming cyclic boundary conditions, we can evaluate the
partition function as

Z(λ) = lim
N→∞

∆∑

i=1

λN
i = λN

1 , (21)

the corresponding free energy

F (λ) = −TN lnλ1, (22)

and the spatial correlation length as

ξ(λ) = ln−1

(
λ1

λ2

)
, (23)

where λ1 is the largest and λ2 is the second largest eigen-
value, implying of course that the thermodynamics of
the model is completely determined by its characteristic
equation.

The characteristic equation for the Potts model
prompts a comparison with the Δ − 1 particle GMPC
model, the first bracket of eq. (20) being exactly the char-
acteristic equation of Δ−1 particle GMPC (see eq. (13)).
In the region of positive temperatures (W > 1) this first
bracket has two positive roots, while the second bracket
has a single, positive and Q − 1 times degenerate root.

Let us first study in more details the first bracket on
the rhs of eq. (20) (which is eq. (13) with Δ to Δ−1 rescal-
ing). It has two asymptotes: W and Q. We may rewrite it
in the form, suitable for the iterative solution,

λ = Q +
(λ − 1)(W − 1)

λ∆−2(λ − W ) + W − 1
, (24)

or, alternatively, as

λ = W +
(λ − 1)(Q − 1)

λ∆−2(λ − Q) + Q − 1
. (25)

An interesting feature of eq. (13), visible from its structure
is that it is symmetrical towards the interchanges of W
with Q, although the parameters have different physical
meanings and different temperature dependencies. This is
a reflection of a physical fact that it is the balance between
the entropy (described by Q) and the energy (described
by W ) that determines the free energy of the system and
its stability. From eqs. (24) and (25) one can immediately
see that at high temperatures (W → 1) the largest eigen-
value is approaching the Q asymptote from above, while
at low temperatures (Q → 1), the largest eigenvalue is ap-
proaching from above the W asymptote. Taking into ac-
count the symmetry of eq. (13), the second eigenvalue at

low temperatures approaches the Q asymptote from below
and at high temperatures it approaches the W asymptote
from below. The point where the two asymptotes cross is
the most interesting. According to the above considera-
tion, the largest two eigenvalues resulting from the first
bracket on the rhs of eq. (20) at W = Q can be estimated
as Q ± ǫ, where ǫ > 0 is small. Inserting these estimates

into the characteristic eq. (13) results in ǫ ≈ Q
4−∆

2 , so

that λ ≈ Q(1±Q
2−∆

2 ). For the second bracket on the rhs
of eq. (20) we similarly obtain

λ = W −
λ − 1

λ∆−1 − 1
, (26)

so that W is an asymptote for the second bracket too
(which is not surprising, the structure of both equations
is similar), but now the largest eigenvalue approaches the
W asymptote from below. In the W = Q point it can be
estimated as ǫ0 ≈ Q2−∆.

Thus three largest eigenvalues from eq. (20) at W = Q

are: λ ≈ Q(1 ± Q
2−∆

2 ) (from the first bracket) and λ ≈
Q(1 − Q1−∆) (from the second bracket). Only the two
largest eigenvalues are important to define the correlation
length, so we need to order the solutions. The first is λ ≈

Q(1+Q
2−∆

2 ) and there are two candidates for the second:
Q − ǫ and Q − ǫ0. Since ǫ0 ≈ Q2−∆ is always smaller

than ǫ ≈ Q
4−∆

2 , the following order for the three largest
solutions of eq. (20) is established:

– λ1(Δ) = λGMPC
1 (Δ − 1, Q) (from the first bracket);

– λ2(Δ) = λGMPC
1 (Δ − 1, Q = 0) (from the second

bracket);
– λ3(Δ) = λGMPC

2 (Δ − 1, Q) (from the first bracket).

Such ordering resulted from qualitative consideration of
eq. (20) at W = Q point. Since both W and Q are the
asymptotes and the distance between them increases at
points far from W = Q, the ordering by magnitude for
the eigenvalues remains the same. Thus we conclude for
any Δ > 2, Q > 1, W > 1 that, the eigenvalue from the
second bracket is in between the two largest from the first
brackets. To double check the ordering of eigenvalues, we
have numerically solved eq. (20) for several values of Δ
and have presented the results in fig. 3. The results of the
numerical solution completely agree with the qualitative
estimates above.

Two conclusions follow immediately. First, the one-
dimensional Potts model with Δ many-body interactions
has the same free energy as the (Δ−1) many-body GMPC
model (since determined by λ1(Δ) = λGMPC

1 (Δ − 1, Q)).
All averages that depend on the largest eigenvalue, such as
helicity degree or number of junctions [15,16], are there-
fore the same for both models. Second, correlation lengths
are obviously different, since the second largest eigenval-
ues for the models differ. Indeed, as one can see from fig. 3,
while the correlation lengths of both models coincide at
low W (high temperatures), they markedly differ at in-
termediate to high values of W (low temperatures). The
correlation length of the Potts model abruptly increases
near the temperature, where energetic and entropic pa-
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(a) (b) (c)

Fig. 3. Color online) (a) Three largest eigenvalues (top) from eq. (20) vs. W = exp[U/T ] for ∆ = 3 and Q = 60. Correlation
lengths (bottom) for ∆ particle Potts and ∆ − 1 particle GMPC models. (b) The same for ∆ = 4 and (c) for ∆ = 5.

rameters compensate each other (W = Q), while the cor-
relation length of the GMPC model passes through a max-
imum at this point. The monotonic growth of correlations
with decreased temperature in the Potts model is a direct
consequence of the absence of a preferred spin value.

5.2 Mapping between the Potts model and several
biologically inspired models

Since the GMPC model has been shown to include sev-
eral helix-coil models as particular cases [9,15,16,18,19],
the established relation between the Potts and GMPC
model is important to understand the mapping between
the Potts model and several helix-coil models.

The analysis presented above shows that a Potts model
with Δ = 2 [29], formulated on the level of the effective
free energy, is equivalent to the one-body (free-particle)
GMPC model (Δ = 1). Since the Zimm-Bragg model
has been shown as originating from the Δ = 2 GMPC
model [9], this means that in order to achieve at least the
same level of description as with the Zimm-Bragg classi-
cal model, the approach of ref. [29] should be extended to
next-nearest-neighbor, three-body, interactions.

The characteristic equation of another model, widely
applied for the helix-coil transition description, namely,
the Lifson-Roig model can be derived from the GMPC
model Hamiltonian with three-body interactions [15]. So
a Potts model with Δ = 4 would be necessary to achieve
the equivalent description of the free energy.

It is worth noticing that the GMCP model is also
related to another interesting model that has been fre-
quently used in the framework of protein folding, namely

the Wako-Saito-Munoz-Eaton (WSME) model [22–28].
Unlike the GMPC model, and quite similarly to the Zimm-
Bragg model, the WSME model sets out from a phe-
nomenological expression of the free energy. The method-
ology to pass from the GMPC Hamiltonian model to the
corresponding free energy has already been elucidated in
ref. [9], and it turns out that the resulting free energy bears
strong similarities with the corresponding WSME one —
being in fact equivalent for finite-range interactions, apart
from an appropriate rescaling in the parameters. As this
point appears to be interesting, it will be the subject of a
future detailed analysis [35].

5.3 Explanation for the different behavior of
correlation lengths of the GMPC and Potts models

From the largest eigenvalue, that determines the temper-
ature dependence of helicity degree, both models proceed
from the ordered conformation to the disordered one when
the temperature is increased. At high temperatures (dis-
ordered conformation) the correlations in both models are
equally small (fig. 3), while at intermediate to low tem-
peratures the two correlations differ qualitatively.

Let us consider the behavior of fluctuations of spins
in the range of intermediate to low temperatures in more
details. The probability of fluctuations reads [36]

ω ∼ exp [ΔF ] = exp [ΔE − TΔS], (27)

where ΔF is the change of free energy due to fluctuations,
ΔE being the corresponding internal energy change and
ΔS is the entropy change. It is important to remark that
at the same values of correlation length, ΔE is the same
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for the two models and the only relevant parameter is the
entropy change.

For the Potts model, ΔS is comprised of two parts:
a larger negative input stems from restricting spins in
the ordered conformation, while a smaller positive input
arises due to the degeneracy of the ordered conformation
so that many spins can simultaneously flip without chang-
ing the order. Longer correlation lengths increase both the
negative and positive inputs, keeping the overall entropy
change in eq. (27) for the Potts model negative but small
in magnitude. Thus there are enough fluctuations at any
temperature and the correlation length increases as the
temperature decreases.

In the case of the GMPC model the situation with
fluctuations is different. Since there is a chosen and fixed
value of spin orientation (e.g., 1) corresponding to the or-
dered conformation, there is only one negative term in the
change of entropy in eq. (27). As we can see in fig. 3, at
a particular non-zero transition temperature the effect of
the entropy sets in: along with the decrease in temperature
the correlation length increases to a value corresponding
to a very low entropy. Further increase of the correlation
length becomes impossible (since it would mean zero fluc-
tuations) and, to keep the fluctuations alive, the system
has to decrease the correlation length. This is the physical
origin of the maximum of correlation length appearing in
the GMPC model.

In several classical models (e.g., the Zimm-Bragg or
Lifson-Roig ones) the correlation length is known to have
a finite maximum, exactly as in the GMPC model and
contrary to the Potts model. In this respect, the descrip-
tion provided by the GMPC model appears to be superior
than that given by the Potts model.

In view of the results presented here, it would be very
interesting to validate the difference in the correlation
function of the two models by a direct comparison with
experimental results. Unfortunately, we are not aware of
such a study, to the best of our knowledge. On the other
hand, the qualitative picture elucidated above strongly
suggests the GMPC model to be more suitable to describe
the onset of complex correlations close to the helix-coil
transition in biopolymers. We hope that our study will
stimulate further activities along these lines.

6 Conclusion

The work presented here deals with the description of
the helix-coil transition, relevant for protein folding, in
the vocabulary of spins, and compares the predictions of
two models applied to this problem: the many-body Potts
model and the many-body GMPC model. The low dimen-
sionality of the many-body Potts model allowed us to ex-
plicitly construct the transfer matrix eq. (16) and to derive
the characteristic equation for several finite Δs. The first
and second roots of eq. (19) are, accordingly, the largest
and second largest eigenvalues of the Potts model. The
structure of the characteristic equation of the Potts model
suggested that the first largest and third largest roots cor-
respond to the first and second eigenvalues of the GMPC

model with Δ − 1 interacting spins. As a result, it was
found that the free energy of Δ many-body Potts model
is equal to that of the Δ − 1 many-body GMPC model,
and therefore the correlation lengths (which depend on the
second largest eigenvalue as well) of the two models differ
significantly. While the derivation of the secular equation
of the many-body Potts model follows relatively standard
protocols, it was not previously derived or analyzed. The
question then arises of whether two models can be used
interchangeably for the description of the helix-coil tran-
sition, as is tacitly assumed in the literature. The answer
depends upon the required goal.

As a matter of fact, if the main aim is the fit of ex-
perimental data, in terms of the helicity degree and the
heat capacity (both depending on λ1), then the two mod-
els are essentially identical. However, if the goal is to
study the qualitative effects of different external fields on
the helix-coil transition, the Potts model is not optimal.
Structurally the helical conformation is unique and very
different from the coil conformation and translates into
a preferred, set spin value. This feature is absent in the
Potts model, thus resulting into an improper description
of the corresponding correlations. There is one additional
argument against the application of the Potts model when
describing the helix-coil transition. The solvents, unavoid-
ably present in vivo where the biopolymers operate, can
be effectively regarded as external fields. While the exter-
nal field can be easily renormalised in the GMPC vocabu-
lary [18], its Potts counterpart becomes very complicated
and often analytically untractable. It thus seems that the
application of the GMPC model as opposed to the Potts
model would be more adequate, as these examples show
explicitly. The difference of temperature dependence in
the behavior of correlation lengths is a very interesting
and highly non-trivial result, and it would be interesting
to see if it persists at higher spatial dimensions.

Interest in 2D and 3D spin models surged mainly in
order to describe bulk properties of magnetic materials,
which show ferromagnetic-paramagnetic (phase) transi-
tions. In this context the study of 1D models, which do not
show any phase transition at a finite temperature in the
absence of long-range interactions [36], makes no sense.
The situation in polymer-related systems is exactly oppo-
site as many are essentially low dimensional, thus mak-
ing the study of 1D models of extreme relevance. Since
no phase transition happens, no universality in behavior
is observed, and choosing a 1D model that describes the
physical situation in a proper way is of paramount neces-
sity. As a deep and consequential analogy between mag-
netic and polymer systems is well established and long
known, we believe that there are likewise situations in
the theory of magnetism, where application of the GMPC
model instead of the standard Potts model would lead to a
better understanding of the thermodynamic and magnetic
properties.

AB and AG acknowledge the support from PRIN-COFIN 2010-
2011 2010LKE4CC grant. RP and AB acknowledge ARRS
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