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Abstract. Coarse-grained implicit solvent Molecular Dynamics (MD)
simulations have been used to investigate the structure of the vicinal
layer of polarizable counterions close to a charged interface. The clas-
sical Drude oscillator model was implemented to describe the static
excess polarizability of the ions. The electrostatic layer correction with
image charges (ELCIC) method was used to include the effects of the
dielectric discontinuity between the aqueous solution and the bound-
ing interfaces for the calculation of the electrostatic interactions. Cases
with one or two charged bounding interfaces were investigated. The
counterion density profile in the vicinity of the interfaces with different
surface charge values was found to depend on the ionic polarizability.
Ionic polarization effects are found to be relevant for ions with high
excess polarizability near surfaces with high surface charge.

1 Introduction

A detailed understanding of the electric double layer (EDL) is necessary for the study
of a variety of systems, including colloidal suspensions, as well as charged biological
macromolecules and membranes [1,2]. While the mean-field Poisson-Boltzmann (PB)
formalism [3,4] is traditionally invoked to analyze the electrostatic interactions in
such systems, it is also subject to severe shortcomings due to its neglect of elec-
trostatic correlations and ionic size, hence it can be unreliable in its fundamental

a e-mail: josebordin@unipampa.edu.br
b e-mail: rudolf.podgornik@ijs.si
c e-mail: holm@icp.uni-stuttgart.de

http://www.epj.org/
http://dx.doi.org/10.1140/epjst/e2016-60150-1


1694 The European Physical Journal Special Topics

predictions. Despite these shortcomings, the PB theory properly describes the be-
havior of Coulomb fluids composed of monovalent ions at low concentrations in the
vicinity of weakly charged interfaces, while for strongly charged systems, where cor-
relation and finite size effects begin to dominate the overall behavior of the system,
the PB theory is simply inappropriate [3,5–8]. While attempts at improving the PB
theory have been formulated to amend its shortcomings in various contexts [8–20],
coarse grained implicit solvent simulations still provide the baseline for assessing the
validity of all approximate analytical theories.
Charged particles immersed in an aqueous solution possess a local (static) polar-

izability that can be significantly lower than that of water. In fact, since Debye’s sem-
inal analysis (see the discussion in Ref. [21]), the ion polarizability effects have been
known to play an important role in the description of ionic solutions. In particular, for
the description of ion-specific effects they are completely ignored by the PB analyti-
cal approach [8], but are just as difficult to properly implement in atomistic and/or
coarse-grained simulations. Furthermore, ionic polarizability and the size of the ions
are parameters that distinguish between ions of the same valency and thus describe
some of the ion-specific features of electrostatic interactions. On the analytical side,
there have been recent advances to include ion polarizabilities on the mean-field PB
level based on the ionic decrement of the dielectric constant [21–23], which, however,
can not include the effect of dielectric inhomogeneities that have to be implemented in
a more general setting [24–27], that goes beyond the mean-field approximation and is
formally much more demanding, giving explicit results only in the asymptotic limits
of weak and strong coupling [28]. The difficulties on the computer simulation side
have other reasons that could be mostly seen as twofold: first of all, the consistent
inclusion of dielectric inhomogeneities presupposes a detailed calculation of the image
effects that involve the full solution of the Poisson equation on the fly, and second, the
consistent inclusion of the ion polarizabilities represents a non-pairwise additive effect
that needs to be properly implemented into the simulation code in order to retain
the essential features of its many-body nature. While these outstanding problems are
not easy to surmount, even for coarse-grained Monte Carlo (MC) and/or Molecular
Dynamics (MD) computer simulations, requiring a significant computational effort,
there have been important recent advances in the simulation methodology that can
appropriately deal with image charges, dielectric discontinuities and local polarizabil-
ities [11,27,29–39]. While numerous simulations have shown how the ionic size can
influence the ion density profile near a charged interface [9,16,40–42], the ion polar-
ization effects have been more difficult to handle and the progress slower; see Refs.
[24,25,31] for recent advances, describing different cases of ion polarizability effects.
Also for atomistic simulations, of course, polarization effects turn out to be crucial
under certain circumstances, e.g. ions at an air-water interface or in ion channes, to
name a few [43–47].
Our goal in this work is to use a simple coarse-grained model for MD simulations

of polarizable charged particles and apply it to the study of the counterion density
profile near charged interfaces. The low computational cost of coarse-grained models
allows us to simulate large systems over long simulation times at low computational
costs, which makes them particularly appropriate for the simulation of systems with
long-range and non-pairwise additive interactions. The particular implementation of
the static ionic polarizability that we consider in detail is the classical Drude oscil-
lator model [48]. It was proposed initially for polarizable water models in classical
all-atom MD simulations [43–46], but was later used more generally to include ionic
polarizability affects and hydration properties of bulk electrolytes solutions [49,50], to
describe the interaction of ions with the water surface [51], and with biological mole-
cules [52,53], as well as to study the properties of polarizable ionic liquids [54,55].
A detailed review of theories and applications of several polarizable models to



Modern Simulation Approaches in Soft Matter Science 1695

Fig. 1. Schematic depiction of the simulation box with counterions confined in a planar slab
geometry of width h. The counterions are immersed in a dielectric medium with dielectric
constant ε2=80 (water) while the external layers have a different dielectric constant, viz.
ε1=2 in the left and ε3=2 or ε3=80 in the right semi-infinite layers. The fixed charge on
both interfaces is described with finite-size charged spheres of charge qwe, where e is the
elementary charge, and diameter aw =0.425 nm, located at the dielectric interface.

coarse-grained MD simulations can be found in Ref. [56] and for classical Drude
oscillators in Ref. [47]. In this paper we specifically present an implementation of the
Drude oscillator model in the coarse-grained simulation package ESPResSo [57–59]
and use it to investigate the polarizability effects in the counterion distribution near
charged interfaces together with the electrostatic layer correction with image charges
(ELCIC) [35] to treat the image charge effect in the presence of 2D dielectric bounding
interfaces. We restrict ourselves to canonical counterion-only systems confined either
by one or two charged (dielectric) interfaces.
The paper is organized as follow. The polarizable model and simulational details

are presented in Sect. 2, including the details of the implementation of the Drude
oscillators. Our results are then discussed in Sect. 3, and we summarize our work in
the final Sect. 4.

2 Model and simulation details

2.1 Model system

We use a Drude oscillator model to describe polarizable ions confined to a slab geom-
etry. The counterions are placed in an implicit solvent finite width homogeneous
dielectric slab with dielectric constant ε2, surrounded by external semi-infinite dielec-
tric media with dielectric constants ε1 and ε3. The simulation cell is a cuboid with
dimensions L× L× h in the x, y, and z-directions, respectively. Confining walls are
placed at the boundaries of the box in the z-direction and are constructed as pla-
nar sheets of explicit ions with charge qwe, where e=1.6×10−19 C, and diameter aw.
This model is a good approximation for ions near charged macroions or inside charged
nanopores. A schematic 2-d projection of the simulation box is shown in Fig. 1.
Different cases of the canonical simulation box were studied. In the first case,

only one confining wall is charged, with a surface charge density σs= qwe/(πa
2
w), and

the other one is electrically neutral, with a separation h between the walls of value
h=12.75 nm, to simulate counterions near a macromolecular surface. The second case
has both walls charged, with h=4.25 nm, to simulate counterions in confinement, in-
side a charged nanopore or surrounded by two large macroions. In both cases, the
walls are constructed using Nw fixed particles with diameter aw =0.425 nm, with the
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extent in the x and y direction being L=8.5 nm. Standard periodic boundary condi-
tions were applied in the x and y directions. N polarizable counterions with diameter
a=0.425 nm and charge qe, with q=1 or 2, are placed in the homogeneous dielectric
continuum solvent confined by the walls, so that the system is overall electrically
neutral.

2.2 Interaction potentials

The electrostatic interaction energy between the counterion i and the counterion/wall
particle j is described by the standard Coulomb potential

UCij(r) = lBkBT
qiqj

r
(1)

where lB = e
2/4πε0εkBT =7.14 Å is the Bjerrum length at temperature T =298K

and kB is the Boltzmann constant. The short-range repulsion was modeled using the
Weeks-Chandler-Andersen potential UWCAij (r) [61]

UWCAij (r) =

{
ULJ(r)− ULJ(rc) ∀ r ≤ rc,
0 ∀ r > rc,

(2)

where ULJ(r) is the standard 12-6 LJ potential, rc=2
1/6aij , aij =0.5(ai + aj) and

ε=1kbT . The Coulomb potential, (1), was evaluated using the three-dimensional P3M
method [60], and the correction terms for a slab-like system with image charges due to
the presence of a dielectric discontinuity were taken into account by using the ELCIC
method [35].
One of the major advantages of the Drude model is its simplicity. The inclusion

of the polarizability of the atoms is done via one mobile ion pair (Drude dipole) per
(coarse-grained) atom whose electrostatic interactions can be treated using standard
electrostatic algorithms.

2.3 Drude model and its ESPResSo implementation

The static polarizability of the counterions was modeled via the classical Drude os-
cillator model [43–46,48–51,54,55,62]. In this model, the static polarization α of an
ion with charge q is described by a Drude particle, with charge qD and mass mD,
attached to the ion core. To conserve the net charge of the ion-Drude particle pair,
the charge of the ion core is replaced by q − qD, see Fig. 2. The Drude particle is
connected to the ion by a harmonic potential

Ubond(r,d) = 1
2kD |r− d|2 (3)

with a large force constant kD, constraining the value of the charge qD of the Drude
particle to reproduce the correct value of α via [43]

α =
q2D
kD
· (4)

In the absence of an electric field, the Drude particle oscillates around the position of
the core, and the pair appears as a point-like ion with charge q. When an external elec-
tric field E is applied, the Drude particle oscillates around the position d= qDE/kd,
with a dipole moment μ= q2DE/kd. E is the total electric field at the position of the
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Fig. 2. Example of a polarizable ion described by the classical Drude model, with an exag-
gerated displacement d of the Drude particle qD attached to the center of the ion.

Drude particle. The value of kD is chosen such that the distance between the core
and the Drude particle di is much smaller than the size of the ion. As a result, the
induced dipole of dipolar moment μ behaves as a point-like dipolar particle.
While the energy of the classical Drude model of a polarizable particle, (3), looks

deceptively simple, it actually corresponds to non-pairwise additive interactions be-
tween polarizable particles. In fact, the electric field E in a certain configuration of a
many-particle system has contributions from all the particles in the system, including
all other Drude particles. The non-pairwise nature of this interaction emerges since at
each step of the simulation, the local electric field at the position of the Drude particle
i induces a dipolar moment that then interacts with all the other Drude particles,
j �= i, which then in turn change the dipolar moment of the original Drude particle i
and so on.
Our implementation of the Drude model follows previous works and was adapted

to the ESPResSo package. The self-consistent field (SCF) regime is required to study
induced static polarizability, but is computationally expensive and strongly affects
the energy conservation and the stability of the temperature imposed by the thermo-
stat [43]. To avoid this problem, we used a stochastic Langevin thermostat as proposed
by Jiang et al. [62] to achieve a SCF-like dynamics. A dual Langevin thermostat pro-
cedure was used to keep the ions of the system at a high temperature, T =300K, and
a colder thermostat at temperature T ∗=1K was applied to the Drude oscillators.
The preservation of the lower value T ∗ depends mainly on the balance between en-
ergy gained due to electrostatic interactions with other particles and energy losses due
to the damping term in the Langevin thermostat. We should note that recently an
alternative to the Langevin Dynamics, namely an implementation using an extended
Lagrangian Dynamics, was proposed [63].
The Molecular Dynamics simulations were performed using a time step δt=1.0 fs.

At time t=0 the counterions were distributed randomly between the walls, and an
initial 0.1 ns MD run was performed to equilibrate the system. The density profiles
are then obtained by a 10 ns MD production run. Each resulting density profile was
obtained by averaging five independent simulations and taking the mean.

2.4 Simulation details

The dynamics of the system was implemented as follows. The coordinates of each ion-
Drude pair, ri and ri,D, were separated in terms of the center of mass position, Ri,
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and the relative distance between the pair of charges, di= ri,D−ri. The corresponding
equations of motion can be expressed as

MiR̈i = FR,i − γṘi + fi, (5)

mid̈i = Fd,i − γ′ḋi + f ′i . (6)

In these expressions, Mi is the total mass of the pair, mi=mD(1 − mD/Mi) the
reduced mass of the oscillator, FR,i and Fd,i the resulting force on the center
of mass and on the reduced mass, γ is the external Langevin friction coefficient
and γ′ the internal Langevin friction coefficient. The white noise responsible for
the damping terms in the thermostats is represented by fluctuating random forces,
fi=(2γkBT/Mi)

1/2G(t) and f ′i =(2γ′kBT ∗/mi)1/2G∗(t). G(t) and G∗(t) are univari-
ate Gaussian random processes. Using the chain rule, we can express the forces in
the center of mass coordinates and displacements in terms of the actual forces on the
particles

FR,i = −
(
∂U

∂ri

)
−
(
∂U

∂ri,D

)
,

Fd,i = −
(
1− mD
Mi

)(
∂U

∂ri,D

)
+

(
mD

Mi

)(
∂U

∂ri

)
, (7)

where the total potential energy of the system then has the form

U =
∑
i�=j
UCij(rij) +

∑
i�=j
UWCAij (rij) +

∑
i

Ubondi (ri,d(Ei)). (8)

Here, E is the total electrostatic field at the position of the particle, i.e.

Ei = −∇
∑
j

lBkBT
qj

rij
· (9)

The first term in Eq. (8) corresponds to the electrostatic interactions between all
charges in the system, UWCA is the excluded volume term and Ubond is the ion-
Drude particle harmonic potential. The equations of motion, Eqs. (5) and (6), can
then be rewritten in terms of the real coordinates of the particles in the form [43]

ri = Ri −
(
mD

Mi

)
di,

ri,D = Ri +

(
1 +
mD

Mi

)
di. (10)

The integration of the center of mass and displacements for the Drude oscillators is
identical to the integration of standard particles [62], and is thus already implemented
in the ESPResSo package, also for the case of a dual Langevin thermostat [57]. The
integration of the equations of motion for the Drude oscillators is also straightforward.
In all simulations we set kD = 10

5 kcal/mol/Å2 for the ions.

3 Results and discussion

The first system under study consists of monovalent counterions in a system with only
one charged wall. Typical values of surface charge density for colloidal systems [64,65]
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were used, σs=0.1, 0.2, 0.3 or 0.4C/m
2. The counterions, with polarizability α and

charge −e, are placed in the implicit solvent with dielectric constant ε2=80. No
extra salt was added to the system. The values of the polarizability of ions in aque-
ous solution were recently obtained by quantum chemical calculation [66]. For the
halide anions the ionic polarizabilities αci amount to: fluoride αci=1.3 Å

3, chlorine
αci=3.5 Å

3, bromide αci=4.6 Å
3 and iodide αci=7.5 Å

3, while previous work sug-
gests slightly higher values [50]. To investigate how the ionic polarizability affects the
counterion distribution in our coarse-grained model, we decided to display it using
the excess polarizability of counterions, which is equal to the difference between the
water polarizability and the ion polarizability. The values of excess polarizabilities
are typically negative, since most salt ions are less polarizable then water, whose
polarizability is αw =1.44 Å

3 [43]. This is also reflected in the dielectric decrement
of salt solutions [21,22]. We therefore use excess ion polarizabilities in the range of
αexc=αw − αci=0, −1.0, −3.5, −6.0 or −8.5 Å3 in our simulations to study sys-
tematically the influence of the excess ion polarizability with experimentally relevant
values. The diameter was taken to be the same for all counterions in the simulations in
order to ensure that only polarizability effects will be singled out in the comparison.
In addition, for the case of a single bounding wall, we assume the dielectric constant
of the semi-infinite regions as, ε2= ε3=80, with an additional dielectric discontinuity
at the bounding layer of value ε1=2.
As a test case, we studied the counterions distribution near a planar charged

wall with σs=0.1C/m
2. We explore the limit of small excess ion polarizability,

αexc= − 10−6 Å3, and compare with results obtained using MD simulations of non-
polarizable ions. As expected, in the limit of small polarizability and small surface
charge density, the results of both simulations are indistinguishable. Since the behav-
ior of non-polarizable ions and Drude oscillators with small αexc are the same, we will
refer from now on to the case αexc= − 10−6 Å3 as being equivalent to αexc=0 Å3.
The density profiles of the polarizable counterions for all the values of surface

charge density are shown in Fig. 3. For better visualization, the curves were renor-
malized by the contact density for αexc=0.0 Å

3, namely ρ0, in each case. Due to
the dielectric discontinuity between the wall and the solvent, image charge effects
need to be taken into account, and are obviously stronger for lower values of the
surface charge, σs=0.1 or 0.2C/m

2, as we can see in Fig. 3(A) and (B). The ef-
fect of the dielectric discontinuity at the interface is the image charge repulsion that
tends to deplete the region in close proximity to the charged wall, leading to a sud-
den drop of the density in the vicinal layer next to the dielectric interface. The
image charge repulsion is counteracted by the surface charge – counterion attraction
and the image charge depletion effect thus tends to diminish with increasing surface
charge.
Apart from the image charge effects, the ionic polarizability does not seem to play

a significant role, and the density profiles of the ions are not significantly different for
all values of the excess polarizability αexc. When the surface charge is increased to
σs=0.3C/m

2 the effect of the image charge repulsion diminishes, and the counterions
can reside closer to the bounding wall due to stronger electrostatic attraction. Still,
one can observe a small but consistent decrease in the contact density for counteri-
ons with higher negative excess polarizability. To see this more clearly, we explicitly
show the contact density in Fig. 4 as a function of the counterion polarizability. For
lower values of the surface charge, the contact density shows very little variation with
ion polarizability, but when the charge density is increased, from σs=0.3C/m

2 to
σs=0.4C/m

2, more pronounced and clearly discernible dependence on the excess
polarizability appears. For a highly charged bounding wall, at higher absolute values
of the polarizability, the contact density is reduced and the counterion cloud near the
wall becomes broader, as can clearly been inferred from Fig. 3(D).
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Fig. 3. Polarizable counterion density profiles near a single charged wall with σs=0.1(A),
0.2(B), 0.3(C) and 0.4(D)C/m2 as a function of the distance from the wall between 0 and
1 nm. For better visualization only the curves for αexc=0.0, −3.5 and −8.5 Å3 are shown.
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Fig. 4. Polarizable counterion contact density for different values of the surface charge
density. The circles correspond to σs=0.1C/m
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σs=0.3C/m
2 and triangles to σs=0.4C/m

2. A linear fit is also shown for each curve to
help to guide the eye.
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Fig. 5. Density profiles of polarizable counterions near one of the two equally charged
surfaces for σs=0.1(A), 0.2(B), 0.3(C) and 0.4(D)C/m

2. For better visualization only the
curves for αexc=0, −3.56 and −8.56 Å3 are shown as well as only one side of a system with
symmetric charge density distribution.

This wider density distribution of polarizable counterions near the charged wall
has several reasons. The positively charged wall attracts the counterion core, with
a negative charge, but also repels the Drude dipole modeling the polarizability.
Monopole-monopole, monopole-dipole and dipole-dipole interactions between a coun-
terion, the charged wall and the dielectric images of the counterion then lead to an
increased attraction to the wall, and would by itself increase the contact density.
However, the collective interactions between the counterion cloud and the charged
dielectric interface are more complicated since the higher density of counterions, with
lower polarizability than the intervening solvent, modifies also the effective solution
dielectric constant by the dielectric decrement effect [21,22,28]. These combined ef-
fects then lead to an overall diminished attraction between counterions and the sur-
face, and a broader mobile charge distribution in the vicinity of the wall results as a
consequence.

In the case of two equally charged walls at small separation distance h, with con-
fined counterions in between and with dielectric mismatch at both bounding surfaces
with ε2=80, ε1= ε3=2, the resulting counterion density distribution indicates that
the polarization effects are stronger than in the case of a single charged interface. Un-
like the latter case with a single charge surface of σs=0.2C/m

2, the density profile
near the wall, see Fig. 5(B), shows a diffuse behavior on increase of the polarizabil-
ity. Even for walls with σs=0.1C/m

2 this effect can be clearly distinguished, see
Fig. 5(A). In the case of smaller charge density, σs=0.1C/m

2, the increase of the
contact density with the excess polarizability, Fig. 6, shows less pronounced variation
compared to the case of σs=0.2C/m

2. For two charged interfaces at small
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Fig. 6. Polarizable counterion contact density at the left charged interface for different
values of the surface charge density. The circles correspond to σs=0.1C/m

2, squares to
σs=0.2C/m

2, diamonds to σs=0.3C/m
2 and triangles to σs=0.3C/m

2. A linear fit is
shown for each result to help to guide the eye.

separations h the contact density exhibits a stronger variation with the excess polar-
izability. This enhancement effect will, of course, vanish for larger separations of the
order of a few Guy-Chapman lengths.
These results indicate that the confinement of polarizable ions in nanostructures

and the dielectric discontinuity at the boundaries lead to a stronger role of counterion
polarizability, stemming from the coupling between the ion polarizability and the
dielectric images. The polarizability of the bounding surfaces, i.e. their dielectric
constant, is thus strongly influencing the effects in the ion polarizability, so that the
coupling between the two can not be neglected.

4 Conclusion

The classical Drude oscillator model for polarizability was implemented in the
ESPResSo package and the results of its first application to a physical system were
analyzed. We have used coarse-grained MD simulation method to study the effect
of the ionic polarizability in a solution of ions confined to a slab with either one, or
both of the boundaries charged. The coupling between the counterion polarizability
and the dielectric polarizability of the bounding surfaces was considered within the
ELCIC method. The polarizability of the mobile ions was found to play a small role
in the charge density profile near charged interfaces whose significance depends on
the wall and ion properties. For a proper description of ionic solutions confined in-
side charged nanopores or close to highly charged macroions, the effects of the ion
polarizability therefore should be included, if the couplings are high enough.
The general conclusion of our work is that for surfaces with low charge density,

where the interaction with the dielectric images dominates, the static polarizability of
the counterion plays a minor role and can be neglected. However, for highly charged
surfaces, counterions with a large polarizability exhibit a more diffuse density pro-
file near the wall, and the ionic polarizability can in general not be neglected. This
conclusion tallies nicely also with the previous approximate analytical theories based
either on the mean-field PB approach [21–23], as well as those that formulate the
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effects of ionic polarizability in terms of the general weak-strong coupling dichotomy
of the Coulomb fluids [28]: the ion excess polarizability effects are relevant when elec-
trostatic interactions are overall large and the dielectric discontinuities in the system
are appreciable. Adding salt will normally lead to screening, and therefore diminishes
the effects. However, it can also lead to salt images, an effect that has been discussed
in Ref. [67].
An unresolved inconsistency of our methodology thus far is that the solvent is

included on the implicit level and its polarizability is not taken explicitly into account.
For an alternative treatment of these effects we refer to our recent work with a different
electrostatic solver [27,38]. Nevertheless, our results lead to a better understanding
of ionic polarization effects near charged interfaces and the methodology presented
can be applied to other relevant cases, such as polarizable ionic liquids, the case we
will consider in our future work.
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