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Abstract – Despite its importance, the understanding of ionic cloud distribution close to a
charged macroion under physiological salt conditions has remained very limited especially for
strongly coupled systems with, for instance, multivalent counterions. Here we present a formalism
that predicts both counterion and coion distributions in the vicinity of a charged macroion for
an arbitrary amount of added salt and in both limits of mean field and strong coupling. The
distribution functions are calculated explicitly for ions next to an infinite planar charged wall. We
present a schematic phase diagram identifying different physical regimes in terms of electrostatic
coupling parameter and bulk salt concentration.

Copyright c© EPLA, 2008

Introduction. – Electrostatic interactions play a key
role in controlling solubility, structure and phase behavior
of macroions in aqueous solutions [1–3]. Examples of
biologically relevant macroion systems are charged lipid
bilayers such as those found in mitochondrial membranes
that contain considerable amounts of anionic cardio-
lipins or plasma membranes rich in anionic phospholipids
(e.g. phosphatidylserines), stiff (e.g. DNA) or flexible (e.g.
RNA) polyelectrolytes containing dissociated negatively
charged phosphate groups, or charged polypeptides with
a net charge depending on the dissociation equilibrium
of various peptide moieties, as well as their complexes
as encountered in the context of gene therapy [4] or
self-assembly of viruses [5]. Instead of residing exactly on
the charged surface, in order to minimize their electro-
static interaction energy, the counterions needed to

(a)E-mail: olli.punkkinen@tkk.fi

neutralize these systems are distributed some distance
away as a consequence of their translational entropy
as well as the screening effects due to residual co- and
counterions. It is the nature of the spatial distributions
of all these various mobile ion species in the vicinity of a
charged macroion that presents the biggest challenge in
understanding charged (bio)colloidal systems [1]. This is
the problem that we scrutinize in what follows.
The traditional approach to charged macromolecular

systems under salt-free conditions has been the Poisson-
Boltzmann (PB) formalism, in which the Coulombic
interaction between counterions is handled on a mean-
field level [2,3]. However, in many biologically relevant
situations the PB approximation breaks down; exam-
ples include most prominently multivalent counter-
ions and highly charged surfaces. The most dramatic
indication of this breakdown is the existence of attrac-
tive interactions between like-charged macroions [6–9]
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which on the PB level are known to be repulsive [10].
Consequently, there have been a number of attempts to
assess corrections to the PB theory using, e.g., correlated
density fluctuations around the mean-field distribution
or additional non-electrostatic interactions [6,11–14]. An
alternative approach has been pioneered by Rouzina
and Bloomfield [15] and elaborated by Shklovskii
et al. [16], and later by Netz et al. [1,17–19] (see also
ref. [20]). This approach leads to a new description of
a system composed of a charged macroion and mobile
counterions called the strong-coupling (SC) theory. This
description was shown [17] to become exact in the limit
of high surface charge, multivalent counterions, or low
temperatures, clearly opposite to the PB limit, which
is asymptotically obtained in the limit of low surface
charge, monovalent counterions, or high temperatures.
The PB and the SC theories thus asymptotically embrace
all possible scenarios in the no-salt case. Note however
that the zero temperature behavior [1,16] is captured by
the SC theory only at sufficiently small distances from
macroions as compared to the lateral distance between
counterions at the surface as discussed in ref. [1]. Beyond
this regime, the higher-order corrections to the SC theory
become important and more elaborate considerations are
necessary. The SC theory has been applied with notable
success to the case of charged macroscopic surfaces of
various geometries with counterions [19].
However, under physiologically relevant conditions, the

situation is considerably more complicated. Biological
systems always contain significant concentrations of excess
salts, which affect or quite often even govern their behav-
ior. Overall, in biological conditions the reservoir salt
concentration is typically of the order of [Na+] = 100mM.
It is thus obvious that the average separation between
nearest salt ions is small, implying that there is no
justification to disregard the effects of salt, as opposed
to the effects of counterions, in a consistent statistical-
mechanical treatment of such systems. The traditional
approach in this context has been the Debye-Hückel (DH)
theory, related to the PB formalism, that applies in the
limit of small overall charges in the system [3,11,21]. Apart
from this limiting case, a coherent theoretical description
including the SC limit has been missing.
In this work we propose a consistent and system-

atic approach to charged systems, composed of fixed
macroions, multivalent counterions (of charge valency
+qc) as well as added salt (of cationic and anionic charge
species of valency +q+ and −q−) in chemical equilibrium
with a bulk reservoir. We consider the influence of added
salt on ion distributions on the PB level as well as in the
SC limit. The results are shown to fill the gap between
the no-salt and high-salt limits. In particular, we show how
certain divergencies may be removed and normalizable ion
density profiles may be obtained in the SC limit. Explicit
calculations are carried out for ions at an infinite planar
charged wall, where we also present subleading corrections
to the SC results.

Before we formulate the partition function for an
interacting system of this type in a general form, let us
introduce the relevant length scales and parameters of the
problem, and show by scaling arguments what one should
expect from a more rigorous theory. First, we focus on
counterions. An important length scale in the problem
is the Gouy-Chapman (GC) length μ= 1/(2πqcσslB). It
measures the typical distance from a charged macroion
surface (of surface charge density −σs) at which the elec-
trostatic potential energy of a counterion interacting with
the surface matches the thermal energy kBT . Here, lB =
e2/(4πǫkBT ) is the Bjerrum length, the distance at which
the interaction between two unit charges equals thermal
energy; in water lB ≃ 0.7 nm. The ratio between these two
length scales yields an important dimensionless parameter,
namely, the electrostatic coupling parameter [17]

Ξ≡ q2c
lB
μ
= 2πq3c l

2
Bσs, (1)

embodying the relative contribution of ion-ion vs.
ion-surface interactions. A related length scale is the
lateral distance between counterions forming a strongly
correlated quasi-2D layer close to a charged surface
in the SC regime [1,19], i.e. a⊥ =

√

(qc/πσs) =
√
2Ξμ.

This lateral distance is important, because in the SC
regime we can express the concentration of the counterion
layer as nc = σs/(qcμ) = 1/(πa

2
⊥μ) [15]. The counterion

concentration within this strongly correlated diffuse layer
should be independent of the bulk ion concentration, as
long as the ionic strength, defined as I = 12

∑

i=± Λiq
2
i ,

is significantly smaller than nc, i.e. I≪ nc. Here Λi and
qi are the fugacities (to be defined later) and valencies
of reservoir salt ions. This means that the counterion
concentration on a surface should be much larger than
the reservoir salt concentration.
In a system that contains added salt there exists

of course another independent length scale, the Debye
screening length l2DH = 1/(8πIlB) being related to the
ionic strength I. It measures the distance at which
the Coulombic interaction between two point charges
is screened out [21]. The effects of salt thus become
unimportant when κμ≪ 1, where κ= l−1DH denotes the
inverse Debye screening length. Later on we will see
that it is really the coupling constants κμ and Ξ that
determine the phase behavior of the system.

Model. – In what follows (details will be given
elsewhere [22]), we present a general formalism for a
negatively charged fixed macroion interacting with Nc
counterions, N+ positive salt ions, and N− negative
salt ions in equilibrium with a bulk reservoir. The
Nc counterions are assumed to have a valency which
may be greater than that of salt ions and therefore
have to be treated differently. To proceed formally,
we introduce the canonical partition function for the
mobile charged species, confined to some arbitrary
region around a fixed charged macroion characterized
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by charge density σ(r), i.e.

Z =

⎡

⎣

∏

α

1

Nα!

Nα
∏

jα=1

∫

drjαΩ(rjα)

⎤

⎦ e−H. (2)

Here, Ω(r) restricts the positions of mobile ions to the
region of space available to them. The index α= {c,±}
stands for counterions (c), positive (+) as well as negative
(−) salt ions. In what follows, we assume that the
macroion charge density σ(r) is negative and confined
to the macroion surface with surface charge density σs.
Introducing the density operator for each ion type ρ̂α(r) =
∑Nα
j=1 δ(r− rj), the Hamiltonian can be written in units

of kBT as

H = 1
2

∫ ∫

drdr′
[

qcρ̂c(r)+ q+ρ̂+(r)− q−ρ̂−(r)−σ(r)
]

× v(r− r′)
[

qcρ̂c(r
′)+ q+ρ̂+(r

′)− q−ρ̂−(r′)−σ(r′)
]

+
∑

α

[

− lB
2
Nαq

2
αv(0)−

∫

drhα(r)ρ̂α(r)

]

, (3)

where v(r) = lB/|r| is the Coulomb interaction, and the
generating fields hα(r) have been added to calculate ion
distributions by taking functional derivatives. Here we
have also explicitly subtracted the infinite self-energies.
At this stage, we proceed by applying the Hubbard-

Stratonovich transformation [23], the purpose of which
is to get rid of the quadratic density terms in H at
the expense of introducing the fluctuating electrostatic
potential field, φ(r). This is followed by a Legendre
transformation to grand-canonical ensemble, where the
number of ions {Nc, N±} is replaced by their fugacities
{Λ̃c, Λ̃±}. Next the crucial step follows which makes the
field-theoretic partition function convergent. We add the
exponential of the following expression [22,24],

∫

drΩ(r)

(

∑

α

Λ̃α+
1

2

∑

i=±

Λ̃i[φ(r)
2+ vDH(0)]

)

, (4)

to the partition function and subtract it perturba-
tively. Here vDH(r) is the inverse of the DH operator
4πlBv

−1
DH(r− r′) = (−∇2+κ2)δ(r− r′), and of course

corresponds to the screened DH interaction potential.
Expressing the partition function in this form accom-
plishes three tasks: first, it removes the bulk density values
of all ion types in order to make the one-particle densities
finite. Second, the screening factor κ2φ2 makes the range
of interaction between all the charges finite; and finally,
the infinite self-energies cancel another set of divergencies
present in the partition function. Rescaling all lengths by
the GC length μ= 1/(2πlBqcσs) according to r= μr̃, one
ends up with an exact field-theoretic representation for the
grand-canonical partition function Q=

∫

Dφ exp(−H̃/Ξ),

where H̃ is the rescaled effective Hamiltonian [22]

H̃[φ] = 1
2
q2c

∫

dr̃dr̃′φ(r̃)ṽ−1DH(r̃− r̃′)φ(r̃′)

−i qc
2π

∫

dr̃φ(r̃)σ̃(r̃)

−Λc
2π

∫

dr̃ Ω̃(r̃)[ehc(r̃)−iqcφ(r̃)+ΞvDH(0̃)/2− 1]

−Λ+
2π

∫

dr̃ Ω̃(r̃)Q+(r̃)−
Λ−
2π

∫

dr̃ Ω̃(r̃)Q−(r̃). (5)

Here we introduce a shorthand Qi(r̃) = exp[hi(r̃)−
iqiφ(r̃)+ (Ξ/2)(q

2
i /q

2
c )ṽDH(0̃)/2]− exp[(Ξ/2)(q2i /q2c )∆v0]+

(q2i /2)φ(r̃)
2− (Ξ/2)(q2i /q2c ) ṽDH (0̃) (for salt ions

i=±), while also rescaling the fugacities such that
Λα = (2πΞμ

3)Λ̃α. Here we also defined 4π[−∇̃2+
(κμ)2]ṽ−1DH(r̃) = δ(r̃− r̃′), and ∆v0 = ṽ(0̃)− ṽDH(0̃). The
expectation values of different ion densities can be
calculated by taking a functional derivative of the grand-
canonical free energy with respect to the generating field
hα(r̃), 〈ρα(r̃)〉= δ lnQ/δhα(r̃)μ3|hα=0, giving rise to the
rescaled densities

〈ρ̃α(r̃)〉=
〈ρα(r̃)〉
2πlBσ2s

=ΛαΩ̃(r̃)〈e−iqαφ(r̃)〉, (6)

where we have redefined Λα→Λαe
Ξ
2

q
2
α

q2
c

vDH(0̃)
. The normal-

ization condition for the ion distributions then follows as
∫

dr̃ [qcρ̃c(r̃)+ q+ρ̃+(r̃)− q−ρ̃−(r̃)] = qc
∫

dr̃ σ̃(r̃), where
σ̃(r̃) = (μ/σs)σ(r). This corresponds to the overall electro-
neutrality of the system.

Results. – Employing the Hamiltonian in eq. (5), we
next make a full classification of possible limiting cases in
terms of the coupling parameters {Ξ, κμ}; see fig. 1. These
limiting cases are

i) First, in the limit Ξ≪ 1, we find the familiar PB
theory. This well-known regime [2,3,25] is character-
ized by many-body interactions among uncorrelated
ions. Mathematically, it follows from the saddle-point
equation for H̃[φ], yielding the so-called Poisson-
Boltzmann equation for the mean electrostatic
potential φPB, i.e.

q2c ∇̃2φPB =−2
∑

α

sαqαΛαΩ̃(r̃) e
−sαqαφPB , (7)

where sα =±1 denotes the positive or negative sign of
ions. Weakly correlated Gaussian fluctuations around
the saddle-point solution may be captured by a loop-
expansion in powers of Ξ [17]. This regime separates
into two sub-regimes according to the value of κμ,
namely, the GC (κμ→ 0) and the DH (κμ→∞)
regimes, which correspond to nonlinear and linear
PB equations, respectively. The free energy of the
system, F , is in both cases found to be a decreasing
function of bulk salt concentration, but an increasing
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*
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Ξ

SC

GC

SC−DH

PB

κµ

DH

Fig. 1: Schematic phase-diagram representing different regimes
of behavior as a function of the two coupling parameters Ξ
and κµ. The crossover from the PB to the SC-DH regime takes
place at sufficiently small salt concentration and by increasing
the electrostatic coupling parameter beyond a typical value
of Ξ∗ ∼ 10 [18]. Meanwhile, for elevated salt concentration
κµ> κ∗µ∼ 1, DH is the dominant regime. For very large
concentrations of salt or very large coupling parameter, ions
start to pair and they form complexes called Bjerrum pairs.
However, one can still apply the present SC-DH scheme by
explicitly including the hardcore potential between all the ions
as we do in the general derivation in ref. [22]. The alternative
approach is to use Debye-Hückel theory with a renormalized
Debye screening parameter [1,26]. We emphasize that the phase
diagram presented here is mainly indicative. In reality, the state
of the system depends also on the ratio of the valencies qc/qα,
the ion radius a, and the distance from the charged surface [1].

function of Ξ, scaling as FPB ∼Ξ [22]. These regimes
have been throughly studied before [2,3] and will not
be considered here any further.

ii) In the limit Ξ≫ 1, we end up with the SC theory,
representing a highly correlated system. Mathe-
matically, this follows from a virial expansion in
powers of Ξ−1 [17]. Since the electrostatic interaction
between individual mobile ions and the charged
macroion dominates over the ion-ion interactions, the
leading-order SC theory comprises a single-particle
description with an effective ion-surface interaction
potential of the form

ũ(r̃) =− 1
2π

∫

dr̃′σ̃(r̃′)

[

e−κµ|r̃−r̃
′|

|r̃− r̃′| −
e−κµ|r̃

′|

|r̃′|

]

.

(8)

By adding enough bulk salt, the SC ionic distri-
butions are destroyed, and the system ends up
in the DH-regime, where electrostatic interactions
are completely screened out. This shows up in the
partition function as Λ± ∼ (κμ)2 scaling [22], since
the salt part of H̃[φ] eventually starts to dominate.
The free energy is again a decreasing function of salt
concentration. It also decreases with Ξ as FSC ∼ 1/Ξ.

The crossover from the PB to SC regime for the no-salt
case has been extensively studied in the simulations [18],
where the strong-coupling features are shown to set in at
intermediate couplings about Ξ∗ ∼ 10. For the case with
added salt such an analysis remains to be done.
The asymmetric expansion of the partition function to

the second order in Λc/Ξ and to the first order in Λ±/Ξ∼
(κμ)2/Ξ is equivalent to the virial expansion used in the
SC limit without added salt, together with the Mayer-
Friedman resummation of the grand-canonical partition
function for the simple salt ions, giving rise to the screened
Debye-Hüuckel potential [27,28]. Therefore we propose
to call this expansion the Strong Coupling with Debye-
Hückel (SC-DH) theory, see fig. 1, identified already by
Boroudjerdi et al. [1]. We also expand different fugacities
in powers of 1/Ξ, as Λα =Λ

0
α+Λ

1
α/Ξ+ · · ·, which allows

us to avoid divergencies arising from the second virial
coefficient [17,18].
Next we evaluate the ion densities to the lowest order

in Λα/Ξ, and obtain ion density expansions as 〈ρ̃α〉=
ρ̃0α+ ρ̃

1
α/Ξ+ · · · in the SC limit. This density expansion,

listed below for all the ionic species, is in fact the main
result of this paper. For counterion density we get

〈ρ̃c(r̃)〉 = Λ0c Ω̃(r̃) e−ũ(r̃)+
1

Ξ
Ω̃(r̃) e−ũ(r̃)

×
{

Λ1c −
(Λ0c)

2

2π

∫

dr̃′ Ω̃(r̃′) [e−ũ(r̃
′)− e−ũ(∞)]

×
[

1− e−ΞvDH(r̃−r̃′)
]}

+O
(

Ξ−2, [κμ]2/Ξ
)

(9)

and for salt-ion densities

〈ρ̃+(r̃)〉=Λ0+ Ω̃(r̃) e−
q+

qc
ũ(r̃)+O

(

[κμ]2

Ξ

)

, (10)

〈ρ̃−(r̃)〉=Λ0− Ω̃(r̃) e+
q
−

qc
ũ(r̃)+O

(

[κμ]2

Ξ

)

. (11)

The second-order terms can also be included in the
above two equations, but they do not provide any further
relevant insight [22]. Note that the key factor in the above
expressions is the rescaled single-particle interaction term
ũ(r̃), which corresponds to a single-ion interacting with
the charged macroion, eq. (8). No assumption has been
made thus far about the geometry or symmetry properties
of the macroion and the expressions (9)–(11) have a
completely general validity in the SC limit. These formulas
illustrate explicitly that we have an expansion in terms of
the single-particle density differences [e−ũ(r̃)− e−ũ(∞)]∼
[ρ(r̃)− ρ(∞)], stemming from the properly renormalized
partition function with the counter-terms, eq. (4). These
density differences are perfectly normalizable as demanded
by the electroneutrality condition, whereas the densities
themselves are not.

Single charged plate. The SC-DH results can be
evaluated in closed form in the case of a single infinite
charged plate, i.e. in the plane-parallel geometry with
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σ̃(r̃) = δ(z̃) and counterions and salt ions being present
on both sides of the plate, (i.e. Ω̃(z̃) = 1 for all z̃). From
eq. (9) we obtain to the leading order the SC counterion
density as a function of the perpendicular distance z̃ > 0
from the wall as

ρ̃0c(z̃) = Λ
0
c exp

{

+ [e−κµz̃ − 1]/κμ
}

, (12)

where the leading-order fugacity coefficient is given by

Λ0c = κμ
[

− 2{e(q++q−)/qcκµq++ q−}

+ qcκμe
q−/qcκµ{Ei[q+/qcκμ]−Ei[1/κμ]+log [q−/q+]}

]/

[

2q−{Ei[q+/qcκμ]−Ei[1/κμ]

+ log [qc/q+]}− 2q+e(q++q−)/qcκµ

× {−Ei[−q−/qcκμ] +Ei[1/κμ] + log [q−/qc]}
]

κµ≪1−−−−→ 1−κμ−
[

1+
1

2

q2c
q2+

]

(κμ)2+O([κμ]3). (13)

Thus, in the limit κμ→ 0 the counterion density
approaches

ρ̃0c(z̃)
κµ≪1−−−−→ e−z̃

[

1−κμ
(

1− 1
2
z̃2
)

− (κμ)2

×
{

1+
1

2

q2c
q2+
− 1
2
z̃2+

1

6
z̃3− 1

8
z̃4
}

+O([κμ]3)
]

. (14)

This explicitly shows that we find the no-salt SC result
in the limit κμ→ 0 [17], i.e. ρ̃0c(z̃)→ e−z̃. Note that the
salt correction is negative for small distances, i.e., it
reduces the density close to the charged wall. This is
expected intuitively since the counterions tend to escape
further away from the wall due to the reduced interaction
in the presence of the Debye screening. In the limit
κμ→∞, we find the usual DH expression, i.e. ρ̃0c(z̃)≃
ρ̃bc(1+ e

−κµz̃/κμ), where ρ̃bc =Λ
0
ce
−1/κµ is the rescaled

bulk density.
Therefore, the excess density effectively crosses over

from one exponentially decaying form, i.e. the no-salt
SC expression e−z/µ with the decay length μ (in actual
units), to another exponentially decaying form, i.e. the
DH expression with the decay length κ−1. In fig. 2 we
show plots of the zeroth-order ion density ρ̃0c(z̃) relative to
the contact value ρ̃0c(0) for different values of κμ, clearly
attesting to the fact that our results nicely interpolate
between the well-known DH- and SC-regimes.
The first-order correction in 1/Ξ for a planar charged

surface follows again from eq. (9). The resulting expression
can be given in terms of hypergeometric functions, but
here we only present the result for κμ≪ 1, i.e. [22]

ρ̃1c(z̃) = e
−z̃

[(

1

2
z̃2− z̃

)

−κμ(2z̃+1)
]

+O([κμ]2), (15)

0 1 2 3 4 5

z/µ

0

0.2

0.4

0.6

0.8

1

 ρ
c0

(z
)/

ρ
c0

(0
)  κµ =  Infinity

 κµ = 10.0

 κµ = 5.0

 κµ = 1.0

 κµ = 0.5

 κµ = 0.2

 κµ = 0

Fig. 2: Leading-order counterion density in the SC limit for
different values of κµ as a function of the distance z/µ from
the plate (see text). For the sake of representation, we show the
ratio of density to its contact value, ρ0

c
(z)/ρ0

c
(0), as obtained

from eq. (12).

which again exhibits a smooth transition to the no-salt
case [17], and shows that also the first-order correction
to the density decreases close to the charged macroion
surface when salt is introduced. Both the zeroth- and the
first-order counterion density profiles thus show a smooth
transition to the no-salt case attesting to the consistency
of our formulation.
The concentrations of the salt ions can be obtained in

the same way from eqs. (10) and (11) as

ρ̃0+(z̃) = Λ
0
+ exp

{

+ [e−κµz̃ − 1]q+/(qcκμ)
}

, (16)

ρ̃0−(z̃) = Λ
0
− exp

{

− [e−κµz̃ − 1]q−/(qcκμ)
}

, (17)

for z̃ > 0 , which obey the overall electroneutrality condi-
tion infinitely far away from the wall in the form

Λ0c e
−1/(κµ)+Λ0+ e

−q+/(qcκµ) =Λ0− e
+q−/(qcκµ). (18)

This, together with the normalization condition, gives

Λ0+ =
1
2
q2
c

q2
+

(κμ)2 and Λ0− = e
−(q++q−)/qcκµΛ0+, showing

that the negative ion density vanishes exponentially fast
as κμ→ 0. It is not surprising that the positive salt-ion
density shows a similar functional dependence on the
distance from the charged wall as the counterion density.
Our leading-order ion densities, eqs. (12), (16) and (17),

agree nicely with the interpolation formula, eq. (30), in
ref. [1] in the κμ→ 0 limit and in the case of equal
valencies.
Let us now consider the validity of the leading-order SC-

DH theory by comparing the magnitudes of the leading-
order counterion density, eq. (12), with the next leading
contribution, eq. (15). In the regime κμ<Ξ−1 and requir-
ing |ρ̃1c(z̃)|/Ξ< |ρ̃0c(z̃)|, we obtain the validity condition
z̃2 < 2Ξ/(1−κμΞ). This in fact means that the SC-DH
theory is valid for larger distances from the wall when
compared to the zero-salt case [17]. This is clearly in
accord with the features of the phase diagram in fig. 1,
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where by adding salt the SC-DH expansion eventually
becomes valid for all separations from the wall. In fact,
in the regime Ξ−1 <κμ, it turns out that the validity
condition |ρ̃1c(z̃)|/Ξ< |ρ̃0c(z̃)| is satisfied for all z̃. In real-
ity, both these regimes may be achieved by considering
various salt concentrations. For example, under physio-
logical conditions (κ≃ 1 nm−1 and ℓB ≃ 0.7 nm), the latter
regime corresponds to q2cκℓB > 1, which is already satisfied
for divalent counterions.
Note that in the regime κμ> 1 we need to generalize

the calculation to take into account corrections of the
order (κμ)2 in the next leading counterion density ρ1c(z̃)
in eq. (15). This calculation along with a generalization of
the preceding asymmetric virial expansion in the high-salt
regime will be presented in a forthcoming publication [22].
Furthermore, one should note that eq. (15) holds only

in the case when the interaction between positive and
negative ions does not give any significant contribution
to the densities. These plus-minus interactions require
introducing an additional length-scale to the problem that
is the radius of ions a, which has to be non-zero to cut
off these interactions at small separations. In the limit
κμ→ 0, i.e. when the interaction between ions is assumed
to be unscreened, the results derived above hold as
long as

κμ<
2ã

Ξ
, (19)

where ã is the rescaled ion-radius [22] (note also that in
the SC limit, one typically has ã= a/μ≫ 1). This clearly
means that we cannot reduce a to zero without removing
all the salt, i.e. setting also κμ= 0. This is caused by
the fact that even in the presence of very small amount
of negative salt ions, the Mayer functions of oppositely
charged ions start to diverge, indicating complexation of
plus-minus ions into Bjerrum pairs.
Therefore, in the regime Ξ−1 <κμ, the present leading-

order SC-DH results may be applied for all values of z̃ as
long as Ξ−1 <κμ< 2ã/Ξ. For larger values of κμ, one has
to take into account the screening of interactions in Mayer
function integrals between all ions [22].

Concluding remarks. – The present theory can be
readily employed for further, more complex applications
including charged polymers and colloids with biologically
relevant concentrations of salt. One can also explore
situations involving the joint interplay of counterions and
salt within the present theoretical framework, which will
be discussed elsewhere [22].
In summary, we have derived analytic expressions for

counter- and co-ion distributions in the presence of salt
in the vicinity of a charged macroion. The results are
consistent with previous work in the PB, DH and SC limits
and fill the gap between the no-salt and high-salt limits.
The results presented here are relevant in a multitude
of soft-matter and biological systems characterized by
non-negligible salt concentrations, and pave the way for

further applications [22], complementing those presented
here.
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