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Abstract – Overscreening in the charge distribution of ionic liquids at electrified interfaces is
shown to proceed from purely electrostatic and steric interactions in an exactly soluble one-
dimensional lattice Coulomb gas model. Being not a mean-field effect, our results suggest that
even in higher-dimensional systems the overscreening could be accounted for by a more accurate
treatment of the basic lattice Coulomb gas model, that goes beyond the mean-field level of
approximation, without any additional interactions.

Copyright c© EPLA, 2012

Room temperature ionic liquids (RTILs) are Coulomb
fluids with large, asymmetric ions, and are used as elec-
trolytes in fuel and solar cells, batteries and supercapac-
itors, to name but a few important applications [1]. As
pointed out in several seminal contributions by Kornyshev
[2], the size of the ionic species leads in general to crowding
and lattice saturation, thus engendering a fundamentally
different behavior of ionic liquids at charged interfaces
as compared to aqueous electrolytes. In some particular
cases several aspects of this behavior can be captured
on a mean-field level by the lattice Coulomb gas (LCG)
model [2,3].
Steric effects stipulate that the capacitance of ionic

liquids decays at large applied voltages while at the point
of zero charge (PZC) it can exhibit a maximum as well
as a minimum (and is thus a non-monotonic function
of applied voltage) depending on the lattice packing
fraction [4], whereas for dilute electrolytes the capacitance
at PZC is always a minimum [2]. X-ray reflectivity [5],
SFA [6] and AFM [7] studies at electrified interfaces
reveal an alternating charge distribution starting with an
overscreening cationic layer, at the negatively charged
substrate, which decays roughly exponentially into the
bulk liquid with a periodicity comparable with the size of
ionic species [8]. This observed charge layering is expected

to be a generic feature of RTILs at charged interfaces
resulting from an interplay between steric effects and
strong electrostatic coupling. While the dependence of the
differential capacity can be predicted within the mean-
field solution of the LCG model [4], the overscreening and
alternate charge layering at an electrified interface cannot.
In order to explain overcharging and charge oscillations,

Bazant et al. [9] proposed a phenomenological theory
based on a Landau-Ginzburg-like functional containing
the standard LCG free energy [10] but with an additional
higher-order potential-gradient term, similar to what is
found in Cahn-Hilliard models, and then solving it on
a mean-field level. However, this higher-order gradient
term can also be seen [11] as stemming from a decom-
position of the Coulomb interaction into a long-distance
mean-field–like component and a non–mean-field strong-
coupling component [12]. This alternative interpretation
motivates a more detailed non–mean-field analysis of the
original Kornyshev LCG model in order to go beyond
the limitations of the mean-field approximation. We thus
propose an exact analysis, albeit in one dimension, that
demonstrates the full physical phenomenology of the LCG
model, and in particular shows that overscreening emerges
naturally from this model without the introduction of any
new physical interactions.
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We solve exactly the statistical mechanics of a one-
dimensional LCG in a standard capacitor configuration,
with a method that generalizes other treatments of the
point-like, or continuous, one-dimensional Coulomb gas
models extensively used in the study of electrolytes [13].
We consider a system where charges q (cations) or −q
(anions) are located on a line at lattice points with lattice
spacing a and a total size of M points. The Hamiltonian
for one-dimensional Coulomb interactions (corresponding
to sheets of charge in 3D) is

βH=−γ
4

M−1∑

i,j=0

|i− j|SiSj (1)

where γ = βq
2a
ǫǫ0
is the ratio of the electrostatic over thermal

energy, or equivalently of the lattice spacing over the (1D)
Bjerrum length ℓB = βq

2/ǫǫ0. Here Si is a classical spin
variable taking the value Si = 1 if there is a cation at
lattice site i, Si =−1, if there is an anion, and Si = 0 if the
site is unoccupied. We will impose overall electroneutrality
on the system, stipulating that

∑
i Si = 0. The grand

canonical partition function can then be written as

Ξ=TrSi

[
μ
∑M−1
i=0

|Si|

∫ +π

−π

exp

(
βH[Si] + iψ

M−1∑

i=0

Si

)
dψ

2π

]
,

(2)
where μ is the fugacity of both anions and cations,
assuming for simplicity that the ionic liquid is symmetric.
Carrying out a Hubbard-Stratonovich transformation, the
grand canonical partition function can be expressed as
a path integral over a field φj on the lattice, while the
integral over ψ corresponds to the integral over φ0, but
runs over an interval of length 2π. The partition function
then assumes the form

Ξ=

∫ M−1∏

j=0

dφj√
2πγ
exp(−S[φ]) , (3)

where

S[φ] =
M−2∑

j=0

(φj+1−φj)2
2γ

−
M−1∑

j=0

log(1+2μ cos(φj)). (4)

In the case where there are external charges on the bound-
aries of the system, +qQ on the site −1 and −qQ on the
site M , i.e. in a capacitor configuration, we need to add
iQ(φ−1−φM ) to the action (4). The field φ can be iden-
tified with the fluctuating electrostatic potential via the
relation V =−iφ/βq. One can show that the saddle-point
equation for the above functional integral, δSδφj |φMF = 0,
reduces to the mean-field equations of Kornyshev [2] and
Borukhov et al. [10], if one takes the continuous limit (a→
0 with the maximal charge density q/a kept constant).
Writing yi = φi and defining

p1/2(y, y′) =
1√
πγ
exp

(
− (y− y

′)2

γ

)
(5)

we introduce the symmetric operator

K(y, y′) =

∫
p1/2(y, z)(1+ 2μ cos(z))p1/2(z, y′) dz, (6)

whose action is defined on a function f as Kf(y) =∫∞
−∞
dy′K(y, y′)f(y′). This allows us to write the grand

potential ΩQ at fixed external charges ±Q as

exp(−βΩQ) =
∫ π

−π

dx eiQx
[
p1/2KMp1/2

]
e−iQx, (7)

which we can now write as

exp(−βΩQ) = 〈ψQ|KM |ψQ〉. (8)

by defining ψQ(y) = p
1/2 exp(−iQy) and writing operator

matrix elements in ket notation as

〈f |D|g〉=
∫ π

−π

dx f∗(x)Dg(x), (9)

for functions f and g and an operator D, and where f∗

denotes the complex conjugate of f . If instead of fixing
the charge at the boundaries one keeps fixed the potential
difference between them, ∆V =∆ν/βq, it is easy to show
that

exp(−βΩ∆ν) =
∫
dσ exp(−∆νσ−βΩσ), (10)

where Ω∆ν is now the grand potential at imposed external
potential difference. It follows that the average charge and
differential capacity both as a function of the imposed
potential difference are given by

〈Q〉∆ν =−
∂(βΩ∆ν)

∂∆ν
and c∆ν =

∂〈Q〉∆ν
∂∆ν

. (11)

To obtain the charge density we need to know the
average charge number 〈Si〉 on site i. Therefore, we just
need to replace 1+2μ cos(yi) with i 2μ sin(yi) in eq. (6),
via a new operator

L(y, y′) = i

∫ ∞

−∞

p1/2(y, z)2μ sin(z)p1/2(z, y′) dz. (12)

Putting charges Q and −Q on the left and right bound-
aries, the mean charge density on site i is then

〈Si〉=
〈ψQ|KiLKM−i−1|ψQ〉
〈ψQ|KM |ψQ〉

. (13)

In order to compute the thermodynamic quantities derived
here, we need to evaluate the indicated matrix elements
numerically. The domain of definition of the operators K
and L depends on the choice of the surface charge Q. We
define the Q-dependent class of functions

f(x) =
∑

k∈Z−Q

f̃k exp(ikx), (14)
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Fig. 1: (Colour on-line) Dimensionless free enthalpy βGM as a
function of the system size M , for the fugacity µ= 100: solid
line: exact, Q= 5; dashed line: mean field, Q= 5; dash-dotted
line: exact, Q= 0; dotted line: mean field, Q= 0.

where the set Z −Q is the set i−Q, where i is integer.
Such functions are stable under the action of K and the
action of K is given by

K̃fk = e
−γk2/4

[
e−γk

2/4f̃k

+μ
(
e−γ(k+1)

2/4f̃k+1+ e
−γ(k−1)2/4f̃k−1

)]
. (15)

The action of the operator K and L, can thus be carried
out numerically in this Fourier representation. Numeri-
cal computations are performed by truncating the Fourier
components at a maximum wave vector kmax. This approx-
imation is valid if γk2max≫ 1 which means that in the cases
studied here we can take kmax = 25.
Numerically one can compute i) the grand potential

of the system and the disjoining pressure giving the
effective interaction between the two bounding layers;
ii) the differential capacitance as a function of the voltage
difference between the boundaries; and iii) the dependence
of the charge density on the lattice position.
First, we look at the grand potential Ω as a function

of the size of the system M for given charges ±Q on the
boundaries. The discrete pressure on the boundaries is P =
ΩM −ΩM+1 and tends to the bulk pressure Pb when M
is large. The actual force acting on the boundaries of the
system is given by the disjoining pressure Pd = P −Pb that
follows from the free enthalpy GM =ΩM +MPb, which is
plotted in fig. 1. at high density and for different values of
Q. The mean-field results are also shown for comparison.
We observe two salient features of the disjoining pres-

sure: i) it is attractive when the system size is small
and goes to zero for orders of magnitude M > 2Q ii) it
exhibits oscillations of positive/negative pressure whenM
is even/odd. When the size of the system is large, the
boundary charges are completely screened by the ions, and
the plates only feel the bulk pressure; when the boundary

Fig. 2: (Colour on-line) Capacitance as a function of the voltage
drop for µ= 10 and γ = 1: exact result (solid line) and mean-
field result (dashed line).

layers are close to each other, not enough space is avail-
able for ions to screen the boundary charges and they thus
attract each other because of their opposite charge. Having
an even number of sites obviously stabilizes the system
compared to an odd number; however, this effect vanishes
as the size increases. This behavior is not seen within the
mean-field approximation and is due to the fact that an
odd number of sites cannot all be filled due to the elec-
troneutrality condition, and this induces a high energy
cost when μ is large. When the system becomes large this
effect is asymptotically negligible, and it does not show
up at lower densities. The mean-field result does not show
these oscillations, but the general trend agrees with the
exact result as well as with the continuous model mean-
field results [14]. Another difference that is not shown here
is that the bulk pressure is lower in the exact result than
in the mean-field result.
The bulk pressure too has some subtle properties. It is

given by Pb = ln(λ0), where λ0 is the highest eigenvalue of
K. But the operator K acts on the set of functions (14),
which depends on the non-integer part ofQ, θ=Q−⌊Q⌋ ∈
[0, 1). Thus, we may expect that the bulk pressure depends
on θ. This is indeed the case, but this dependence is
very small: ∆Pb/Pb ∼ 10−3. This dependence corresponds
to the so-called θ-vacuum introduced in ref. [15] for a
standard Coulomb gas.
We next analyze the differential capacitance as a func-

tion of the boundary voltage difference for M = 100 sites
and γ = 1 at high density (μ= 10) in fig. 2 and low density
(μ= 0.1) in fig. 3. Two phenomena emerge in the behavior
of capacitance: i) the capacitance has a dip at PZC; ii) the
capacitance exhibits oscillations, distinctly visible at low
densities. The PZC dip appears at low μ and confirms the
continuum mean-field results of Kornyshev [2]. The oscil-
lations stem from the θ-dependence of the bulk pressure
inducing an extensive θ-dependence of the grand potential,

28004-p3
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Fig. 3: (Colour on-line) Capacitance as a function of the voltage
drop for µ= 0.1 and γ = 1: exact result (solid line) and mean-
field result (dashed line). For smaller γ the non-monotonicity
gradually disappears and the exact solution approaches the
mean-field result of Kornyshev [2].

Fig. 4: (Colour on-line) Mean charge density close to the left
electrode (located at x=−1) as a function of the position for
Q= 0.5, γ = 1 and µ= 1: exact result (solid line) and mean-
field result (dashed line).

which then exhibits minima at θ∗ corresponding to bound-
ary charges Q∈Z + θ∗. When the imposed voltage varies,
the average charge exhibits plateaus at these selected
charges, and the jumps between plateaus induce the peaks
in the capacitance. These peaks become weaker as the
system gets smaller or as the temperature increases.
The mean-field capacitance exhibits exactly the same

trends but without oscillations, which is consistent with
the absence of plateaus in the average charge. Again our
mean-field results coincide with those of ref. [2].
Next we analyze the charge density profile in the vicinity

of one of the boundaries (left); the same profile with
opposite charge is obviously found close to the other
boundary. First we note that for small packing fractions
(μ= 1) the charge density shows a monotonic variation as
a function of the separation from the boundary, fig. 4, and
agrees with the mean-field result [10].

Fig. 5: (Colour on-line) Exact result for the mean charge
density close to the left electrode (located at x=−1) as a
function of the position for Q= 0.5, for γ = 1 and different
values of the fugacity.

Fig. 6: (Colour on-line) Capacitance as a function of the voltage
drop for µ= 1 and γ = 0.1: exact result (solid line) and mean-
field result (dashed line). Inset: charge density as a function of
the position close to the left electrode, for Q= 5.

As we increase the packing fraction (μ> 1, fig. 5) the
overscreening effect starts to dominate the behavior of
the charge density and clear charge layering emerges: a
counterion layer is followed by a coion layer with their
thicknesses equal to the lattice unit. This corresponds
closely to the experimentally observed situation [5] and
approximately to the results of the model of Bazant et al.
[9] if the packing fraction is not too large.
The charge distribution exhibits the following phenom-

enology: i) the amplitude of the oscillations varies contin-
uously with the boundary charge Q, being maximal for
half-integer values and zero for integer charges, due to
the fact that in 1D one can have perfect screening only
for integer values of Q; ii) the overcharging oscillations
are damped with a characteristic length ξ, with ξ ∼ μ.
The characteristic lengthscale of the overscreening oscil-
lations can be obtained from the two highest eigenvalues
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of the transfer matrix K, λ0 and λ1, and the definition of
the correlation length ξ = (ln |λ0λ1 |)

−1. Analytic computa-
tions of these eigenvalues for kmax = 1 and Q= 0, and for
kmax = 0.5 and Q= 0.5 indeed give ξ ∼ μ.
When γ is small the mean-field approximation gives an

accurate account of the capacitance and density profile
in the system as shown in fig. 6. From this figure it is
clear that the mean-field approximation works best for
large applied voltages, which is also physically reasonable
as the mean-field density profile imposed by the external
potential is larger and thus relatively more important than
any fluctuations.
Since the mean-field results show no overscreening, it

must be a specific feature of the exact result for the same
LCG model. We thus conclude that in order to describe
the overscreening phenomena in ionic liquids one needs to
go beyond the mean-field level of approximation. There
appears to be no need to modify the original LCG Hamil-
tonian but it is essential to retain its discretized lattice
form as opposed to its continuum limit. Based on our
results, valid in 1D, we conclude that an approximation
akin to the strong-coupling limit, as defined for ordinary
Coulomb fluids [16], could be pertinent. However, deriv-
ing such an approximation systematically for a lattice
Coulomb gas, where there are multiple length scales, is
an open problem.
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