
OFFPRINT

Interaction of a point charge with the surface
of a uniaxial dielectric
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Abstract – We analyze the force on a point charge moving at relativistic speeds parallel to the
surface of a uniaxial dielectric. Two cases are examined: a lossless dielectric with no dispersion
and a dielectric with a plasma-type response. The treatment focuses on the peculiarities of the
strength and direction of the interaction force as compared to the isotropic case. We show that a
plasma-type dielectric can, under specific conditions, repel the point charge.

editor’s  choice Copyright c© EPLA, 2013

Introduction. – Despite the long and rich history of
theoretical studies on the interaction between fast charges
and solid surfaces (see, e.g. refs. [1–12]) unexpected results
can be and indeed are derived. A recent example is the
discovery by one of the authors of the present letter [13],
that the interaction between a relativistic charge packet
and a metal or dielectric surface can become repulsive by
simply tuning the packet geometry; a result that seems
to go against common notions established in electrody-
namics and should be of importance in the framework of
accelerator physics and electron spectroscopy.
In this letter we switch gears and focus on the inter-

action between a point charge and a uniaxial dielectric
within the context of ionic and molecular interactions
with macroscopic surfaces. We assume a description of the
surface that approximates the non-isotropic nature of crys-
talline surfaces and surfaces decorated with adsorbed non-
isotropic inclusions. We present a derivation of the force
on the charged particle starting from Maxwell’s equations
in Fourier space and then evaluate the force numerically
in real space. We show that the longitudinal component of
the force (parallel to the dielectric surface) is in general not
parallel to the particle velocity anymore and that its direc-
tion depends on the particle speed (energy). We demon-
strate two peculiarities of the plasma-type response: 1) the
direction of the longitudinal force depends on the distance
of the particle from the surface and 2) under specific condi-
tions the particle can be repelled by the surface.

Evaluation of the electromagnetic force. – The
geometry of the problem is illustrated in fig. 1. A point
charge moves in vacuum with a velocity v at a distance
z0 parallel to the surface of a uniaxial dielectric. The
dielectric surface lies in the xy-plane with the opti-
cal axis oriented along the x-direction. The velocity is
v= (vx, vy, 0) = (v cos θ, v sin θ, 0), where θ is the angle
between v and the optical axis.
The electromagnetic field due to the moving point

charge is calculated from Maxwell’s equations:

∇·D= ρ, (1)

∇×H= J+ ∂D
∂t
. (2)

The problem is tackled by replacing the fields with
the standard scalar and vector potentials defined as
B=∇×A and E=−∇Φ− ∂A/∂t. Then the solution to
eqs. (1) and (2) is sought separately in the vacuum (z > 0)
and dielectric (z < 0) half spaces by introducing three-
dimensional Fourier transforms of all quantities:

G(r, z, t) =

∫

d2kdω

(2π)3
g(k, z, ω)ei(k·r−ωt), (3)

where k= (kx, ky) and r= (x, y) are the wave and position
vectors parallel to the dielectric interface.

24001-p1
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Fig. 1: The point charge moves in vacuum at a distance z0
parallel to the surface of a uniaxial dielectric defined by the
xy-plane. The velocity makes an angle θ with the optical axis
(x-direction). The dielectric tensor is diagonal with ǫxx = ǫ1(ω)
and ǫyy = ǫzz = ǫ2(ω).

The absence of bound charges and currents in vacuum
allows us to decouple the above equations using the Lorenz
gauge:

∂2Φ1
∂z2

−Q21Φ1 =−
ρ

ǫ0
, (4)

∂2A1
∂z2

−Q21A1 =−
J

c2ǫ0
, (5)

where Q1 =
√

k2−ω2/c2, k=
√

k2x+ k
2
y is the magnitude

of k and the index 1 refers to the vacuum half space. The
Fourier decomposition of the charge density is

ρ(k, z, ω) = 2πqδ(ω−v ·k)δ(z− z0), (6)

while the current density is simply J= ρv.
The solution to eqs. (4) and (5) is written as a sum of

the “incident” field due to the point charge (the same as
in the absence of the dielectric interface):

Φi =
πq

ǫ0
δ(ω−v ·k)e

−Q1|z−z0|

Q1
, (7)

Ai =
v

c2
Φi, (8)

and the “scattered” field due to the dielectric

As = ase
−Q1z, (9)

where for the latter we impose the gauge Φs = 0 and
therefore ∇·As = 0.
In these equationsQ1 is a real number. This follows from

the fact that all the fields carry the prefactor δ(ω−v ·k),
which insures that ω= v ·k. Writing k= (k cosφ, k sinφ)
we obtain Q1 = k

√

1−β2 cos2 (θ−φ), a real quantity
for any β = v/c, θ and φ. The point charge moving at
constant speed parallel to the dielectric surface cannot
emit radiation in the vacuum half space —the waves in
eqs. (7)–(9) are evanescent and the sign in front of Q1 in
eq. (9) is negative to insure that the waves decay to zero
as z→∞
The following linear constitutive relations are assumed

for the dielectric: D= ǫ0ǫ ·E, where ǫ is diagonal with
ǫxx = ǫ1(ω) and ǫyy = ǫzz = ǫ2(ω) and H=B/μ0 (the
material is non-magnetic). From eq. (1) we can again set

Φ2 = 0 and therefore ∇· (ǫ ·A2) = 0. The equation for the
vector potential in the dielectric obtained by taking the
curl of eq. (2) then becomes

∂2A2x
∂z2

−Q22eA2x = 0,

∂2A2y
∂z2

−Q22oA2y =
(

ǫ1
ǫ2
− 1
)

kxkyA2x,

∂2A2z
∂z2

−Q22oA2z =
(

ǫ1
ǫ2
− 1
)

(−ikx)
∂A2x
∂z
, (10)

where Q2o =
√

k2− ǫ2(ω2/c2) = k
√

1− ǫ2β2 cos2 (θ−φ)
and Q2e =

√

(ǫ1/ǫ2)k2x + k
2
y − ǫ1(ω2/c2) =

k
√

ǫ1
ǫ2
cos2 φ+sin2 φ− ǫ1β2 cos2 (θ−φ), where index 2

(in Q2o,2e) refers to the dielectric half space. The above
equations are consistent with results obtained by other
authors (see, e.g. [14,15]), except that we prefer to work
with potentials rather than fields.
The general solution to eq. (10) is written as a sum of

ordinary (o) and extraordinary (e) waves:

A2 = aoe
Q2oz +aee

Q2ez, (11)

where
ao = (0, aoy, aoz),

ae = ae

(

1,
kxky

k2x− ǫ2 ω
2

c2

,
−ikxQ2e
k2x− ǫ2 ω

2

c2

)

.
(12)

Since both ǫ1(ω) and ǫ2(ω) are in general complex quan-
tities, Q2o and Q2e are also complex. There are two solu-
tions for Q2o and Q2e but the physical ones correspond to
those with positive real parts (only these decay exponen-
tially in the dielectric and satisfy the radiation condition).
To find the coefficients contained in the vectors as,
ao and ae we impose the usual boundary conditions
for the fields at the interface. The procedure, although
straightforward, is tedious and will not be reproduced in
detail. Using the obtained coefficients the Lorentz force
components are

fx = iqe
−Q1z0 [ωasx+ vy(kxasy − kyasx)] ,

fy = iqe
−Q1z0 [ωasy + vx(kyasx− kxasy)] ,

fz =−qQ1e−Q1z0(vxasx+ vyasy), (13)

which become, after the Fourier transform over ω,

fx =−i
kx
Q1
fz,

fy =−i
ky
Q1
fz,

fz =
e−2Q1z0q2

2c2ǫ0

R

P
, (14)

24001-p2
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where R and P are defined as

R = −ǫ2(v ·k)2
{

v2xQ2o(Q2e−Q1)(Q2o+Q1)

+v2yQ2o(Q2o−Q1)(Q2e+Q1)+ 2(ǫ2− 1)kxkyvxvyQ1

+(ǫ2− 1)k2y
[

v2x(Q2e−Q1)+ v2y(Q2e+Q1)
]

}

+c4k2xQ2o(Q2o+Q1)(Q1− ǫ2Q2e)

+c2

〈

2(ǫ2− 1)k3xkyvxvyQ1

+ǫ2k
2
yv
2
y(Q2e+Q1)

[

Q2o(Q2o−Q1)+ (ǫ2− 1)k2y
]

+k2x

{

Q1Q2o

[

− v2x(Q2o+Q1)+ v2y(Q2o−Q1)
]

+ǫ2Q2o

[

v2x(2Q2e−Q1)(Q2o+Q1)+ v2yQ2e(Q2o−Q1)
]

+(ǫ2− 1)k2y
[

2
(

−v2x+ v2y
)

Q1+ ǫ2v
2
x(Q2e+Q1)

]

}

+2kxkyvxvy

{

(ǫ2− 1)k2y
[

(ǫ2− 1)Q1+ ǫ2Q2e
]

+Q2o

[

ǫ2Q1(Q2e−Q1)+Q2o(ǫ2Q2e−Q1)
]

}

〉

, (15)

P = c2k2xQ2o(Q1+Q2o)(Q1+ ǫ2Q2e)

−ǫ2(Q1+Q2e)(v ·k)2
[

Q2o(Q1+Q2o)+ k
2
y(ǫ2− 1)

]

.

(16)

The force in real space is obtained by integration of the
above expressions over k= (k cosφ, k sinφ), setting r= vt.
For a lossless and dispersionless material the transform
over k is performed analytically, giving an inverse second
power dependence of the force on the distance z0 from the
surface, while the transform over φ has to be performed
numerically. When dispersion and/or losses are included
the integration can be performed only numerically.
The longitudinal force fp = (fx, fy) can be interpreted

in Fourier space in a convenient way. The point particle
excites electromagnetic waves in the semi-infinite dielec-
tric and each of these waves carries a momentum propor-
tional to k. This momentum has to be balanced by the
particle which results in a force parallel to the interface.
The magnitude of the momentum is determined by the
boundary conditions and material properties. The longi-
tudinal force Fp = (Fx, Fy) in real space is then obtained
by integration over the momenta of all the excited waves.
In the following we treat two examples of dielectric

response: a lossless dielectric with no dispersion and a
plasma-type response. Mathematically both cases can be
analyzed using the Drude model for the dielectric tensor:

ǫ1(ω) = ǫ∞1−
ω2p1

ω(ω+ iγ1)
,

ǫ2(ω) = ǫ∞2−
ω2p2

ω(ω+ iγ2)
, (17)

where ǫ∞1,∞2 are dielectric constants at high frequencies
(ω→∞), ωp1,p2 are the plasma frequencies and γ1,2 are
the damping coefficients. For a lossless dielectric ωp1, ωp2
and γ1, γ2 are made infinitely small, i.e. ǫ1,2(ω) = ǫ∞1,∞2,
while for a plasma-type dielectric we take ǫ∞1 = ǫ∞2 = 1.
For reasons of consistency the frequency has to satisfy

ω≫ γ1,2. (18)

It can be shown (see, e.g. [16]) that the range of
frequencies a point charge moving above a solid excites
near its surface is proportional to γv/z0, where γ =
(1− v2/c2)−1/2 is the relativistic factor. The condition of
eq. (18) therefore reads

ωmax =
γv

z0
≫ γ1,2. (19)

In addition to the above, for non-zero losses the plasma
model is not applicable near ωp1,p2, where the imaginary
part of the dielectric function dominates the response.
For a lossless dielectric with no dispersion, i.e. ǫ1(ω) =
ǫ∞1 and ǫ2(ω) = ǫ∞2 are constants, Fp will be non-zero
only if the Čerenkov condition, either for the ordinary or
extraordinary waves (or both), is satisfied. This occurs
when either Q2o or Q2e becomes imaginary, i.e. the waves
become propagating. If both Q2o and Q2e are real, the
waves excited in the solid are evanescent (they decay
exponentially in the solid) and these do not contribute to
Fp. The reason is that Fp in general decreases the energy
of the particle and this can occur only if the charge emits
radiation into the dielectric.
It is straightforward to show that Q2o becomes imagi-

nary if the particle moves faster than the critical speed:

βo = vo/c=
1
√
ǫ2
. (20)

Above βo propagating Čerenkov waves are emitted into a
circular cone defined by

cosαo =
1

β
√
ǫ2
. (21)

Here αo is the angle between the optical axis and the wave
vector K= (kx, ky, sgn[ω]kz), and kz = iQ2o. The function
sgn(ω) insures that the energy flow is directed into the
dielectric (propagating waves are actually emitted only
into one half of the Čerenkov cone). The symmetry axis
of the ordinary Čerenkov cone is always parallel to the
particle velocity.
For extraordinary waves the analysis is a bit

more cumbersome [17]. The critical speed for Čerenkov
emission is

βe =
1

√

ǫ1 sin
2 θ+ ǫ2 cos2 θ

. (22)

From eq. (22) it follows that for given ǫ1, ǫ2, and β
there exists a critical angle θc above which the Čerenkov
condition for extraordinary waves is satisfied:

cos θc =
1

β

√

β2ǫ1− 1
ǫ1− ǫ2

. (23)

24001-p3
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tanχ=
ǫ1− ǫ2+

√

(ǫ1− ǫ2)2+(β2ǫ1ǫ2)2+2β2ǫ1ǫ2(ǫ2− ǫ1) cos (2θ)
β2ǫ1ǫ2 sin (2θ)

− cot (2θ), (24)

Fig. 2: Different scenarios for the direction of the longitudinal
component of the Lorentz force acting on the electron.

The extraordinary Čerenkov cone has an elliptical cross-
section [17], which follows from the definition of Q2e. The
symmetry axis of the cone lies in the xy-plane and makes
an angle χ with the x-axis1:

see eq. (24) above

which for β = βe and θ= θc reduces to

tanχ=
ǫ1
ǫ2
tan θc. (25)

For a plasma-type dielectric Fp is in general always non-
zero, but is appreciable only in a certain frequency range
due to condition (18). This can be seen for the limiting case
when γ1 = γ2 = 0 and therefore ǫ1,2(ω) = 1−ω2p1,2/ω2. If
follows that Q2o is real for all ω and there are no ordinary
propagating waves. On the other hand, Q2e is imaginary if
the frequency ω lies between the plasma frequencies [18]:
e.g., ωp1 <ω <ωp2 for ωp2 >ωp1. We will refer to this
frequency range the Čerenkov band. For zero losses, only
waves in the Čerenkov band contribute to the longitudinal
force, Fp.

Results. – In this section we plot the magnitude of
Fp, the angle between Fp and the electron velocity, and
the transverse force Fz. For an isotropic material, where
ǫ1(ω) = ǫ2(ω), Fp is in the direction opposite to v, while
for a uniaxial material this is no longer the case. We plot
ψ= arctan (Fy/Fx) as a function of θ to show the effect
of the anisotropy (the angle between v and Fp is equal to
ψ+π). Figure 2 sketches two possible scenarios that may
occur.

1To obtain χ we write the equation for Q2e as K · (M ·K) = 0,
where K= (kx, ky , kz), kz = iQ2e and M is a 3× 3 matrix. In
the coordinate system where M is diagonal the equation for Q2e
defines the extraordinary Čerenkov cone. The transformation to this
coordinate system involves a rotation by χ along the z-axis. The
result reduces to the one for ordinary waves when ǫ1 = ǫ2.

In fig. 3 we show the results for a dispersionless material
with no losses. We chose ǫ1 = 8 and ǫ2 = 4. On the left
side we plot ψ as a function of θ for different values of
β = v/c, while on the right side we plot the magnitude
of the longitudinal force and the transverse force, both
normalized with respect to q2/(16πǫ0z

2
0) (static image

charge force for a charge above a metal surface).
The Čerenkov condition for ordinary waves, βo > 0.5, is

only satisfied for bottom panels in fig. 3. For extraordinary
waves eq. (23) gives θc ≈ 29◦. From fig. 3, Fp is zero
below this value and increases with θ. The direction of
Fp strongly departs from the isotropic case and for θ= θc
coincides with the direction of the Čerenkov cone given
by eq. (25). This follows directly from eq. (14). For θc the
waves are emitted only into one direction (the Čerenkov
cone becomes a line); therefore kx and ky are proportional
and the ratio Fy/Fx is the same as ky/kx. The longitudinal
force is thus parallel to the symmetry axis of the Čerenkov
cone. For θ > θc the direction of Fp departs from that of
the cone.
The transverse force Fz is a result of a complex interplay

between evanescent and Čerenkov interactions (see [10,13]
for an explanation of the isotropic case); nevertheless, Fz
only slightly varies with θ (within 10% in the interval
θ ∈ [0, 90◦]). As in the isotropic case [13], Fz is always
attractive (negative) for a point charge; it cannot be made
repulsive simply by increasing β or changing the dielectric
constant. However, it can become repulsive by replacing
the point charge with a transverse line of charge.
For β = 0.5 the Čerenkov condition for extraordinary

waves is satisfied for all θ. For low angles ψ is above the
value for the isotropic case: ψ > θ. At some critical angle
we enter the regime ψ < θ. Increasing θ leads to transition
back to the regime ψ > θ. This peculiar behavior cannot
be qualitatively explained by considering the direction of
the Čerenkov cone; the direction of the force has to be
determined by integration over all the momenta of the
waves excited in the solid.
For higher β the Čerenkov condition for ordinary waves

is fulfilled. These waves contribute to a force in the
direction opposite to the particle velocity. The direction
of Fp therefore approaches that of the isotropic case, as
demonstrated in the bottom panels of fig. 3.
We note that for the two extreme points θ= 0◦ and θ=

90◦ the longitudinal force always points in the direction
opposite to v, which follows from the symmetry of the
situation.
As β increases the particle excites more Čerenkov waves

and therefore the magnitude of Fp increases, as indicated
in fig. 3 (right). For β = 0.45 the maximum value of Fp
is ∼ 2 orders of magnitude smaller than Fz; however, the
components become comparable at β = 0.7.

24001-p4



Interaction of a point charge with the surface of a uniaxial dielectric

Fig. 3: Results for a dispersionless and lossless dielectric with ǫ1 = 8 and ǫ2 = 4. Left: ψ= arctan (Fy/Fx) as a function of θ
for β = 0.45 (top), β = 0.5 (middle) and β = 0.7 (bottom). The solid black line represents the results, the solid gray line is the
isotropic case (ψ= θ, valid for β above the Čerenkov condition) and the dashed gray line is the direction χ of the symmetry
axis of the extraordinary Čerenkov cone. Right: magnitude of the longitudinal force (solid line) and transverse force (dashed
line) as a function of θ for β = 0.45 (top), β = 0.5 (middle) and β = 0.7 (bottom).

Fig. 4: Results for a plasma-type dielectric (γ1,2 = 10
−2ωp1): ψ= arctan (Fy/Fx) as a function of θ (left) and force components

(right). Top panels: ωp2 = 3ωmax, ωp1 = 10
−1ωp2. Bottom panels: ωp2 = 0.5ωmax, ωp1 = 10

−1ωp2. The solid black line in the left
panels represents the results, while the solid gray line is the isotropic case (ψ= θ). The solid line in the right panels is the
magnitude of the longitudinal force, while the dotted line represents the transverse force.

For the reversed situation, ǫ1 = 4 and ǫ2 = 8, the
anisotropy is much less pronounced since with increasing
β ordinary Čerenkov waves are excited first and these
contribute to a force in the direction opposite to v. The

effect (not shown here) is similar to the situation in the
bottom panel of fig. 3, left, except that ψ < θ.
Figures 4 and 5 show the results for a plasma-type

dielectric: γ1,2 = 10
−2min(ωp1, ωp2, ωmax). We had to

24001-p5
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Fig. 5: ψ= arctan (Fy/Fx) (top panel), magnitude of the
longitudinal force (middle panel), and transverse force (bottom
panel) as a function of θ for a plasma-type response with
ωp1 = 0.25ωmax, ωp2 = 10

−1ωp1. The solid black line in the
top panel represents the calculated values, the dashed line is
the isotropic case. In the bottom panel the transverse force
(thick gray line) is split into the Čerenkov (dashed line) and
evanescent (dotted line) contributions.

work with finite losses to insure numerical convergence.
Although the conditions for a plasma-type dielectric
are violated at ω= 0 and near ωp1,p2, insuring that
ωmax≫ γ1,2 and putting the plasma frequencies “far”
apart (e.g., ωp2 = 10ωp1), the contribution to the integral
around these points is small (the numerical results are
nevertheless exact because we are using the Drude model
for integration).
Figure 4 demonstrates that the force direction as well as

the magnitude change with ωmax. Depending on ωmax the
angle ψ < θ or ψ > θ. Since ωmax depends on the particle
speed v and the distance z0 from the dielectric, the force
magnitude as well as the force direction also depend on v
and z0. This is in strong contrast to the case of a dielectric
with no losses and no dispersion, where the force direction
is independent of z0.
An interesting behavior is observed when ωmax >ωp1 >
ωp2, fig. 5. The angle ψ is negative for low θ, which means
that the y components of the force and velocity have the
same sign and the particle is accelerated in the y-direction.

Nevertheless, this does not violate energy conservation
because the product v ·Fp < 0 and the particle’s energy
decreases.
A peculiar behavior of the transverse force is observed

for values of θ below ≈ 20◦ where it becomes repulsive
(positive). This is shown in the bottom panel of fig. 5,
where we split the interaction into the Čerenkov part
(ωp2 <ω <ωp1) and the evanescent part (0<ω <ωp2 and
ω >ωp1). For this particular case the Čerenkov contribu-
tion, which can become repulsive, starts to dominate for
low angles. The origin of the repulsion is the momentum
carried into the dielectric by the excited waves, balanced
by the particle [10]. It is therefore possible for a dielec-
tric surface not only to repel a transverse charge packet,
as demonstrated in ref. [13], but also a point charge; an
outcome which seems to contradict common notions based
on electrostatic considerations of point charges above
metallic or dielectric surfaces.
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[10] Schieber D. and Schächter L., Phys. Rev. E, 57 (1998)

6008.
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