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Abstract – We study the problem of charge regulation and its effects on electrostatic interactions
between dissociable charge groups immersed in a univalent electrolyte, within a family of one-
dimensional exactly solvable models. We consider the case of both charge-regulated plates, but
also the interaction of pairs of finite-size dielectric “particles”. Using the transfer matrix formalism
we are able to determine the disjoining pressure as well as the correlations between the charge and
the dipole moments of the objects as a function of their separation and electrolyte concentration.

Copyright c© EPLA, 2014

Introduction. – The interaction of charged objects
immersed in an electrolyte gives rise to a rich phenomenol-
ogy which has been explored by a number of different
methods [1]. In this paper we study one-dimensional
models using a field theory formalism [2,3] which was
introduced by Edwards and Lenard [4], and adapted to
surface properties and surface-surface interactions in [5,6]
and [7–9].

We are particularly interested in potential applications
for the interactions between proteins [10], where it has
been realised for a long time that fluctuations in surface
amino acid charge dissociation state can give rise to a
monopole-monopole fluctuation interaction as described
by Kirkwood and Shumaker [11,12]. Such a long-range
fluctuation interaction is possible only for surfaces that
exhibit charge regulation, that is, they do not have a
fixed surface charge [13]. When present these interac-
tions decay, in three dimensions, as 1/r2 between point
particles and vary consequently as log(D) between planar
surfaces [7]. In the present paper we study effects of this
type exactly in one dimension by using the surface disso-
ciation model introduced by Ninham and Parsegian [14]
on the mean-field level. The model was developed further
in different contexts [15–19] and recently reformulated in
terms of the free energy functions for dissociable surface
charges [7].

We base our analysis on the functional integral rep-
resentation of the partition function generalized by the

inclusion of a surface effective free energy that describes
the charge regulation. The model is solved exactly
and the results provide insights into the correlations be-
tween the charge states of interacting surfaces. We go a
step further and consider the interaction of two charged
“particles” with a dielectric core and dissociable surface
charge groups.

One-dimensional electrolytes. – We consider a
one-dimensional system of positive and negative charges
bounded by two charged interfaces located at x = 0, L,
fig. 1. The charges interact with the unidimensional
Coulomb interaction:

H = −
1

4

∑

ij

|xi − xj |qiqj = −
1

2

∑

ij

Gc(xi, xj)qiqj , (1)

in units where the dielectric constant is unity. xi is the po-
sition of the particle i carrying charge qi and the Coulomb
kernel Gc(x, x′) satisfies

∂2Gc(x, x′)

∂x2
= −δ(x − x′). (2)

We can then use field theory mappings [2,3], or analogies
with a one-dimensional Brownian particle [5], to show that
the free energy functional for an interacting symmetric
one-one electrolyte without hard-core interactions [4] is

S[φ] =

∫

dx

(

1

2
β

(

∂φ

∂x

)2

− 2λ cos(βeφ) + iρ0φ

)

, (3)
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Fig. 1: Schematic representation of the three considered sys-
tems. Top: two metallic interacting ionizable surfaces. Middle:
two ionizable surfaces in an infinite electrolyte bath. Bottom:
two dielectric “particles” with ionizable surfaces in an infinite
electrolyte bath.

where β is the inverse thermal energy, λ is the absolute
activity of the electrolyte bath, e is the elementary charge,
ρ0 is an external fixed charge density and φ is a fluctuating
potential which is integrated over to calculate the partition
function (up to an irrelevant multiplicative constant)

Z =

∫

D[φ] e−S[φ], (4)

so S[φ] can be viewed appropriately as a field action. The
prefactor of the functional integral is irrelevant for the spe-
cific context of this work.

By rescaling the energy and the length scales in the
problem we can work with an a-dimensional form of the
interaction. We chose to scale the variables such that
the bulk field action takes the form

S[ψ] =
1

2

∫ L

0

dt

(

dψ

dt

)2

− 2λ̄

∫ L

0

dt cos(ψ). (5)

From now on we will use this form, measuring distances in
units of the one-dimensional Bjerrum length ℓB = 1/e2β
and the fluctuating field action in thermal units. Note that
there is an inversion in the physics of one-dimensional elec-
trolytes, compared to three dimensions. Particles interact
weakly at small separations and strongly at the largest
distances; the potential strength increasing with |xi −xj |.
This implies that dense electrolytes with large λ̄ are de-
scribed by the simpler weakly interacting theory. For small
λ̄ particles can form interacting, bound Bjerrum pairs [4].

The remarkable feature of the one-dimensional parti-
tion function that we will exploit [4] is that the non-linear
weighting equation (4) maps onto another linear problem.
This mapping is essentially the same as the mapping from
the path integral to the Schrödinger formulations of quan-
tum mechanics. We will thus be concerned with linear
partial differential equations of the form

∂Gλ̄(ψ,ψ′; t)

∂t
=

1

2

∂2Gλ̄(ψ,ψ′; t)

∂ψ2
+ 2λ̄ cos(ψ)Gλ̄(ψ,ψ′; t),

(6)
where the time-like variable t is the position in the one-
dimensional electrolyte measured in terms of the Bjerrum
length and Gλ̄(ψ,ψ′; t) is a Green’s function.

Surface free energy. – If external charges on the
bounding surfaces x = 0, L are considered to be equal and
fixed at Ne, then they contribute iρ0φ −→ iNeφ(0)δ(x)+
iNeφ(L)δ(x − L) to the field action. However, we rather
consider the case in which each surface can be in a state
of charge which varies from −Ne to (ns − N)e, corre-
sponding to a surface charge group dissociation equilib-
rium. The chemical potential for dissociation is assumed
to be independent of the number of previously bound ions,
corresponding to the charge regulation paradigm [7]. On
mapping to the field theory form we find that the surface
free energy is given by the surface lattice gas expression

e−βf(ψ) = e−iNψ+ns ln(1+λSeiψ), where log λS is propor-
tional to the free energy cost of charge dissociation. It
will be useful to expand the logarithmic term into a finite

sum to find

e−βf(ψ) = e−iNψ(1 + λse
iψ)ns (7)

=

ns
∑

k=0

(

ns

k

)

λns−k
s ei(ns−k−N))ψ. (8)

In our numerical applications we make the choice ns = 2N
so that the surface can have a charge state which varies
between −Ne to +Ne, but other choices are possible.

The total partition function of two surfaces, separated
by L in Bjerrum length units, interacting through a one-
one electrolyte is then [5]

Ξ(L) =

∫

dφ0

∫

dφL e−βf(0)Gλ̄(φ0, φL;L)e−βf(L). (9)

This implies our principal result relating the partition
function to a finite sum over Green functions:

Ξ(L) =

ns
∑

k,k′=0

(

ns

k

)(

ns

k′

)

λ2ns−k−k′

s

×

∫

dψ dψ′ eiMψGλ̄(ψ,ψ′;L)eiM ′ψ′

(10)

with M = ns −N − k, M ′ = ns −N − k′. Let us consider
the Fourier transformed Green function

ZM,M ′(L) =

∫

dψ dψ′ eiMψGλ̄(ψ,ψ′;L)eiM ′ψ′

=

∫ 2π

0

dψ eiMψK(ψ,L). (11)

K can be expanded as a Fourier series

K(ψ, t) =

∞
∑

n=−∞

b(n, t)einψ; (12)

ḃnm(t) = −
1

2
n2bnm(t) + λ̄(bn+1,m(t) + bn−1,m(t)). (13)

The initial condition is that bn,m(0) = δn,−m. This

is then a simple matrix equation ḃ = Γb with solution
b = eΓtĨ, where Ĩ is a matrix that has unit elements on
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the skew diagonal, corresponding to complex conjugation.
The matrix Γ has entries −n2/2 on the diagonal and en-
tries λ̄ on the first step from the diagonal. The thermo-
dynamics of the system is then deduced from

Ξ(L) =

ns
∑

k,k′=0

(

ns

k

)(

ns

k′

)

λ2ns−k−k′

s bns−N−k,ns−N−k′(L),

(14)
where L is the extension of the system in the units of
Bjerrum length. The disjoining pressure p, the average
charge and its mean-square fluctuations on the bound-
ing surfaces, as well as the cross-correlation of the charge
between the two surfaces can all be obtained straightfor-
wardly from the above expression. The disjoining pressure
in thermal units follows from the standard expression in
the form P = ∂

∂L log Ξ(L). The mean surface charge
〈

M
〉

and the mean-square surface charge fluctuation
〈

M2
〉

are
identical at both bounding surfaces, with M = ns −N −k
at the boundary x = 0, or equivalently at the boundary
x = L with M −→ M ′ = ns − N − k′, with the average
defined as

〈

· · ·
〉

=
1

Ξ

ns
∑

k,k′=0

(

ns

k

)(

ns

k′

)

λ2ns−k−k′

s (· · · ) bM,M ′(L).

(15)
The cross-correlation function between charges on both

surfaces, 〈(M − 〈M〉)(M ′ −〈M ′〉)〉, quantifies the correla-
tion between the instantaneous charge at boundary x = 0
and boundary x = L that depends on other parameters
and the size of the system.

Interactions without electrolyte. – We first con-
sider the case of two metallic plates. We impose strict
electroneutrality on the system of plates so that the elec-
tric field is identically zero outside of the considered re-
gion [5] and start with the choice λs = 1, where the effects
of monopole fluctuations can be expected to be strongest.
The case involving N = 1 is particularly simple. There
are three surface charge states possible: (0, 0), (e,−e),

(−e, e). The partition function is then Z = 1+2e−βe2L/2,
where we have used the energy LE2/2 for the electric field
with E = q as the boundary condition. We find that
the pressure P = −e2/(2 + eβe2L/2) looks rather like a
Fermi function, having finite values at small separations
and exponential decaying for separations beyond the Bjer-
rum length. Charged states become exponentially rare at
large separations since their energy increases with sepa-
ration. This is a big difference with respect to the three-
dimensional case where the object can remain charged at
large separations.

There is also an interesting and simple result for a large
number of active sites (N ≫ 1) in the limit L < ℓB . We
start with a simple argument neglecting discrete charges.
The energy of a system with charge q on a single plate
is E = q2L/2. Thus, Z =

∫

dqe−βq2L/2 ∼ 1√
L

. This

gives the simple expression for the pressure P ∼ − 1
2β L−1.

While valid in the limit of very large N , it gives a

rather poor fit for moderate N . Much better results are
obtained with the following modified argument which in-
cludes the entropy of the charge fluctuations. The propa-
gation of modes within the electrolyte is given by eq. (13):

b(t) = e−n2t/2Ĩ. The surfaces are then described by a
Gaussian approximation to the binomial coefficients for a
near neutral surface with n the net number of charges:
(

2N
N+n

)

∼ e−n2/N . Then

Z =

∫

dn
(

e−n2/N
)2

e−n2L/2ℓB ∼
1

√

L/ℓB + 4/N
, (16)

giving

P = −
1

2β
(L + 4ℓB/N)

−1
. (17)

This fits very well the exact evaluation for N > 10 for
L < ℓB , see fig. 2(a), even for λs �= 1. Again for larger L
there is an exponential decay in interactions.

Interactions within an electrolyte. – To evaluate
our expressions within an electrolyte we work in a sub-
space corresponding to modes from −nm : nm of dimen-
sion 2nm+1. Using Matlab/Fortran labeling of the modes
from 1 to 2nm + 1, the mode m = 0 has the position
i = nm + 1 in the matrix, and the mode m is at position
im = nm+m+1. We can then evaluate all the expressions
using matrix algebra. b is evaluated using the matrix ex-
ponential and the free energies are evaluated by grouping
the combinatorial factors into right and left vectors.

We now consider the case of a low ion concentration,
λ̄ = 0.02 and take the chemical potential for charging the
plates as λS = 2. In fig. 2(a) we plot the logarithm of the
absolute value of the disjoining pressure as a function of
the separation between the plates. In our figures we indi-
cate the sign of the interaction by the background colour:
white represents repulsion, grey represents attraction. We
plot information on the charge state of the surface: The
constraint of strict neutrality has strong influence on this
behaviour. For separations larger than ∼ 5ℓB the average
charge of each plate (gold dashed) is constant; however,
for small separations the average surface charge goes to
zero. This we interpret as being due to the constraint of
electroneutrality imposed by the chosen boundary condi-
tions: The system prefers to cancel the surface charge,
rather than pulling in counter-ions at small separations to
ensure global electroneutrality.

The fluctuations of the surface charge behave in a very
different manner from the average: The mean-squared
charge on the surface (blue dotted curve) takes on a con-
stant value for large separations, but increases strongly

at smaller separations. Therefore, even though on average
the plates are neutral they can at any moment be strongly
charged. This is possible because there is a strong anti-
correlation between the two plates demonstrated in the
evolution of the red dashed-dotted curve —one surface
obviously becomes positive and the other negative. Thus,
even though the average charge is driven to zero there

68003-p3
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Fig. 2: (Colour on-line) (a) Demonstration of the Kirkwood-Shumaker effect for two plates. Mauve, right scale, solid line: log
of the disjoining pressure as a function of dimensionless separation (attractive interactions). Other curves, left scale: Gold
dashed curve: average charge on a plate; blue dotted curve: mean-square fluctuation of charge on a single plate; red dashed-
dotted curve: charge correlation between two plates. λ̄ = 0.02 and λS = 2 with N = 10; top green line: analytic expression
eq. (17) valid for small separations. (b) Parameters for two plates demonstrating intermediate range attraction, but repulsion
for small and large separations. λS = 2, λ̄ = 103, N = 5. This set of parameters leads to a minimum in the free energy at
a finite separation between plates. (c) N = 1, λS = 2, λ̄ = 103, plates are attracting at contact. (d) λ̄ = 0.1 and λS = 20
with N = 5, ns = 10, interaction is always repulsive. Cross-correlation decays exponentially to zero for large separations,
((a), (c)) attractive at contact, ((b), (d)) repulsive at contact.

is a strong monopole fluctuation which we should inter-
pret as the Kirkwood-Shumaker effect [11,12]. The charge
cross-correlation can be seen to decrease to zero at large
separations due to the screening of electrostatic interaction
by the electrolyte and the short-range attraction in this
configuration can be interpreted as being due to strong
thermal monopole fluctuations.

Let us now consider a weakly coupled system with
higher charge density λ̄ = 103. Rather rich behaviour
is found as a function of the surface properties. For
λS = 2, N = 5 we have two changes of sign of the dis-
joining pressure fig. 2(b)1. We find repulsion at both
small and large separations, but a window of attraction
at intermediate distances. There is also a somewhat dif-
ferent behaviour in the evolution of the charge state when
compared to fig. 2(a) —while the average charge is driven
to zero as before, we see that the blue fluctuations also
decrease at small separations so that monopole fluctu-
ations are not strong enough to produce short distance
attraction.

If we change the charge state of the surface so that
N = 1 we find attractive interactions between plates at
contact. Again the charge and fluctuations of the surface
decrease at the smallest separations, fig. 2(c). It is inter-
esting to note that the amplitude of charge fluctuations re-
mains high at all distances even if the correlation between
the plates is only important at the smallest separations.

Finally we force the surface to charge more strongly by
increasing the value of λS = 20, fig. 2(d). In this case

1We plot pressures on logarithmic scales, which gives character-

istic singularities at sign changes.

the average charge of the plates overwhelms the effects
of fluctuations. Even for this case the plates eventually
discharge (on average) at the smallest separation —but
the charge state again fluctuates strongly.

We see from all of the figures in this section that the
electroneutrality constraint has a strong influence on the
charge state, and charge correlations at small separations.
The average charge is always driven to zero leaving strong
monopolar fluctuations. In the next section we study a
modified model in which the electroneutrality condition
between the plates is relaxed so that the surface can re-
main charged up to contact to see how this modifies the
interaction.

Two charged surfaces in an infinite electrolyte

bath. – In this section we consider that the charges are
attached to a dielectric medium of zero thickness, with
an electrolyte on both sides of the charged sources, fig. 1.
In this geometry we no longer force the average charge of
each plate to zero at contact.

The partition function, eq. (9), is now modified to

Ξ(L) = lim
D→∞

∫

dφ0 dφL Gλ̄(0, φ0;D)e−βf(0)

×Gλ̄(φ0, φL;L)e−βf(L)Gλ̄(φL, 0;D), (18)

where the electrolyte extends from limD→∞[−D,D] and
we assumed that the potential at the boundaries of this
interval vanishes.

Figure 3(a) shows conditions such that the charge state
(both average and fluctuations) is only a weak function of
the separation. However, it is interesting to notice that
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Fig. 3: (Colour on-line) Same colour and curve coding as in
fig. 2. Plates within electrolyte. (a) λS = 2, λ̄ = 103, N = 5.
The disjoining pressure is uniformly repulsive, but the charge
state of the surface is stable as a function of the separation.
(b) The small value of λS = 1.05 only weakly charges the
surface, but fluctuations remain very large. This leads to short-
range attraction between the surfaces. N = 10. (a) Repulsive
at contact, (b) attractive at contact.

the average charge is regulated by the chemical potentials
of the free and bound charges. While the average charge
on the surface is far from saturation, it resembles most
clearly the standard boundary condition of constant sur-
face charge, independent of the separation between plates,
for this set of parameters.

Finally we show that attraction is still possible, fig. 3(b),
even in this geometry, if λS is close to unity. In this case
the average charge on the surface is small and again fluc-
tuations can be an important component of the effective
interaction. Note that the charge on each plate is strongly
fluctuating, but the plates remain weakly correlated for
all separations.

We next move on to consider a more sophisticated model
(though still a toy model) that goes part of the way to
capture specifically some of the features of protein inter-
actions —modelled on this level as a pair of interacting,
dielectric particles with ionizable surface groups.

Two dielectric “particles” in an infinite elec-

trolyte bath. – In this section we consider a “toy model”
idealization of a protein with ionizable amino acids on
its surface represented in a one-dimensional model, fig. 1.
Each protein excludes the electrolyte and its interior core
behaves as a simple dielectric “particle” with a dielectric
constant different from its “bulk” value, allowing in prin-
ciple for the inclusion of the polarization effects.

For simplicity we will take the dimension of this dielec-
tric regions as constant and equal to the Bjerrum length.
In general it depends on their actual thickness as well as
on the dielectric discontinuity through the definition of
the Bjerrum length. The two surfaces of each dielectric
region are then described by our charge-regulated model.
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Fig. 4: (Colour on-line) (a): Disjoining pressure (solid line)
for charged dielectric “particles”. The average charge (gold
dashed) and the dipole moment (green dashed-dotted) evolve
as a function of the separation between the particles. λ̄ =
10−1, λS = 2, N = 5. (b): λ̄ = 103, λS = 1.1, N = 5.
(a), (b): attractive at contact.

We thus study a model of two pairs of charge-regulated
surfaces, each of them with an electrolyte-free core, which
interact through an electrolyte solution. Apart from the
obvious limitations of a one-dimensional model, this is as
close as we can get to the realistic description of the inter-
actions between two proteins in an electrolyte solution.

The partition function in this case is analogous to
eq. (18) but we need to substitute

∫

dφ0e
−βf(0) −→

∫∫

dφ−hdφh e−βf(−h)G0(φ−h, φh; 2h)e−βf(h),

where G0(φ, φ′; t) stands for the dielectric region without
salt, i.e., λ̄ = 0, representing the “particles” of which one
spans the interval [−h, h] and the other one [L − h, L + h].
In our numerical studies 2h equals one Bjerrum length.

It is clear that a number of interesting quantities can
evolve as a function of the separation of particles. As we
have seen above, the total charge of the particle will evolve,
but it is also clear that this will happen in an uneven
manner for the charge facing the other particle or facing
the bulk electrolyte. Thus, there will also be a dipole
moment for each particle, which will naturally be anti-
correlated between the two particles and will increase in
amplitude at small separations. This parallels very closely
the original Kirkwood-Shumaker analysis [11,12] that also
considers separately monopolar fluctuations of the protein
charge, as well as the associated fluctuations of the protein
dipolar moment of the surface charge distribution.

We firstly consider the interaction between two “parti-
cles” at low electrolyte concentration and therefore small
screening, fig. 4(a). In this region of the parameter
space we find attraction at contact between the particles.
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The total charge and the dipole moment of the “parti-
cles” show pronounced evolution as a function of separa-
tion. The attraction is generated predominantly by the
enhanced charge and dipolar moment correlations, orig-
inating from both “particles”, while the average dipole
moment of each “particle” is antisymmetric. The case of
a denser electrolyte with small surface chemical potential
is presented in fig. 4(b). Again we give the evolution of
the charge and dipole states of the particles both showing
pronounced dependence on the separation.

Conclusions. – We have demonstrated a rich variety
of behaviours in a series of models incorporating ionizable
charge-regulated surfaces, i.e., surfaces that respond to
the local electrostatic potential with a variable effective
charge, solved exacty in one dimension.

In the first model, of a pair of chargeable metallic plates,
an important part of the physics comes from the possibility
of driving the surface charge to zero at small separation.
When this happens, large, correlated fluctuations occur
which can lead to attractive interactions of a Kirkwood-
Shumaker type. A second model of two neutral plates in
an infinite electrolyte bath considerably weakens the ef-
fect of global charge neutrality. A third model is inspired
directly by the work of Kirkwood-Shumaker on the effect
of charge fluctuations and their role in the interactions
between proteins, here idealised as dielectric “particles”
of finite size with dissociable surface charge groups. This
model takes into account the charge regulation of disso-
ciable groups (amino acids) on the surface as well as the
fluctuations of the monopolar and dipolar components of
the fluctuating charge distribution, being thus closest to
the original Kirkwood-Shumaker proposition [11,12].

Our analysis suggests that there might be features of
electrostatic interactions between macro ions bearing dis-
sociable charged groups that have heretofore not been
specifically considered in the models of protein-protein
interaction [10].
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[2] Podgornik R. and Žekš B., J. Chem. Soc., Faraday

Trans. 2, 84 (1988) 611.
[3] Netz R. R. and Orland H., Europhys. Lett., 45 (1999)

726.
[4] Edwards S. F. and Lenard A., J. Math. Phys., 3 (1962)

778.
[5] Dean D. S., Horgan R. R. and Sentenac D., J. Stat.

Phys., 90 (1998) 899.
[6] Dean D. S., Horgan R. R., Naji A. and Podgornik

R., J. Chem. Phys., 130 (2009) 094504.
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