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Abstract – We study the effect of temperature on the repulsive Casimir interaction between an
ideally permeable and an ideally polarizable plate in vacuo. At small separations or for low tem-
peratures the quantum fluctuations of the electromagnetic field give the main contribution to the
interaction, while at large separations or for high temperatures the interaction is dominated by the
classical thermal fluctuations of the field. At intermediate separations or finite temperatures both
the quantum and thermal fluctuations contribute. For a system composed of one infinitely perme-
able plate between two ideal conductors at a finite temperature, we identify a stable mechanical
equilibrium state, if the infinitely permeable plate is located in the middle of the cavity. For
small displacements the restoring force of this Boyer oscillator is linear in the deviation from the
equilibrium position, with a spring constant that depends inversely on the separation between
the two conducting plates and linearly on temperature. Furthermore, an array of such oscillators
presents an ideal Einsteinian crystal that displays a fluctuation force between its outer boundaries
stemming from the displacement fluctuations of the Boyer oscillators.

Copyright c© EPLA, 2015

A long-range attraction between two ideal flat conduc-
tors due to fluctuations of the electromagnetic (EM) field
at zero temperature has been discovered by Casimir in
1948 [1] and is directly connected with the change in the
quantum vacuum zero-point energy [2]. The magnitude
of the Casimir attractive force per unit surface area is
F C

A = − h̄cπ2

240H4 , where A is the surface area of the plates,
h̄ is the Planck constant divided by 2π, c is the speed
of light in the vacuum and H is the separation between
two plates. In 1955 Lifshitz developed a more general
framework to investigate forces between two dispersive
dielectric media at finite temperature T [3]. The ensu-
ing Casimir-Lifshitz interactions have gained much at-
tention [4–15] as they are one of the direct macroscopic
manifestations of the quantum theory. Investigating the
Casimir interaction with asymmetric boundary conditions,
Boyer in 1974 showed that an infinitely polarizable (ideal
conductor) and an infinitely permeable plate (a two-plate
Boyer setup) at T = 0 K repel each other with a repul-
sive force F = −(7/8)FC [16]. Later, this result was

confirmed by two different methods, the radiation pressure
method [17] and the path-integral formalism [18]. Boyer’s
conclusions are in general consistent with the Lifshitz the-
ory where repulsive Casimir interactions are only possible
in asymmetric interaction setups [4], such as a surface with
high dielectric response (infinite polarizability of an ideal
conductor) apposed to a surface with high magnetic re-
sponse (infinite permeability) across vacuum [19].

Repulsive Casimir-Lifshitz interactions are well docu-
mented also experimentally [20–22]. The Casimir-Lifshitz
force between a gold sphere (ǫG) and a silica substrate
(ǫS), when they are immersed in bromobanzene (ǫB), has
been found to be repulsive (ǫG > ǫB > ǫS) [23], just
like the force between a permeable yttrium iron garnet
(YIG) plate and a ferroelectric BaTiO3 in vacuo, possibly
implicating the Boyer mechanism in the latter case [24].
The calculated Boyer force per unit area then follows
as ∼ 1.3 × 10−4 N/m2 if the plates are separated by
1 µm, becoming significantly larger at sub-micron scales.
Casimir-Lifshitz interactions are particularly strong on the
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Fig. 1: (Colour online) Schematic depiction of the Boyer oscil-
lator. Two parallel flat ideal conductors (ǫ → ∞) apposed at
separation 2H , with a parallel flat ideally permeable (µ → ∞)
plate between them. When the permeable plate is moved to
the right for ε, which means that H1 = H + ε and H2 = H − ε,
the Casimir force f acts on the permeable plate to bring it back
to its equilibrium point.

nanoscale [5] and must therefore be taken into account
when designing micro- and nano-electromechanical sys-
tems (MEMS and NEMS) [25,26].

In order to unravel additional details of the repul-
sive Casimir-Lifshitz interaction we analyze a Boyer setup
composed of two ideally polarizable (ǫ → ∞) plates with
an ideally permeable (µ → ∞) plate in the middle, see
fig. 1, at separation H and temperature T . We explore
the possibility of stable equilibria and construct a me-
chanical oscillator that furthermore leads to an interesting
1D ideal Einsteinian crystal based on the Boyer repulsive
interaction.

We start with the two-plate Boyer setup. A point on
each plate is described by xα(x) = (x, δα,2H), where α = 1
and 2 identifies the plate, δα,2 is the Kronecker delta func-
tion, x = (x, x0), x0 is the temporal component, and
x = (x1, x2) defines two lateral spatial coordinates. For
the geometry we are considering, by decomposing the EM
field into the transverse magnetic (TM) and the trans-
verse electric (TE) waves [27] all components of the EM
field can be expressed by the scalar fields ΦTM = B‖ and
ΦTE = E‖, where B‖ and E‖ are the components of the
magnetic and electric fields parallel to the surfaces of the
plates. For the scalar field ΦTM Dirichlet (D) and Neu-
mann (N) boundary conditions (BCs) are satisfied by the
infinitely polarizable and infinitely permeable plates, re-
spectively, while for the scalar field ΦTE an N BC and a D
BC are satisfied by the infinitely polarizable and infinitely
permeable plates, respectively [18]. Using the Matsubara
formalism [13,28] the partition function in the presence of
two parallel plates can be written as

Z =

∫

[

DΦ
]

C
e−S[Φ]/h̄, (1)

where we ignored the inessential normalization with
respect to the partition function of the free space. Φ is
a scalar field, subscript C denotes the constraint imposed
by the plates on the scalar field and the model Euclidean

action describing the field is assumed to be

S[Φ] =
1

2

∫ β

0

dτ

∫

d3x

[

(

∂Φ

∂τ

)2

+ (∇Φ)2

]

. (2)

Here β = 1
kBT , with kB the Boltzmann constant. As

the scalar bosonic field satisfies the periodicity condition,
Φ(x, β) = Φ(x, 0), one can expand it as Φ(x, τ) =
∑∞

n=−∞ Φn(x)eiωnτ where ωn = 2πnkBT
h̄ are the Matsub-

ara frequencies. Φ(x, τ) is real and must satisfy mixed
boundary conditions, as explained above [18], i.e. for TM
waves a D BC must be satisfied at the infinitely polarizable
plate, while an N BC must be satisfied at the infinitely per-
meable plate. The Matsubara approach [13,28] then yields
the partition function for a pair of plates, where one has
an N and the other one a D BC as (up to a multiplicative
constant)

Z2
DN =

∫ ∞
∏

n=−∞

DΦnδ(Φn(X1))δ(∂NΦn(X2))e
−S[Φ], (3)

where ∂N is the partial derivative in the normal direction
to the surface. Integrating over Φn the logarithm of the
partition function for the TM waves can be expressed as

lnZDN = −
1

2

∞
∑

n=−∞

ln{det[ΓDN
n ]}, (4)

where

ΓDN
n =

(

Gn(x − y, 0) ∂′
zGn(x − y, −H)

∂zGn(x − y, H) ∂z∂
′
zGn(x − y, 0),

)

(5)

with the free-space Green’s function Gn(Xα(x), Yσ(y)) =
e−ωn|Xα(x)−Yσ (y)|

4π|Xα(x)−Yσ(y)| and α, σ = 1, 2 indicate the plates. The

prime is used for the derivative with respect to the second
variable, i.e. y. A similar procedure can be applied for the
TE waves to obtain the logarithm of the partition func-
tion, lnZND, with an N BC on the infinitely polarizable
plate and a D BC on the infinitely permeable plate, and
lnZND = lnZDN . As all elements of the matrix ΓDN

n are
functions of x − y, thus ΓDN

n is diagonal in the Fourier
space. Therefore, the logarithm of the partition function
is calculated by writing ΓDN

n in the Fourier space. The
normal Boyer force between the two plates can then be ob-
tained from the free energy F = −kBT [lnZND + lnZDN ]
as F = − ∂F

∂H , with

F (T, H)

A
= kBT

∞
∑

n=−∞

∫ ∞

0

pdp

π

ρn

1 + e2ρnH
, (6)

where
ρn =

√

p2 + ω2
n/c2,

p2 = p2
1 + p2

2, and p1 and p2 correspond to x1 and x2 co-
ordinates in the Fourier space, respectively. The force at
T = 0 K can be calculated by replacing the Matsubara
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summation with a continuous integral as F (T=0 K,H)
A =

7
8

h̄cπ2

240H4 = − 7
8FC . This expression is in complete agree-

ment with the previous result of Boyer [16–18]. At finite
temperature the force can be cast into an alternative form

F (T, H)

A
=

3kBTζ(3)

16πH3
+

2kBT

π

∞
∑

n=1

∫ ∞

0

pdp
ρn

1 + e2ρnH

= kBT

∞
∑

n=0

Fn(T, H), (7)

where Fn(T, H) =
(2−δn,0)

π

∫ ∞

0
pdp ρn

1+e2ρnH , δn,0 is the

Kronecker delta function, and the first term, 3kBTζ(3)
16πH3 , is

the zero Matsubara frequency term which is the value of
the force at large separations or high temperatures. Com-
paring this with the Casimir interaction force FC(T, H)
between two ideally polarizable (metallic) sheets at finite
temperature [4,6,13,14], we note that for n = 0, 1, 2, · · ·

Fn(T, H) = −FC
n (T, H) + 2FC

n (T, 2H), (8)

so that in every regime the Boyer interactions for the
asymmetric ideally permeable-ideally conductive system
can be mapped onto a symmetric Casimir interaction for
ideal conductors.

In fig. 2(a) we plot the Boyer force per unit area
as a function of H for various values of the tempera-
ture T = 0–300 K. For separations smaller than the
thermal length λT = h̄c/(2πkBT ) ∼ 1.2 µm at room
temperature (T = 300 K), all curves collapse onto the
zero-temperature curve, revealing that the quantum fluc-
tuations play the main role in the interaction, with the
force scaling as Hα and α = −4. For H > 1.2 µm, as the
temperature increases, the role of thermal fluctuations is
gaining in importance and at large separations it is the
thermal fluctuations that dominate the interaction with
the force exponent α = −3. To distinguish the quantum
from the classical regimes, fig. 2(b) shows the force expo-
nent, α as a function of H . The transition between the
quantum and the classical regimes is shifted to smaller sep-
arations for higher temperatures. For comparison, the at-
tractive force between two ideal metallic sheets goes from
α = −4 to α = −3 on increase of the separation [13,14].

In the double Boyer setup composed of three flat parallel
plates, one ideally permeable between two ideally polariz-
able ones, all immersed in vacuo at finite temperature T
(see fig. 1), the Matsubara approach [13,28] or the transfer
matrix formalism [14,29,30] both yield the free energy per
unit area as

Fs

A
= kBT

∞
∑

n=−∞

Fs
n(H1, H2), (9)

where

Fs
n(H1, H2) =

∫ ∞

0

pdp

2π
ln [1 + en(H1, H2)] , (10)

and

en(H1, H2) = e−2ρnH1 + e−2ρnH2 + e−2ρn(H1+H2),
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Fig. 2: (Colour online) (a) Boyer force per unit area,
F (T, H)/A, as a function of the separation between two plates,
H , for various values of the temperature T = 0–300 K (from
bottom to top). α is the force exponent which is defined as
F/A ∼ Hα. α = −4 and −3 identify the quantum and clas-
sical regimes, respectively. (b) α as a function of H for vari-
ous values of the temperature as of panel (a). Here blue and
red horizontal solid lines pertain to the quantum and classical
regimes, respectively.

with H1 and H2 the separations between left and right
hand conductors and the middle permeable plate, thus
implying H1 + H2 = 2H as shown in fig. 1. The force
f per unite area that acts on the middle permeable plate
can be calculated as

f

A
= −

∂

∂H1

(

Fs

A

)

+
∂

∂H2

(

Fs

A

)

=kBT
∞
∑

n=−∞

fn(H1, H2),

(11)
where

fn(H1, H2) =

∫ ∞

0

pdp

π

ρn[e−2ρnH1 − e−2ρnH2 ]

1 + en(H1, H2)
.

The total force on the middle plate is thus a superposition
of the two forces that act from the left and from the right
conductors on the middle, ideally permeable plate. As
these two forces are repulsive, it follows from the symme-
try of the system that the stable equilibrium corresponds
to H1 = H2, see eq. (11). This is not at odds with the
general theorem on the absence of stable equilibria with
Casimir forces, since it hinges upon interactions only be-
tween objects within the same class of material [31], an
assumption obviously violated for the Boyer setup.

When the permeable plate is displaced towards either
of the conductor plates by ε, the restoring force that acts
on it can be calculated as a function of ε by setting H1 =
H + ε and H2 = H − ε. The direction of the force is
always toward the stable equilibrium location (see fig. 1)
and its magnitude can be obtained to the first order with
respect to ε in the Hookian form, f = −kε, with the spring
constant k = k(H, T ) defined as

k(H, T )

A
= kBT

∞
∑

n=−∞

kn(H, T ), (12)
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Fig. 3: (Colour online) (a) The magnitude of the normalized Boyer force, |f |/k(H, T → 0), as a function of the displacement of
the middle ideally permeable plate from its equilibrium position, ε, for various values of the separation between the equilibrium
position of the permeable plate and each conductor, H = 10−7–10−4 m (from top to bottom). Here k(H, T → 0) is the spring
constant of the Boyer interaction at zero temperature. (b) |f |/k(H, T → 0) at constant H = 10−4 m has been plotted as a
function of ε for various values of the temperature T = 0–300 K (from bottom to top). (c) Spring constant per unit area, k/A,
as a function of H for various values of temperature as of panel (b). (d) The magnitude of the force per unit area |f |/A, at
constant H = 10−4 m as a function of the separation between permeable plate and right conductor, H2 = H − ε, for various
values of T as of panels (b) and (c).

where

kn(H, T ) =

∫ ∞

0

pdp

π

4ρ2
ne−2ρnH

[1 + e−2ρnH ]2
.

At low temperatures or small separations (quantum limit)

the spring constant per unit area is k(H,T→0)
A → 7h̄cπ2

240H5 ,
while at high temperatures or large separations (classical

limit) k(H,T→∞)
A → 9ζ(3)kBT

8πH4 . In fig. 3(a) we plot the mag-
nitude of the normalized force, |f |/k(H, T → 0), as a func-
tion of ε, for various values of H = 10−7–10−4 m (from top
to bottom). As is evident from the plot, the Hookian limit
is valid within the range |ε| < H/10. In fig. 3(b) the mag-
nitude of the normalized Casimir force has been plotted as
a function of ε at constant H = 10−4 m for T = 0–300 K
(from bottom to top). By increasing the temperature the
spring constant also increases with the range of validity of
the Hookian region remaining unchanged.

Figure 3(c) presents the spring constant, k(H, T ), per
unit area as a function of H for various values of the tem-
perature T = 0–300 K (from bottom to top). Obviously at
low temperatures or small separations the spring constant
per unit area scales as H−5, while at high temperature or
large separations it scales as H−4. Figure 3(d) shows |f |/A
at H = 10−4 m as a function of H2 = H − ε for various
values of the temperature T = 0–300 K (from bottom to
top). For small values of H2 the contribution of quantum
fluctuations to the interaction dominates over that of the
classical thermal fluctuations. Indeed at sufficiently small

H2 the force per unit area is f/A = 7
8

h̄cπ2

240(H−ε)4 .

If the middle permeable plate is free to move, the eigen-
frequencies of such Boyer oscillator at a finite tempera-

ture are then given by ω2(H, T ) = k(H,T )
m , where m is the

mass of the plate. Assuming it has a thickness d and a
cross-section area A, using m = ̺dA, where ̺ is the mass
density, the eigenfrequency in the two temperature limits

becomes

ω2(H, T → 0) =
7h̄cπ2

240H5̺d
, (13)

and

ω2(H, T → ∞) =
9ζ(3)kBT

8πH4̺d
. (14)

Interestingly, ω is not a function of the cross-section
area A. Given the mass density of YIG as ̺ = 5.172 g/cm3

the magnitude of the frequency for d = 12.4 nm is
ω(H, T → 0) = 1.9 kHz, and 0.6 MHz at H = 1 µm and
H = 0.1 µm, respectively, and ω(H, T → 0) = 0.6 GHz
when d = 1.24 nm and H = 10 nm. In the classical regime,
by choosing H = 10 µm and T = 300 K, the eigenfrequen-
cies are obtained as ω(H, T = 300 K) = 152.1 Hz, 48.1 Hz
and 15.2 Hz for d = 1.24 nm, d = 12.4 nm and d = 124 nm,
respectively.

Finally, we examine the elastic modulus of the system
at constant temperature, K, defined as the inverse of
the compressibility at constant temperature, − 1

V

(

∂V
∂P

)

T
,

where V is the volume and P is the pressure of the system.
The elastic modulus for the double Boyer setup, fig. 1, for
H1 = H2 then becomes

K(H, T ) =
H

A

(

∂2Fs(H, T )

∂H2

)

=
H

2A
k(H, T ). (15)

At very low temperatures or small separations K(H, T →

0) → 7h̄cπ2

480H4 while at high temperature or large separation

limits K(H, T → ∞) → 9ζ(3)kBT
16πH3 . The magnitude of the

elastic modulus for T = 0 K at H = 1 nm is K = 4.55 GPa
which is about twice that of water at T = 293 K.

Interestingly, the bulk modulus for a multi-layer Boyer
system (BN ) composed of N +1 flat ideal conductors and
N flat ideal permeable plates, depicted in fig. 4, so that
each permeable plate is located between two adjacent ideal
conductors, with the separation between each plate with

41001-p4
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Fig. 4: (Colour online) Schematic geometrical picture of the
multi-layers system composed of N + 1 flat ideal conductors
(ǫ → ∞) and N flat ideal permeable (µ → ∞) plates. Each
permeable plate is located between two conductors, and each
conductor is located between two permeable plates except the
first and the last conductors. The distance between each plate
with its neighboring plates is H , and the full width of the Boyer
oscillator array is D = 2NH in the limit of H ≫ d, where d is
the thickness of each ideal plate.

its neighboring plates being H , is the same as for the sys-
tem composed of one permeable plate between two con-
ductors. This is due to the fact that the conducting plates
ideally screen the field. Allowing for the free displacement
of the ideally permeable plates, we then get a Boyer os-
cillator array, which can in fact be described as an ideal
Einsteinian crystal since the displacements of the different
oscillators are not coupled.

The free energy of such an Einsteinian crystal, FEC, can
then be calculated as

FEC(D, T ) = −NkBT log Z

(

D

2N
, T

)

=

N

2
h̄ω

(

D

2N
, T

)

+ NkBT log
(

1 − e−βh̄ω( D
2N

,T )
)

, (16)

where H = D
2N (in the limit of H ≫ d) and D is the total

width of the Boyer oscillator array, while Z( D
2N , T ) is the

partition function of a single Boyer harmonic oscillator.
This gives us another fluctuation force acting between the
boundaries of the array, dependent on the original Boyer
repulsion within a single oscillator in the array. In the dif-
ferent temperature limits we obtain from eqs. (13) and (14)
to the lowest order

FEC(D, T → 0) =
N7/2

2

√

7 25 h̄3cπ2

240 D5̺d
, (17)

and

FEC(D, T → ∞) =
NkBT

2
log

(

18N4

π D4̺d

)

. (18)

We see that in both limits the total free energy corre-
sponds to a repulsive interaction and is not extensive in
the number of oscillators, while the dependence on the
width of the Boyer oscillator array has a different form
than the H-dependence of the Boyer interaction for each
of the oscillators. Obviously for large temperatures the
fluctuation interaction between the boundaries of a Boyer
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Fig. 5: (Colour online) Fluctuation force, fEC, as a function of
the width of each cell, D

2N
, in the oscillators array, for various

values of the temperature of the system, T = 0–300 K (from
bottom to top). The inset shows the normalized fluctuation
force, fEC/fEC (T = 0K), as a function of D

2N
.

array is an anomalously long-ranged function of the ex-
tension of the array, decaying algebraically as D−1. The
fluctuation force between the boundaries of the Boyer os-

cillator array, fEC = −∂FEC

∂D , can be derived as

fEC(D, T → 0) = 5

(

N

D

)
7
2

√

7h̄3cπ2

120̺d
, (19)

and

fEC(D, T → ∞) =
2NkBT

D
, (20)

respectively. In fig. 5 the fluctuation force, fEC, has been
plotted as a function of the width of each cell, D

2N , in
the oscillator array, for various values of the temperature
of the system, T = 0–300 K (from bottom to top), with
d = 1.24 Å and ̺ = 5.127 gr/cm3. As is clear, for low
temperatures and small distances limits the force scales
as D− 7

2 , while for large separations or high temperatures
it scales as D−1. To show these scaling behaviors more
clearly, the normalized fluctuation force, fEC/fEC(T =
0 K), has been plotted as a function of D

2N . The slope of
the curve for the normalized force at T = 300 K is equal to
+2.5 for the whole range of the separations which reveals
the high-temperature limit. As the temperature decreases
the slope of the normalized force curve decreases at small
separations due to the quantum fluctuations.

Boyer interaction between a flat ideal conductor and
a flat ideally permeable plate is repulsive and depends
strongly on the temperature of the system. At small
separations or very low temperatures, only quantum
fluctuations play a role in the interaction (quantum
regime), while at intermediate separations or moderate
temperatures (transient regime) both quantum and ther-
mal fluctuations are important. At large separations
or high temperatures (classical limit) the interaction is
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governed mainly by the contribution of the classical ther-
mal fluctuations. For a Boyer system composed of three
flat parallel plates, one permeable plate between two con-
ductors, all immersed in vacuo at a finite temperature,
the system possesses a stable equilibrium when the mid-
dle permeable plate is located exactly in the middle of
the cavity. For small values of displacement from this sta-
ble equilibrium the force is Hookian and the corresponding
spring constant is a function of the separation between the
two bounding conductors and the temperature. Harmonic
vibrations around this stable equilibrium value define
a Boyer oscillator with temperature-dependent eigenfre-
quencies. A linear array of such oscillator behaves as
an ideal Einsteinian crystal and the confined fluctua-
tions of ideally permeable plates around their equilib-
rium positions induces a fluctuation interaction between
its boundaries. While being related to the Boyer interac-
tion, producing a restoring force within a single oscillator,
the fluctuation interaction between the boundaries of the
Boyer array has a very different separation dependence in
the limit of small and large temperatures.
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