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Abstract. – We investigate the orientational order of transverse-polarization vectors of long
columns of nucleosomal core particles and their coupling to positional order in high-density
mesophases discovered recently. Inhomogeneous polar ordering of these columns precipitates
crystallization of the 2D sections with different orientations of the transverse-polarization vector
on each column in the unit cell. We propose possible scenarios for going from the 2D hexagonal
phase into distorted lamellar and related phases observed experimentally.

The problem of efficient genome compaction in the evolution of eucaryotic organisms was
solved on the smallest scale via the formation of DNA-histone protein complexes, that make
a fundamental unit of chromatin: the nucleosome [1]. A nucleosome is composed of a 146 bp
long DNA fragment, wrapped 1.75 times around the histone octamer core composed of four
different histone proteins and a DNA linker that connects two consecutive nucleosomes [2].
Digestion of the linker DNA between different nucleosomes along the eucaryotic genome gives
rise to the nucleosome core particle (NCP). NCP has an approximately cylindrical shape
(fig. 1a) of height and radius ∼ 55 Å, and a structural charge of ∼ −165. This complex is
stable in aqueous solutions from mM to 750mM monovalent salt ionic strength [3].

At high enough concentration the solution of NCPs ceases to be isotropic. Competing, as
yet poorly understood [4,5], microscopic interactions between NCPs in concentrated solutions
give rise to a slew of liquid-crystalline phases of fascinating complexity [6]. At low salt concen-
trations and sufficiently high osmotic pressure NCPs aggregate into columns of almost ideal
cylindrical shape which contain dozens of individual particles (fig. 1c). These columns then
aggregate to form a lamellar phase with each lamella being formed by a bilayer of parallel
columns of NCPs [7]. In each bilayer the columns are arranged in slightly distorted close
packing of two rows of cylinders (fig. 2c). These bilayers alternate with layers of solvent to
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Fig. 1 – Nucleosomal core particles and their columnar aggregates. (a) DNA (solid curve) wrapped
around the histone core; the front side with free DNA ends is different with respect to the back side
and defines the orientation of the NCP dyadic axis [6]. (b) NCP top view: the small circle denotes
the entry of the dyadic axis. (c) Column of aggregated NCP with disordered dyadic axes. (d) Column
of aggregated NCP with ordered dyadic axes and tilted S-axes.

form a long-range lamellar structure with period varying from 27 to 42 nm, depending on NCP
content in the solution. At higher salt concentrations this phase gives way to a 2D hexagonal
columnar liquid crystalline phase (fig. 2a) leading at still higher salt concentrations to a 3D
hexagonal crystal [8].

The NCP particle is characterized by a high shape and charge asymmetry due to the DNA
wrapping around the histone core. The entry-exit point of the DNA free ends marks a s.c.
dyadic axis (fig. 1a and b). Due to different densities of the DNA crown and the histone
core, the dyadic axis is readily visible on the cryoelectron micrographs [7]. This allows one to
actually observe the local orientational order of the NCPs, described by its in-plane dyadic
axis vector, conventionally called the transverse polarization [9]. In the lamellar phase the
dyadic axes of individual NCPs are strongly correlated along the column leading to a non-zero
average transverse-polarization vector P of a column (fig. 1d). Cryomicroscopy studies [7] give
strong evidence that the dyadic axes, and consequently the vectors P , of columns in the two
layers of a lamella are on the average in an antiparallel direction, normal to the bilayer, with
the DNA exit point facing the solvent layer. In addition, due to nearly close packing in a
bilayer, the columns in the two layers are shifted by a small but constant distance in such a
way that the antiparallel dyadic axes form a periodic polar vector field (fig. 2c).

The 2D hexagonal phase is characterized, in turn, by a positional order in the plane
perpendicular to the columns (fig. 2a), but dyadic axes of NCPs are orientationally disordered
along the columns (fig. 1c). The corresponding average polar vector of the column is zero. The

Fig. 2 – Hexagonal (a) and lamellar (c) phases. Antiparallel displacement field (b) for the transition
from the hexagonal to lamellar phase. 2D sections perpendicular to the columns are presented. The
hexagonal unit cell formed by columns 1, 2, 3 and 4 is distinguished. The directions of the wave
vectors of the polar vector field are indicated by arrows in (a). Small circles indicate the orientations
of the ordered columns dyadic axes (average polarization of the columns) in (c).
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main task of the present letter is to describe the transition between these two phases which
consists in simultaneous ordering of the NCPs dyadic axes along an individual column and their
periodic orientational correlation between the columns, accompanied by collective columns’
displacements. Detailed analysis of this mechanism permits to predict other ordered phases
(including the inverted hexagonal phase observed recently in condensed NCP solutions [6])
induced by the dyadic axes ordering and related columns’ displacements.

We also briefly mention several fine peculiar features of the NCP lamellar phase structure,
namely, i) decorrelation of columns positions from one bilayer to another, ii) orientation
of NCPs with respect to the column axis and its relation to NCP chirality, which will be
thoroughly discussed in a separate publication [10]. Both refinements of the lamellar phase
structure come from detailed SAXS measurements [8] indicating that the lamellar phase in
the NCP-solvent system has some features apparently similar to those of sliding phases in
lipid-DNA complexes [11–13], but in contrast to the sliding phase in lipid-DNA complexes it
has no cross-correlation peaks and indicates classical liquid-crystalline behavior. SAXS also
clearly indicates that in individual columns in the lamellar phase the axis of the flattened
NCP cylinder is tilted with respect to the column axis (fig. 1d), while both axes are parallel
in the 2D hexagonal phase (fig. 1c).

In what follows we will investigate the nature of positional and orientational order in phases
that are induced by an ordering of the NCPs dyadic axes. We adopt a Landau theory approach
based on symmetry analysis of the structural changes from 2D hexagonal to lamellar. This
approach is standardly used in various fields of condensed-matter physics [14]; its basic notions
and numerous examples of applications can be found in [15]. In a complex system with several
competing interactions, this approach permits to obtain results that are not very sensible to
model assumptions. In the framework of this theory, phase transition is considered to be
driven by a critical mode condensation. A physical quantity (order parameter) corresponding
to the mode has non-zero average value in the ordered phase and vanishes in the disordered
one. It spans an irreducible representation of the symmetry group of the disordered structure.

The hexagonal-to-lamellar transition in NCP columnar aggregates is driven by the conden-
sation of the periodic antiparallel transverse-polarization field mode resulting in the dyadic
axes orientation as given in fig. 2c. The amplitude of this mode vanishes in the 2D hexagonal
phase rendering the columns non-polar (fig. 1c) and the phase structure disordered. Basing
our assumptions on experiments, we introduce the transverse-polarization order in a lamella
described with P (ρ), where ρ = (x, y), which is periodic and highly anisotropic. We establish
the representation spanned by this critical mode and corresponding Landau free energy which
helps us to study relative thermodynamic stability of the phases.

Let us also stress an evident duality between the polar vector carried by a NCP column
(average orientation of dyadic axes) and the polar vector of column’s displacement in the
solvent which has important consequences for the structure of the ordered phases. Since the
displacements ui of NCP columns and the polar vectors Pi of the dyadic axes span the same
irreducible representation of the symmetry group of the 2D hexagonal phase, the components
of the order parameter of the hexagonal-to-lamellar transition can be expressed in the same
form either in terms of columns’ polarizations Pi or in terms of the columns’ displacements
ui. In condensed NCP solutions, this general rule leads to the proportionality between Pi

responsible for the orientational order and ui expressing the positional one. Interactions
between individual NCPs thus lead to the simultaneous antiparallel dyadic axes orientation
(fig. 2c) and antiparallel columns displacements (fig. 2b). This fact permits one to obtain
the final structures of the ordered phases. In the following quantitative study of the periodic
transverse polar vector field we will follow orientational degrees of freedom Pi, the final results
having exactly the same form for the positional order ui.
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If the transverse-polarization vector field condensation starts from a 2D hexagonal phase,
then in general one would have several different choices for the direction of the wave vector k
with respect to the symmetry planes of the 2D hexagonal phase. In the hexagonal coordinate
system the wave vector of the condensation into the lamellar phase has to be described in
Kovalev’s notation [16] by k12 = 1

2b1, where b1 is one of the reciprocal basis vectors. The
irreducible star of the k12 vector has three arms given by k1 = k

(1)
12 = 1

2b1, k2 = k
(2)
12 = 1

2b2 and
k3 = k

(3)
12 = 1

2 (−b1 + b2). They indicate three equivalent directions (fig. 2a) in the hexagonal
structure for which the transverse-polarization field can change the translational symmetry of
the structure in the same way. The basis functions of a polar vector field with this periodicity
are given by ψ1 = (2êx + êy) eik1·r, ψ2 = (êx + 2êy) eik2·r and ψ3 = (−êx + êy) eik3·r.
The physical realization of the order parameter is given by the symmetry coordinates [15]
composed of the column’s polar vectors Pi. Denoting by i the index of the column, in such
a way that its (x, y) coordinates are i = 1 → (0, 0), i = 2 → (1, 0), i = 3 → (0, 1) and
i = 4 → (1, 1) in the 2D hexagonal unit cell (see fig. 2), and the 2D polar vector components
by (Px, Py), one gets the following components of the order parameter:

η1 = Px1 − Px2 + Px3 − Px4 +
1
2
(Py1 − Py2 + Py3 − Py4) ,

η2 =
1
2
(Px1 + Px2 − Px3 − Px4) + Py1 + Py2 − Py3 − Py4 ,

η3 =
1
2
(−Px1 + Px2 + Px3 − Px4 + Py1 − Py2 − Py3 + Py4) . (1)

The Landau free energy of this system is now given via the orientation probability density func-
tion [14,15] ρ(x, y, z) = ρ0 +

∑3
i=1 ηiψi(x, y, z), in the form F =

∫
f(ηiψi(x, y, z)) dxdy dz =

F (ηi). For the sake of clarity, we omit the terms stemming from the large-scale elastic de-
formations of this order. Consequently, the free energy of the system can be considered as a
simple function of the order parameter components.

To establish the exaustive list of the phases induced by the considered condensation mecha-
nism we use the fact that F (ηi) has to be an invariant function of the irreducible representation
spanned by the periodic transverse-polarization vector field. Since the basis invariants of this
representation are I1 = η2

1+η2
2 +η2

3 , I2 = η2
1η2

2 +η2
2η2

3+η2
3η2

1 and I3 = η2
1η2

2η2
3 , the Landau free

energy has to have the form F = F (I1, I2, I3). The minimization of this free energy with re-
spect to ηi gives the equation of state. There are six different solutions of this equation of state
which we list below in terms of ηi, the unit cell multiplication in the ordered state with respect
to the 2D hexagonal phase, i.e. Vord/Vhex and their space groups. Let us show that the first
solution, i.e. η1 �= 0, η2,3 = 0, describes the lamellar state. From eq. (1) it follows that in this
case P1 = P3 and P2 = P4, or, in other words, that the orientations of dyadic axes carried by
columns 1 and 3 or columns 2 and 4 are parellel and have the same degree of correlation along
the column. Thus, due to the duality, the displacements of the columns 1 and 3 as well as 2 and
4 are also identical (fig. 2b). This means that the periodic transverse-polarization field induces
a lamellar structure, where a single lamella is defined by the columns 1, 3, 1, 3 . . . for the bot-
tom part and 2, 4, 2, 4 . . . for the top part of a single lamella (fig. 2c). The order parameter in
this lamellar phase induced by the periodic transverse-polarization vector ordering is given by

η1 = (2Px1 + Py1)− (2Px2 + Py2). (2)

The simplest phenomenological Landau free-energy expansion of an isolated transition from
a hexagonal 2D crystal ηi = (0, 0, 0) to a lamellar 2D crystal with ηi = (η, 0, 0), with basis
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Fig. 3 – Displacement fields for the transition from the hexagonal to lamellar (η, 0, 0) (columns forming
a single lamella are enclosed within a gray rectangle), orthorhombic (η, η, 0) and inverted hexagonal
(η, η, η) phases. Below, the phase diagram stemming from eqs. (4), (5).

invariants I1 = η2, I2 = η4 and I3 = η6 can be written as

F = a1I1 + b1I2 + . . . . (3)

This free energy describes a second-order transition between a hexagonal and a lamellar phase,
driven trivially by the parameter a1, that can depend on various solution conditions, e.g. the
salt concentration. The same periodic transverse-polarization vector field can induce also
more complicated transitions. Assuming now a general form of the order parameter we can
start with the following free-energy ansatz :

F1(ηi) = a1I1 + a2I
2
1 + b1I2 + . . . . (4)

The phase diagram in this case is presented in fig. 3. One can observe that in addition to the
lamellar phase, stable for b1 > 0, the diagram shows the (η, η, 0) phase, to be discussed below,
stable for b1 < 0. The growth of the complexity of the phase diagram as more non-linear
terms are included into the Landau free energy is clearly apparent. E.g., if one starts from
the free energy

F2(ηi) = F1(ηi) + a3I
3
1 + c1I3 + d12I1I2 + . . . , (5)

this leads to the form of the phase diagram presented in fig. 3, where an additional phase,
this time (η1, η2, 0), intercalates between the (η, η, 0) and the (η, 0, 0) phases.

Table I – Different solutions of the equation of state.

ηi Vord/Vhex Space group

η, 0, 0 2 C1
2v

η, η, η 4 D1
3h

η, η, 0 4 D1
2h

η1, η2, 0 4 C1
2h

η1, η1, η2 4 C1
2v

η1, η2, η3 4 C1
S
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The structure of other phases listed in table I, induced by the periodic ordering of the
transverse-polarization vector field obtained in highly non-linear free-energy models can be
quite complicated. We have already analysed the lamellar phase, beside this we also have:
1) (η, η, η). The corresponding vector field is given in this phase by the vectors of the different
columns in the form

P1 = (Px, 2Py), P2 = (0, 0),
P3 = (Px,−Py), P4 = (−2Px,−Py). (6)

The vectors of orientation of the columns are expressed in terms of one polar vector (Px, Py).
Consequently, the displacements of the columns ui are expressed in the same form but in terms
of (ux, uy). Note that, because of the specific interaction between the columns in this phase,
column 2 is frustrated: its average polar vector is zero. Consequently, its displacement with
respect to the position in the 2D hexagonal phase is zero and the dyadic axes of individual
NCPs are disordered along this column. All three components of the order parameter are
equal to the following combination of Pi vectors: η = Px1 + 2Py1 + Px3 − Py3 − 2Px4 − Py4.
Analyzing the displacement field in this phase, see fig. 3, it is obvious that the columns of
a hexagonal phase are now displaced to make an inverted hexagonal phase, observed also in
experiments [6], whose vertices are given by the columns 3′, 2, 1′, 2, 4′ and 2.
2) (η, η, 0). The corresponding dyadic axes orientation vector field in this phase is given by

P1 =
3
2
(Px, Py), P2 =

1
2
(−Px, Py),

P3 =
1
2
(Px,−Py), P4 = −3

2
(Px, Py). (7)

The displacement field in this phase has the same form in terms of (ux, uy) and the final struc-
ture is easily obtained using these two results. Both non-zero components of the order param-
eter in this phase are equal to η = 3

2 (Px1+Py1)+ 1
2 (−Px2+Py2)+ 1

2 (Px3−Py3)− 3
2 (Px4+Py4).

The columns of a hexagonal phase undergoing the orientational and displacement fields, see
fig. 3, now form an orthorhombic phase with a large unit cell. It can be understood as a
succession of two series of columns undergoing 1D displacement waves: in the first series the
wave is transverse and in the second one it is longitudinal. Note that the point symmetry of
this structure shows only slight deviation from the hexagonal symmetry.
3) Along the same line the vector fields and the structures of the low-symmetry phases
(η1, η2, 0), (η1, η1, η2) and (η1, η2, η3) can be obtained.

Let us now briefly discuss also the fine structure of the lamellar phase. We have shown
above how a 2D ordering of a transverse vector polarization field can induce a transition into
a lamellar phase η1 �= 0, η2,3 = 0. Its structure can be conventionally called crystal lamellar
because it shows correlations between column positions both inside a bilayer and from one
bilayer to another. The experimentally observed lamellar phase is however not exactly of
this type. The positional order in it is partially destroyed making it basically equivalent to
a smectic phase. The difference with respect to a crystal lamellar phase is subtle and refers
to the fact that in SAXS in addition to the smectic peaks only reflections with two non-zero
indices from the NCPs correlated along the column and within a single lamella are present.
No reflection with three non-zero indices which can evidence the correlation between different
lamellae is observed. This means that the macroscopic symmetry of this phase is higher than
that of the crystal lamellar phase with ηi = (η, 0, 0) and equivalent to the symmetry of a
usual lamellar smectic phase (G = D∞h ⊗ T z

d ). But within a lamella, both positional and
orientational order are equivalent to those in the crystal lamellar phase. One can speculate that
this decorrelation is related to the difference in correlation lengths of microscopic interactions
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which insure the stability of NCP mesophases on the one hand and their colloidal character
on the other hand. Indeed, the distances between centers of columns in a 2D hexagonal
colloidal crystal are greater than the column diameter (fig. 2a). The displacements of columns
during hexagonal-to-lamellar transition in condensed NCP solutions are much greater than
typical values of atomic shifts in a solid close-packed hexagonal crystal. Resulting distance
dL between the lamellae in our case can become greater than the correlation length of the
interaction between the NCPs but still smaller than the correlation length of the smectic
density wave ξρ(z). Since the symmetry of the crystal lamellar structure is lower than that of
the actual lamellar smectic phase, the decorrelation must be accompanied by vanishing of a
physical quantity responsible for this structural change. In other words, the order parameter
of the transformation between smectic lamellar and crystal lamellar phases can be defined and
easily expressed in terms of the periodic transverse-polarization field [10], along similar lines
as first proposed by Bak [17] in a different context.

Let us finally discuss the influence of chirality on the state of NCP columns. Each NCP
particle being chiral, their aggregation results in a chiral column with the rotational symmetry
of a cylinder without neither mirror planes nor inversion, and the periodicity approximately
equal to the individual NCP height. According to the Curie principle, ordering of the polar
vector Pi along a chiral column leads to a simultaneous ordering of the axial vector ti, since
both Pi and ti span the same representation of the column symmetry group. In a chiral
periodic aggregate the axial vector has an evident physical interpretation. Non-zero average
value of ti corresponds to the correlated tilt of individual NCPs with respect to the column axis
(fig. 1d). In the 2D hexagonal phase the NCP columns carry zero average polar vector, then in
a column the tilt of the particles is also zero (fig. 1c): the axes of individual particles (usually
called S-axes) are parallel to the column axis. On the contrary, in the lamellar phase the
ordering of the polar dyadic axes induces a tilt of the NCPs S-axes. This simple consequence
of the NCP chirality can explain peculiarities of the SAXS spectrum observed in [8].
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