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ABSTRACT: The free energies, forces, and torques for all separations and mutual orientations are formulated in the full Lifshitz
continuum theory of van der Waals interactions. Angular dependence of interactions is characterized for three different
interaction geometries of bodies with morphological and/or material anisotropy, interacting across an isotropic aqueous medium:
two infinite half-spaces; two half-spaces of composite media comprising parallel cylinder arrays; and an isolated pair of long, thin
cylinders. The contributions to van der Waals interaction energy due to shape anisotropy and material anisotropy are isolated in
detailed calculations and examined. Surprisingly, the effect of shape on interactions in the retarded regime results in a torque
between arrays of cylinders that is stronger than that between half-spaces.

■ INTRODUCTION

Effects of anisotropy on van der Waals (vdW) interactions2

between nanoscale bodies3 are in general a consequence either
of the morphology of the interacting bodies or the electro-
magnetic response properties of materials of which they are
composed.4 The anisotropy effects in the Lifshitz theory of
vdW interactions were first addressed in the inversed
configuration, with isotropic boundaries and anisotropic
intervening material.5,6 Later, Parsegian and Weiss7 independ-
ently solved the problem of bodies with anisotropic dielectric
response interacting across an isotropic medium in the
nonretarded limit. The complete Lifshitz result including
retardation was obtained in a veritable tour de force by Barash,8,9

leading to renewed interest in the problem and resulting in a
series of developments.10−13 The general Lifshitz formulas for
the interaction between two anisotropic half-spaces or an array
of finite-size slabs14 are algebraically untransparent and
involved, probably not permitting any further simplification.15

Effects of morphological anisotropy have also been studied

between anisotropic bodies16−18 or even between surfaces that
have anisotropic decorations.19,20

The Barash results for anisotropic dielectrics were then taken
as a point of departure in a dilution process2 for half-spaces
composed of long, oriented cylinders, which considers the
presence of dielectric cylinders in the dielectric composite as a
small perturbation of the dielectric permittivity.21 This dilution
process then results in a pair-interaction free energy between
infinitely long cylinders, of isotropic or anisotropic material, at
all mutual angles and separations. The first direct attempt to
evaluate the interaction between two parallel isotropic cylinders
at all separations came from Barash and Kyasov.22 The
interaction for inclined anisotropic cylinders was later obtained
from the dilution process, yielding an explicit formula for the
angular dependence of the vdW interactions between two
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infinite cylinders, either with isotropic or anisotropic response,
including the nonretarded23 and retarded limits.24 These results
can be further generalized to cylinders and anisotropic semi-
infinite layers,25,26 a direction we will not pursue here.
Orientation dependence of the Casimir, i.e., zero temperature,
interaction for perfect metallic cylinders, either parallel27 or
inclined,28 over a wide range of separations was also studied via
the scattering approach29 for nonplanar objects at zero
temperature and in the classical high-temperature limit.
An unequivocal conclusion of the studies of anisotropies on

vdW interactions is that their angular dependence shows up in
two different ways, corresponding to shape anisotropy and the
material anisotropy. The effect is fundamentally nonadditive:
anisotropic shapes with isotropic material response as well as
isotropic shapes with anisotropic material response can both
show equally strong anisotropy effects in the vdW interactions,
i.e., forces and torques. Therefore, what thus remains to be
analyzed is what part of the general angular dependence of the
vdW interaction between anisotropic bodies is due to the shape
anisotropy, what part to the material anisotropy, and how to
properly disentangle the two closely connected effects.
To answer these queries, we will investigate the vdW

interactions in the full Lifshitz theory for several separate cases
schematically represented in Figure 1: two homogeneous semi-
infinite planar dielectric bodies with anisotropic dielectric
response, two inhomogeneous semi-infinite dielectric compo-
sites with embedded arrays either of isotropic or anisotropic
cylinders, two interacting cylinders composed of isotropic
materials, and finally two interacting cylinders composed of
anisotropic material. We will investigate the origin and strength
of anisotropy effects in vdW interactions for all the stated cases
and identify the regime and/or configurations in which they are
the largest. This will allow us to suggest some specific
experimental configurations that could exploit these newly
identified features of vdW interactions between shape and/or
material anisotropic bodies.

■ THEORETICAL METHODS

Interaction between Two Semi-Infinite Planar Aniso-
tropic Dielectric Materials. The complete solution for the
problem of vdW interaction between two semi-infinite planar
anisotropic dielectric materials interacting across a dielectrically
isotropic medium containing no free ions was obtained first by
Barash.8,9 His result reduces to the nonretarded form of
Parsegian and Weiss7 for small separations (1−10 nm) as well
as having a fully retarded form for large separations (10−100
nm). The formulas are formidable, mostly because, in contrast

to the isotropic case with polarization degeneracy, the surface
waves are a particular linear combination of the polarized
ordinary and extraordinary waves, leading to a much more
complicated algebra that eventually led to a typographical error
in the original formulation. The error was then persistently
dragged through the literature until finally rectified in
erratum.13 For this reason, the relevant formulas are fully
reproduced in Appendix A.
The Barash derivation leads to the vdW interaction free

energy for two uniaxial dielectric half spaces as a function of the
separation, ; the angle between the principal directions of the
two uniaxial dielectric tensors, θ; and the dielectric responses of
all the media involved: that of the isotropic intervening
medium, ϵm, as well as the perpendicular, ϵ⊥, and the parallel,
ϵ∥, dielectric responses of the uniaxial semi-infinite media. Their
dielectric tensors thus have the form:
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The frequency-dependent dielectric responses involved in eq
1 in general imply also optical birefringence. The free energy of
vdW interaction per unit area for two uniaxial anisotropic half
spaces interacting across an isotropic medium is then obtained
in terms of the Hamaker coefficient, θ( , ), (see Appendix
A):

θ θ
π

= −( , )
( , )

12 2 (2)

where the Hamaker coefficient depends on separation of the
bodies and the mutual orientation of the principal directions of
the dielectric tensors. It can be evaluated exactly for any value
of the separation as well as any anisotropy from formulas eqs
23−31 listed in Appendix A. However, a simple analytic
dependence on angle can be obtained in the limit of weak
anisotropic inhomogeneity, i.e., in the limit

δ δϵ = ϵ + ϵ = ϵ +⊥ ⊥(1 ) and (1 )m m (3)

Figure 1. Schematics of the systems of interest with separation between bodies in isotropic medium and angle, θ, between their principle axes.1 The
isotropic morphology of (a) semi-infinite half-spaces will experience torque only when constructed of anisotropic material. The morphological
anisotropy present in (b) composite planes composed of arrays of parallel cylinders and (c) isolated pairs of cylinders will experience torque even
when constructed of isotropic material.
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for small but otherwise arbitrary δ⊥, δ∥ ≪ 1. One can derive the
interaction free energy in the explicit form to the second order
in δ⊥, δ∥ as
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The angular dependence of θ( , ), and consequently of
θ( , ), in this limit obviously assumes a particularly simple,

explicit analytical form. In the general case, the full Barash
formulas do not yield a simply extractable analytic angular
dependence, but numeric results can always be represented
with

θ θ= +( , ) ( ) ( ) cos(2 )(0) (2) (6)

where the separation-dependent isotropic and anisotropic parts

of the Hamaker coefficient, ( )(0) and ( )(2) , respectively,
allow for a straightforward analysis of the angular dependence

of the free energy. (0) is obtained by choosing the value of θ
such that the angular contributions to the Hamaker coefficient,

θ( , ) become zero , i . e . , θ π= =( , /4) ( )(0) .

Subsequently, ( )(2) is obtained from the resulting

difference in θ −( , ) ( )(0) .
The force per unit area, θg( , ), and the torque per unit area,

τ θ( , ), can be obtained straightforwardly as

θ θ

τ θ θ
θ

θ
π

= − ∂
∂

= − ∂
∂

= −

g( , )
( , )

and

( , )
( , ) ( ) sin(2 )

6

(2)

2 (7)

The force per unit area has a complicated dependence on
because of the explicit −2-dependence of the free energy and

the -dependences of ( )(0) and ( )(2) . While the -depend-
ence of θg( , ) is complicated, the angular dependence of the
torque per unit area can be written as a simple sin(2θ)
dependence with an -dependent prefactor.
The vdW interaction between semi-infinite planes that are

made of isotropic dielectric materials, i.e., ϵ⊥ = ϵ∥, shows no
angular dependence, and consequently these isotropic bodies
experience no torque. However, this is strictly true only for
semi-infinite bodies. Should the two slabs have finite
dimensions, the shape anisotropy (see below) would lead to
a torque even for isotropic materials.

Interaction between Two Semi-Infinite Composites
Made of Oriented Cylinders. Planes of composite media are
constructed from arrays of parallel cylinders of a given volume
fraction embedded in an isotropic medium, with the two arrays
inclined with respect to one another. While this configuration
has been implicated in (nonretarded) vdW torques before,30

the relation between the packing density and the strength of
vdW torques has not been explicitly considered. The arrays
interact as a function of their mutual orientation and separation
across a gap of isotropic medium. Formulation of the vdW
interaction free energy for composite media follows that of
anisotropic half-spaces but with the modification that the
media’s dielectric response functions reflect the composition of
the dielectrically inhomogeneous array.
We now assume that both semi-infinite half-spaces are

composite materials made of oriented anisotropic cylinders at
the volume fraction v, with ϵ⊥

c and ϵ∥
c as the transverse and

longitudinal dielectric response functions of the cylinder
material, respectively. For the semi-infinite composite medium
of oriented anisotropic cylinders with local hexagonal packing
symmetry, the volume fraction is

π=
+ β
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v

2
3

1

2
2

(8)

where α is the radius of the cylinder and β is the intersurface
separation between cylinders. For hexagonal close packing, v =
0.91. The anisotropic bulk dielectric response as a function of
the imaginary Matsubara frequencies can then be derived in the
form2
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where the relative anisotropy measures in the perpendicular
and parallel direction are given by
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ϵm is assumed to be the dielectric function of the isotropic
medium between the cylinders as well as between both semi-
infinite regions.
The above formula for cylindrical inclusions is due to

Rayleigh and is exact to fifth order in volume fraction for any
composite. However, higher-order terms depend on the exact
symmetry of the cylinder packing in the array.31 While other
mixing formulations for the composite dielectric function are
possible and have been explored in the context of vdW
interactions,32,33 they differ mostly in the higher-order volume
fraction terms. Because the problem of the dielectric response
of the composite does not possess a general, universally valid
solution, approximations are necessary and should be checked
for consistency whenever possible. The Rayleigh form possesses
the virtue of yielding the correct vdW interaction between a
pair of cylinders in the process of dilution23,24 as described in
the next section. Also, in the Rayleigh approach the scattering
effects are not taken into account on the level of the dielectric
function, which is a drawback of the method, but it does allow
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for an exact inclusion of the packing symmetry which would be
difficult in other approaches. Rayleigh and Maxwell−Garner
mixing rules in fact coincide for up to 15% volume fraction34

and do not differ fundamentally even for much higher packing
fractions.
The vdW interaction free energy, the force, and the torque

per unit area then follow from the same formulas as in the
previous section, but taking due notice that now the parallel
and the perpendicular dielectric responses of the semi-infinite
media are given by the dielectric composite relation

ϵ → ϵ ϵ → ϵ⊥ ⊥ v v( ) and ( ) (11)

To lowest order, the Hamaker coefficient is quadratic in v, as
can be seen by expanding the Barash result, eq 2, and has the
explicit form
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The ratio of the relative anisotropy measures is defined as
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The Hamaker coefficient therefore also acquires an additional
dependence on the volume fraction of the interacting
composites, quadratic to the lowest order, with the general
form

θ θ= +v v v( , ; ) ( ; ) ( ; ) cos(2 )(0) (2) (17)

Unlike the case of vdW interaction between isotropic planes, in
the case of dielectric composites made of isotropic cylinders,
i.e., ϵ⊥

c = ϵ∥
c , we see persistence of angular dependence

stemming from the anisotropic shape of the cylinders, which is
present in all configurations of this type of composite media.
The origin of dielectric anisotropy can therefore be traced to
either material anisotropy of the interacting homogeneous

dielectric materials or to the shapes of the constituent units in
the case of dielectric composites.
The force per unit area, θg( , ), and the torque per unit area,

of τ θ( , ), now follow from the same formulas as in the case of
two homogeneous anisotropic semi-infinite regions. Again, the
force per unit area has a complicated dependence on ; the
angular dependence of the torque per unit area is simply
sin(2θ) with an -dependent prefactor.

Interaction between Two Cylinders Made of (An)-
Isotropic Dielectric Materials. Starting from the interaction
free energy of composite media made of arrays of parallel
cylinders embedded in an isotropic medium, the interaction
free energy of an isolated pair of cylinders is derived by a
dilution process, taking the volume fraction of the composite in
the dilute limit and expanding the anisotropic dielectric
responses to second order in the number density. The
coefficient of this term is proportional to the pair-interaction
free energy.2

To perform this process, we assume that the two anisotropic
half-spaces are composed of identical anisotropic cylinders of
radii R1,2 = α, at volume fraction v, with ϵ⊥

c and ϵ∥
c as the

transverse and longitudinal dielectric response functions of the
cylinder materials, respectively. We then expand the Barash
interaction free energy θG( , ) for two half-spaces again as a
series in v, eq 12, and evaluate the coefficient multiplying the v2

term. The volume fraction, v, scales with the area density of the
cylinders (N) in the direction of their long axes as v = Nπα2. It
then follows2 that the interaction free energy between two
cylinders, θG( , ) , whose axes coincide with the anisotropy
axes of the two composites at a separation , inclined at an angle
θ, can be obtained from a second derivative of θ( , ) (see
Appendix B) as
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where f(Q, ωn; ,θ) is written explicitly in eq 13. Note that such
an expansion is possible only if the dielectric response at all
frequencies is bounded. In the case of an ideal metal Drude-like
dielectric response, this expansion is not feasible and our
method cannot be transplanted to that case automatically. By
noting that

ω θ ω ω θ= +f Q f Q f Q( , ; , ) ( , ; ) ( , ; ) cos 2n n n
(0) (2)

(19)

θ( , ) can be finally obtained explicitly and exactly as24
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where the isotropic and the anisotropic parts of the Hamaker

coefficient, i.e. ( )(0) and ( )(2) , can be obtained in explicit
forms (given in Appendix B), and they depend on the relative
anisotropy measures in the parallel and perpendicular
directions, eq 10, at imaginary Matsubara frequencies. The
ratio of the relative anisotropy measures, eq 16, can be thought
of as a specific measure of the anisotropy of the cylinders
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compared with the isotropic bathing medium, m. Note that the
relative anisotropy measures vanish when the transverse/
longitudinal dielectric response of the cylinder material equals
the medium response.
Note also that because of the sin−1θ in the free energy, the

angular dependence is now associated with both Hamaker

coefficients, (0) and (2), unlike in the case of the semi-
infinite planar and composite bodies which have angular
dependence associated only with the orientation term, i.e.,

θcos 2(2) . Furthermore, the interaction free energy diverges
for two parallel cylinders because for two inf inite parallel
cylinders their interaction free energy scales as their length, so
that the interaction free energy per unit length remains
perfectly finite. We will not be specifically dealing with this
anomalous situation as perfect alignment is difficult to envision
for any realistic nano-objects.
For cylinders, the force, θ̃g( , ), and the torque, τ θ(̃ , ), can

now be obtained straightforwardly as

θ θ
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∂
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The force per unit area has a complicated dependence on ,
stemming from the explicit −4 dependence of the free energy,

as well as both ( )(0) and ( )(2) that also separately depend
on . The angular dependence of the torque can be obtained
explicitly and has a complicated angular dependence, partly due
to the overall sin−1θ dependence of the interaction free energy
and partly from the angular dependence of the Hamaker
coefficient.

■ RESULTS AND DISCUSSION

Bulk Dielectric Response Function. In what follows, we
specifically consider the dielectric responses of materials that
are accessible and relevant to mesoscale interactions in aqueous
solutions.4 As the intervening isotropic solvent, we have taken
water with a well-known frequency-dependent dielectric
response function2 as provided by the Gecko Hamaker software
platform, which also contains an extensive spectral database of
various relevant materials.35 We used the ab initio orthogon-
alized linear combination of atomic orbital (OLCAO)
method36 to calculate the electronic structures and optical
properties of [6,5,s] and [9,3,m] carbon nanotube (CNT)
materials.37 The CNTs represent good examples of materials
with highly anisotropic optical properties, and we have used
them to characterize the bulk dielectric response of two semi-
infinite materials. Other choices are also possible.4

The semi-infinite anisotropic composite materials are
constructed as arrays of [6,5,s] and [9,3,m] anisotropic CNT
cylinders embedded in water at various volume fractions, given
by eq 8 in terms of the interaxial separation between the
cylindrical inclusions in the composite, see Figure 2a. We next
constructed anisotropic semi-infinite composites out of isotropic
cylindrical inclusions. Clearly, here the anisotropic material
component is missing and the bulk anisotropy is due to only
the morphological anisotropy of the inclusions, see Figure 2b.
The isotropic dielectric response of the cylindrical inclusions is
computed from the isometric average of the perpendicular and
parallel responses of the unmodified [6,5,s] and [9,3,m] CNT
dielectric spectra. The anisotropic dielectric responses used as
inputs for formulas for interacting solid planes or a pair of
cylinders are independent of volume fraction, ϵ∥ (dashed black
line) and ϵ⊥ (solid black line), are shown for [9,3,m] CNT in
Figure 2a. Calculations for interactions between planes or
cylinder pairs with isotropic (I) dielectric responses use ϵ∥

I = ϵ⊥
I

= (ϵ∥ + ϵ⊥)/2, shown as a black solid line in Figure 2b.
For planes of composite media composed of cylinders

embedded in water, the dielectric responses become dependent
on the volume fraction of cylinders, see eq 8. Volume fractions
are calculated for separations, β, between cylinders given as
multiples of the cylinder radius, e.g., α = 0.42 nm for [9,3,m]

Figure 2. Frequency-dependent dielectric response ϵ(iω), with frequency in electronvoltss. (a) The anisotropic bulk dielectric responses, ϵ∥ and ϵ⊥,
for semi-infinite planes are shown for [9,3,m] CNTs as black dashed and black solid lines, respectively. The responses for composite media with
varied volume fractions of cylindrical inclusions are shown for volume fractions of 0.91 (green), 0.40 (red), 0.23 (cyan), and 0.15 (magenta),
corresponding to cylinder separations of 0, α, 2α, and 3α, respectively, with α = 0.42 nm as the radius of [9,3,m] CNTs. (b) Isotropic bulk dielectric
responses are computed from the isometric average of the anisotropic dielectric responses shown in panel a. Though the dielectric responses of the
cylindrical inclusions are isotropic (black), the composite dielectric responses become anisotropic because of the anisotropic shape of the cylindrical
inclusions.
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CNTs. The parallel responses (dashed lines) and perpendicular
responses (solid lines) are plotted in Figure 2a for four volume
fractions corresponding to cylinder separations of 0, α, 2α, and
3α. For composite bodies made of cylinders of isotropic
material, ϵ∥

I = ϵ⊥
I are used as input for eqs 9, leading to

anisotropic responses, ϵ ≠ ϵ⊥, for the composite body. For
decreasing volume fractions of cylinders, the magnitude of
anisotropy between ϵ and ϵ⊥, shown as dashed lines and solid
lines, respectively, in Figure 2b, decreases as ϵ and ϵ⊥tend
toward the isotropic background response, ϵwater, dotted line.

Hamaker Coefficient. Effects on (0) Term. We now
proceed to the evaluation of the Hamaker coefficients as
defined above. We present three different interaction geo-
metries with anisotropic and isotropic materials: planar
anisotropic half spaces, planar composite half spaces, and two
isolated cylinders.

The orientation-independent coefficient, (0), for materials
like [6,5,s] and [9,3,m] CNTs shown in Figure 3, is the
dominating contributor to the total Hamaker coefficient, ,
and consequently, the free energy per unit area for planar and

composite bodies, eqs 6 and 17, and the free energy per isolated

pair of cylinders, eq 20. For example, at 6 nm separations, (0)

constitutes approximately 96−99.9% of the total Hamaker
coefficient for interacting planes and for an interacting cylinder
pair. For interacting composite bodies separated by a 6 nm gap,

(0) constitutes about 59% of . For large values of
separation, retardation effects are clearly visible and result in
smaller values of the Hamaker coefficient.
For interacting planes made of anisotropic [6,5,s] and

[9,3,m] CNT materials, shown as solid lines in Figure 3a, we

see large values of (0) due to the large dielectric contrast at
the interface of the bodies and the intervening water medium.
For interacting planes made of isotropic material, given by
averaging the parallel and perpendicular dielectric responses,

the values of (0), shown as dashed lines, are less than those of
the anisotropic case because of a slightly lower dielectric
contrast at the interfaces.
For composite bodies with embedded cylinders made either

of anisotropic or isotropic dielectric material, dielectric contrast
is reduced at the interface between the bodies and the water

Figure 3. (a) The (0) term of the Hamaker coefficient for planes ([6,5,s] green, [9,3,m] magenta), and composites of volume fractions 0.91
([6,5,s] red, [9,3,m] black) and 0.15 ([6,5,s] yellow, [9,3,m] orange) of anisotropic (solid lines) or isotropic material (dashed lines) with a mutual

angle, θ = π/4, plotted as a function of separation. (b) (0) as a function of separation between an isolated pair of long, thin cylinders made either of
anisotropic or isotropic [6,5,s] (blue) or [9,3,m] (cyan) CNT material.

Figure 4. (a) (2) for an isolated pair of cylinders ([6,5,s] blue, [9,3,m] cyan), planes ([6,5,s] green, [9,3,m] magenta), and composites of volume
fractions 0.91 ([6,5,s] red, [9,3,m] black) and 0.15 ([6,5,s] yellow, [9,3,m] orange) of anisotropic (solid lines) or isotropic material (dashed lines)

with a mutual angle, θ = π/4, plotted as a function of separation. (b) The ratio of (2) relative to the total Hamaker coefficient is greatly increased by
the morphologically anisotropic cylinders in the composite and pair cylinder cases when compared to the planar cases which contain no
morphological anisotropy. The isotropic cases (dashed lines) for composite planes retain their angular dependence because of the shape of the
cylindrical inclusions (inset).
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gap due to eqs 9 and 11. Thus, the values of (0) are reduced
compared to the case of interacting planar bodies, see Figure
3a.

For an interacting pair of cylinders, we see (0) values that
are similar to those for planar and composite cases, see Figure

3. The (0) term becomes related to orientation when
multiplied by the factor sin−1θ in the expression for free
energy for a cylinder pair, eq 20.

Effects on (2) Term. Unlike (0), the Hamaker coefficient
(2) intrinsically carries dependence on the mutual orientation

of interacting anisotropic bodies. For materials like those shown

in Figure 4a, the magnitude of (2) is much smaller than that of
(0); thus, (2) typically contributes little to the interaction

free energy and normal force between bodies. In cases where
the interactions have no angular dependence, such as two
isotropic, semi-infinite planar bodies acting across an isotropic

gap, = 0(2) . In Figure 4a, interacting planes of anisotropic
material (solid lines for all systems) show a nonmonotonic

variation of (2) with separation. This nonmonotonic variation
of the Hamaker coefficient, sometimes leading also to

nonmonotonic dependence of the interaction free energy, has
been observed in the case of vdW interactions in the system
composed of an ice layer interacting with air across a liquid
water layer.38 In that case, similarly as in our own, the
nonmonotonicity results from a subtle interplay of dielectric
anisotropy, inhomogeneity, and the finite velocity of light, and
is thus a signature of the retardation effects.
For interacting composite planes and for an interacting

cylinder pair, Figure 4a shows nonzero values for both the
anisotropic material (solid lines) cases as well as the isotropic
material (dashed lines) cases. In general, both the highly
anisotropic shape of cylinders as well as the anisotropy of the

materials’ responses contribute to the values of (2). However,
in the case of interacting planes, only the material anisotropy

contributes to (2). Figure 4b shows that the contribution of
(2) re la t ive to the tota l Hamaker coeffic ients ,

+/((2) (0) (2)), is greatly increased by the inclusions of
morphological anisotropy in the composite and pair cases when
compared to the planar cases (green and magenta curves)
which contain no morphological anisotropy. A detailed view in
the inset shows that, for composites and cylinder pairs, even

Figure 5. (a) Free energy per unit area, , between planes ([6,5,s] green, [9,3,m] magenta) and composites of volume fractions 0.91 ([6,5,s] red,
[9,3,m] black) and 0.15 ([6,5,s] yellow, [9,3,m] orange) of anisotropic (solid lines) or isotropic material (dashed lines) with a mutual angle, θ = π/4,
plotted as a function of separation. The free energy between composite bodies with a separation of 6 nm as a function of mutual angle (inset) shows
an angular-dependence that is dissimilar to that of planes. (b) Free energy per isolated pair of cylinders, , at a mutual angle of θ = π/4, is plotted as
a function of separation for cylinders of anisotropic or isotropic [6,5,s] (blue) or [9,3,m] (cyan) material. The cylinder pair shows (inset) an angular
dependence stronger than that of planes and composites.

Figure 6. (a) Torque per unit surface area, τ, between planes ([6,5,s] green, [9,3,m] magenta) and composites of volume fractions 0.91 ([6,5,s] red,
[9,3,m] black) and 0.15 ([6,5,s] yellow, [9,3,m] orange) of anisotropic (solid lines) or isotropic material (dashed lines) with a mutual angle of θ = π/
4 plotted as a function of separation (τ = 0 for plans of isotropic material). (b) Torque between planes and composite bodies with a separation of 6
nm as a function of mutual angle. Composite bodies experience magnitudes of torque greater than those between planar bodies even when the
composite’s inclusions are constructed of isotropic material.
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isotropic materials (dashed lines) have large values of (2)

which are comparable in magnitude to their analogous cases
with anisotropic materials (solid lines).
Effects on van der Waals Interaction Free Energy. The

free energies of interaction, θ( , ), for planar and composite
cases are calculated per unit area, S. Figure 5a shows similar
behavior for the free energies per 1 nm2 as a function of
separation for planes and composites for the cases of
anisotropic materials (solid lines) and isotropic materials
(dashed lines). However, Figure 5a (inset) shows that free
energies of composites have a much stronger dependence on
mutual angle than planar cases. The values of interaction free
energies given for two interacting cylinders as a function of
separation in Figure 5b show a behavior similar to that seen for
planes and composites. The free energy expression for a pair of
cylinders carries an additional θ dependence of sin−1θ with both
Hamaker coefficients, eq 20, that is not present in the
expressions for planar and composite cases. Therefore, Figure
5b (inset) shows a stronger dependence of the free energy
between two cylinders on mutual angle than seen in Figure 5a
(inset) for planes and composites.
Effects on van der Waals Torque. The interaction free

energy per unit area for planes and composites are differ-
entiated with respect to mutual angle and plotted as torque per
1 nm2 area at π/4 radians as a function of separation for bodies
made of anisotropic materials (solid lines) and isotopic
materials (dashed lines) in Figure 6a. Though the values of
free energy are similar for interacting planes and composites at
maximum packing fraction, see Figure 5a, their torque values
are dissimilar at all volume fractions, evidencing the effect of
morphological anisotropy introduced by the inclusion of
cylinders in composite bodies. Significantly, though the
composite case with, e.g., maximum volume fraction (red and
black curves), has less interacting material than the planar case
(green and magenta curves) it shows much larger values of
torque for both cases of anisotropic material and isotropic
material in Figure 6.
In Figure 7a, the torque experienced between a pair of

interacting cylinders inclined at π/4 radians is plotted as a
function of separation. Torque values show similar dependence
on separation compared to those of planes and composites, but
of course, lower magnitude due to the reduced dimensionality
of the calculation. Comparable magnitudes would be obtained
if one would multiply the torque of a lone pair of cylinders by

the appropriate surface density in a composite body. The free
energy of interaction for a pair of cylinders has two angle-
dependent factors and consequently a stronger dependence of
torque on mutual angle, shown at a separation of 6 nm in
Figure 7b.

■ CONCLUSIONS

The effects of anisotropy on vdW interactions are complicated
and can be traced to two or fewer properties of a system.
Angular dependence of the vdW interaction between bodies
can originate from either the anisotropy of the shape of the
bodies (morphological anisotropy) or anisotropy of dielectric
response of the materials (materials anisotropy) of the bodies.
Each system can have one, both, or neither of these properties
which allow angular dependencies in the interaction free
energy.

Isolation of Material-Anisotropy Effects. The case of
two interacting anisotropic semi-infinite planar slabs shows
angular dependence of the interactions purely due to the
anisotropic material response. When the interfaces are made of
isotropic material, the free energy loses all dependence on

orientation, the angular dependent term, (2) drops out of the
free energy, and consequently the system displays no torque
between the apposed planar interfaces. Two interacting
anisotropic semi-infinite planar interfaces are a prime example
of anisotropic vdW interactions originating solely in the
material dielectric response anisotropy of the bodies.

Isolation of Shape-Anisotropy Effects. For an isolated
pair of cylinders, the vdW interaction free energy depends on
interaxial separation, and its dependence on mutual orientation
angle contains both shape anisotropy and material anisotropy
effects. Unlike anisotropic planes, which carry angular depend-

ence of cos 2θ with only the (2) term in the Hamaker
coefficient, cylinders carry an additional sin−1θ dependence on
mutual angle with both Hamaker coefficients, see eq 20,
because of their anisotropic shape. Two interacting cylinders
composed of isotropic material are a prime example of
anisotropic vdW interactions originating solely in the shape
anisotropy of the bodies.

Effects in Composite Bodies. The formulas for interacting
composite bodies exhibit both types of anisotropy effects as a
natural consequence of the process of embedding arrays of
anisotropic cylinders into two half-spaces with planar interfaces.

Figure 7. (a) Torque per isolated pair of cylinders, τ,̃ at a mutual angle of θ = π/4 plotted as a function of separation for cylinders of anisotropic
(solid lines) or isotropic (dashed lines) [6,5,s] (blue) or [9,3,m] (cyan) material. (b) Torque as a function of mutual angle, θ, between a pair of
cylinders interacting across a 6 nm gap. Cylinders made of either anisotropic or isotropic material will experience torques that drive them to seek
parallel alignment of their longitudinal axes.

The Journal of Physical Chemistry C Article

DOI: 10.1021/acs.jpcc.5b01870
J. Phys. Chem. C 2015, 119, 19083−19094

19090

http://dx.doi.org/10.1021/acs.jpcc.5b01870


The anisotropic shape of the long, thin, embedded cylinders in
addition to the anisotropic response of the material from which
the cylinders are made result in strong angular dependence and
large vdW torques generated between the bodies. Even in cases
where the material of the cylinders in the arrays have isotropic
dielectric responses, we still see large torque values due to the
shape of cylinders. Arrays of cylinders will therefore seek to
align their principal dielectric axes even if the material is
isotropic.
Torque values between composite bodies larger than those

between planes are a corollary to the process of embedding
cylinder arrays into planes. Unlike the small change effected by
this process on the free energies of these two systems, the effect
on torque is dramatic. This effect of anisotropy in a composite
material can be seen in the increase in the orientational

Hamaker coefficient, (2), see Figure 4. The magnitude of (2)

is carried through the differentiation of free energy with respect
to the mutual angle, i.e., torque, between the bodies and results
in values much larger than those of solid bodies. The increase in
anisotropy and torque is largest for close packing and is
drastically reduced as the arrays become dilute. The effect of
shape in interactions between composite bodies comprising
arrays of parallel cylinders results in torques significantly
stronger than those seen between solid anisotropic planar
spaces. This clearly points to the nonadditivity of the shape and
material anisotropies in this case, which is an important
conclusion to bear in mind when trying to detect the vdW
torques between anisotropic bodies. The anisotropic shape of
the embedded cylinders in composite bodies increases the
anisotropy between the bulk dielectric responses in the parallel
and perpendicular directions for the composite body, see Figure
2. The zero-frequency thermal contribution to the free energy,
i.e., the n = 0 term in the sum over Matsubara frequencies, is
the frequency most effected by this change. For example, the
zero-frequency term of the perpendicular dielectric response of
a [6,5,s] CNT composite increases by 63% and its parallel
response is nearly doubled. For the [9,3,m] CNT composite at
maximum volume fraction, the zero-frequency term in the
perpendicular response increases by 66% while the parallel
response decreases by 3%. As the separation between cylinders
increases (volume fraction decreases), the zero-frequency term
of the dielectric response of the composite begins to approach
the zero-frequency term of the dielectric response of water;
thus, the dielectric contrast with the intervening medium is
decreased.
Experimental Points. Though the vdW torque between

anisotropic bodies is small,12,39 it seems to be measurable, with
a direct experiment still lacking.40,41 From the discussion above
and from related work by Esquivel-Sirvent and Schatz,42 it
seems that the vdW torques between ordered arrays of
anisotropic nanoparticles embedded in an isotropic matrix
would be a good direction for experiments. Such arrays are
well-known and have been observed with many biological
macromolecules including DNA, various polysaccharides such
as cellulose or hyaluronic acid, and polypeptides such as
microtubules or actin, to name just a few (for details see Yasar
et al.43 and references therein). Cylindrical arrays with
hexagonal local symmetry observed in DNA-covered single-
walled carbon nanotubes (SWCNTs)44 or surfactant-covered
SWCNTs45 fall well within the confines of our theoretical
model of anisotropic arrays. Another possibility that we do not
consider here, though it is implied by the (nematic) ordering of

the array of cylinders, is the action of external fields on the
dielectric properties of interacting bodies.30 The fact that
ordered arrays of cylinders lead to pronounced vdW torques
could be exploited in filament-gliding assays above planes
composed of layers of locally aligned microtubules with grain
boundaries between regions array orientation.46 The vdW
torque could possibly influence the direction of motion of the
gliding filament as it crosses the orientational grain boundary.

■ SUMMARY

Orientational dependence in the full Lifshitz formulation of van
der Waals interactions generally results from two system
properties, shown here as (1) anisotropy of materials’ bulk
dielectric responses in the axial and radial directions and (2)
anisotropic morphology demonstrated here by long, thin shape
of cylinders in pairs or in arrays embedded in composite planes.
The effects of these two properties are isolated through analysis
of three interaction geometries: planes, composite planes, and a
cylinder pair. Each of the three systems characterizes different
strengths of dependencies on the anisotropies of materials’
responses and/or bodies’ shapes. Interacting composite bodies
made of arrays of parallel cylinders embedded in a medium
display dependence on both material and shape anisotropies,
resulting in values of torque between the arrays that,
surprisingly, can be stronger than those between planes and
may lead to new experimental possibilities.

■ APPENDIX A: DERIVATION OF THE FREE ENERGY
OF INTERACTION FOR TWO SEMI-INFINITE
ANISOTROPIC UNIAXIAL PLANES

The full Lifshitz free energy of interaction per unit area for two
uniaxial anisotropic half spaces, “1” and “2”, whose principal
dielectric axes are inclined at a fixed angle, interacting across an
isotropic medium, θ( , ), is given as a function of separation,
, and mutual orientation angle, θ, in the form first derived by
Barash:8,9

θ θ
π

= −( , )
( , )

12 2 (23)

where we have explicitly isolated the −2 dependence from

∫ ∫∑θ ϕ θ ϕ=
π

=

∞′ ∞k T
Q Q Q( , )

3
2

d d log ( , ; , )
n

B

0 0 0

2

(24)

to be able to introduce the standard form of the Hamaker
coefficient as in eq 23. θ ϕQ( , ; , ) is the secular determinant
of all allowed surface modes with magnitude of the in-plane
wave-vector, Q, of the fluctuating electromagnetic field that
depends on and θ. The summation over the Matsubara
frequencies, ωn = 2πnkBT/ℏ with the n = 0 term weighted by
one-half, stems from the thermal bath of the fluctuating field. At
room temperature, the Matsubara frequencies are multiples of
2.4 × 1014 s−1.
The secular determinant, ( ,θ; Q, ϕ), depends also on two

additional parameters (the magnitude Q and the direction ϕ of
the in-plane wave vector, which are both integrated over) and is
given explicitly as

ρ ρ γ= − ϵ ̃ − − +⊥A B E C[ ( )( )]/2 2 2 (25)
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The dimensionless wave vectors for plane 1, plane 2, and
medium 3 are given as
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There appears to be no known simplification of this result. A
different form of the interaction free energy was derived in ref
15 that numerically reduces to the result above, but it was not
shown to reduce to it exactly and/or analytically. In the main
text, we used the above derivation in the symmetric case of “1”
= “2”.

■ APPENDIX B: DERIVATION OF THE FREE ENERGY
OF INTERACTION FOR TWO CYLINDERS

By beginning with the expressions for two composite planar
media, “1” and “2”, at a separation , made of arrays of parallel
cylinders embedded in isotropic medium, the free energy of an
isolated pair of inclined cylinders is derived by taking the
volume fraction of the composite in the dilute limit and
expanding the anisotropic dielectric responses to second order
in the number density.2 The exact relation is

θ θ θ= N N G
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d
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2

2 1 2 (32)

where the area density of the cylinders (N1, N2) in the direction
of their long axes is v1 = N1πα1

2 (v2 = N2πα2
2) and the

interaction free energy between the two cylinders whose axes
are contained within the two parallel boundaries at a separation
, but skewed at an angle θ is θG( , ). The second derivative can
be written furthermore as

∫∑θ
π

ω θ
=

=

∞′ ∞k T
Q Q

f Qd ( , )
d 2

d
d ( , ; , )

dn

n
2

2
B

0 0

2

2
(33)

where

ω θ

ω ω

ω
θ

= −
Δ Δ − + ϵ

+ ϵ

+ + + + + +

ϵ + + + ϵ

+ − − + ϵ

ω

ω

⎪
⎪

⎪
⎪

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

⎛
⎝⎜

⎞
⎠⎟

⎫
⎬
⎭

( )
f Q v v

Q

Q

a a Q a a a a

Q
c

a a
c

a a Q
c

d ( , ; , )
d 32

exp 2

2[(1 3 )(1 3 ) 2(1 2 2 3 )

2(1 )(1 ) ]

(1 )(1 ) 2 cos 2

n
c

c

n
m

n

n

2

2
1 2 1, 2,

2
m

2
m

1 2
4

1 2 1 2

2
m

2

2 1 2
2

4

4

1 2
2

m

2

2

2

n

n

2

2

2

2

(34)

and the relative anisotropy measures are
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for the two composite materials 1 and 2.
The vdW interaction free energy between the two inclined

cylinders of radii R1 and R2 composed of anisotropic material is
given as
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Where the Hamaker coefficients are
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with

ω
ω

= = ϵ =u Q p
c

u p t, ( ) (i ) ; thus,n n
n

n
2

m

2

2
2

(39)

From the form of eq 36 for the interaction free energy, it is
clear that the free energy of a pair of identical cylinders because
of the factor sin−1θ thus carries angular dependence with both

Hamaker coefficients, (0) and (2), unlike the planar and
composite cases which have explicit angular dependence only in

the orientation term, (2). In the main text we used the above
derivation in the symmetric case of “1” = “2” with R1 = R2 = α.
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