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We investigate polyelectrolyte bridging interactions mediated by charged, flexible, polyelectrolyte
chains between fixed cylindrical macroions of opposite charge in a two-dimensional hexagonal
crystalline array. We show that in the asymptotic regime of small macroion density, the
polyelectrolyte-mediated attraction is long range, falling off approximately linearly with the
macroion array density. We investigate the polyelectrolyte free energy as a function of the macroion
density and derive several analytic limiting laws valid in different regimes of the parameter
space. ©2005 American Institute of Physics. fDOI: 10.1063/1.1908870g

I. INTRODUCTION

Charged polymers are ubiquitous in colloidal systems
and soft matter in general,1,2 and play a fundamental role in
determining the interactions between, as well as the stability
and structure of, varioussmacrodmolecular assemblies.
Charged polymers are sufficiently different to set them apart
from noncharged polymers.3 Their effect on colloidal inter-
actions has been studied and exploited in various technologi-
cal contexts ranging from the paper industry to the pharma-
ceutical industry.4 Their most basic role nevertheless is
played in the biological context. They are essential and fun-
damental components of the cellular environment and make
their mark in its every structural and functional aspects.5 It is
thus no surprise that the behavior of charged polymer chains
in the biological context has been one of the major foci of
soft matter research.6

The connectivity between charged segments along the
polymer chain is an essential feature of polyelectrolytes and
can often lead to a very peculiar interaction, whereby long-
charged polymers can mediate interactions between macro-
ions of opposite chargesfor recent reviews see Refs. 7 and
8d. The term bridging interactions is usually applied to this
situation, where a single chain can adsorb to twosor mored
oppositely charged macroions and via its connectivity medi-
ate attractive interactions between them. These interactions
have been studied intensively both experimentally as well as
theoretically.

Polyelectrolyte chains in the bulk, worked out at differ-
ent levels of approximation,8 are reasonably well understood.
Confined sneutrald polymers are also well understood, and
the forces between confining surfaces have been studied at
various levels of approximation.9 The two were first brought

together, i.e., charged interfaces with charged polymers, in
the seminal work of Muthukumar.10 A major conclusion of
this work was that, due to the connectivity of the polyelec-
trolyte chain, its behavior bears almost no resemblance to the
case of confined unconnected ions. A self-consistent field
theory, akin to the usual Poisson–Boltzmann theory of elec-
trostatic interactions in colloidal systems, has been proposed
for confined polyelectrolytes and applied successfully to
polyelectrolyte-mediated interactions between charged
surfaces.11 This approach was later generalized to include
steric interactions between polymer segments on adsorption
and polyelectrolyte-mediated interaction.12,13 For small mac-
roions with free14 or grafted polyelectrolyte chains a differ-
ent approach was found to be more convenient, based on a
quadratic variational ansatz.15 It allows for an elegant and
straightforward evaluation of the polyelectrolyte-mediated
interactions in the geometry where self-consistent field
theory would be more difficult to solve.

All of the above approaches are, however, based on a
two-body approximation. The polyelectrolyte bridging is as-
sumed to involve at most two macroions, be they macromo-
lecular surfaces or indeed whole macromolecules. Recent ex-
periments on DNA-polycation complexes,16 however,
suggest that polyelectrolyte bridging might involve many
particles as well. A single polyelectrolyte chain can bridge
several macroions conferring an interaction that cannot be
approximated on a pairwise level. We take this picture as a
motivation for our present work, which investigates the
many-body bridging interactions that occur when a single
polyelectrolyte chain mediates interactions between several
oppositely charged macroions. The theoretical framework for
this analysis is based on the Edwards model of a flexible
chain17 in an external-screened Coulomb potential provided
by the lattice of charged macroions. In what follows we will
concentrate exclusively on conceptual framework and willadElectronic mail: rudi@helix.nih.gov
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try to derive approximate limiting laws for the
polyelectrolyte-mediated interactions. We will leave detailed
numerical solutions to a forthcoming paper.

The present work is, apart from the difference in geom-
etry, closely related to previous work of one of the authors.11

There, in a background ionic solution, charged polymers
se.g., of positive signd produced a short-range attraction be-
tween two charged planesse.g., of negative signd. Assuming
no lateral inhomogeneities, the problem discussed was effec-
tively one dimensionals1Dd. Here for a two-dimensional
s2Dd hexagonal lattice model in a background ionic solution,
charged polymersse.g., positively charged polylysine or
polyarginine of between 30 and 100 monomersd produce a
long-range attraction in an array of rodlike cylindrical mac-
roions se.g., negatively charged DNA moleculesd. We show
that this long-range attraction stems from bridging configu-
rations of flexible polyelectrolyte chains in the macromo-
lecular array at sufficiently low macromolecular densities.
This attraction might add or compete with the polycation
correlation effect.16,18

The outline of the paper is as follows. We first formulate
the model of charged polyelectrolyte chains and apply it on
the mean-field level to a periodic hexagonal lattice of oppo-
sitely charged cylindrical rods. In order to make this problem
transparent and simply solvable we first assume that the
strength of the macroion-polyelectrolyte interaction is con-
stant. We then remove this constraint in the Wigner–Seitz
calculation. The eigenvalue equation in the lattice model is
directly analogous to that for electrons in a 2D crystal. We
calculate the eigenenergy for a few of the lowest-lying eigen-
states using a reciprocal lattice vectorsRLVd basis set, and
we show that for sufficiently strongly charged macroions it
leads to attractive polyelectrolyte-mediated interactions that
correspond to polyelectrolyte bridging configurations. The
slow convergence of the RLV formulation together with the
assumption of fixed, i.e., macroion density-independent
strength of the interaction, precludes us from establishing
any firm limiting laws. In order to get stronger analytical
estimates and/or limiting laws we then formulate the same
problem on the Wigner–Seitz cell level and solve it approxi-
mately with the Wentzel–Kramers–BrillouinsWKBd ansatz.
This allows us both to numerically estimate the critical linear
charge density of the macroions that leads to attractive bridg-
ing interactions and to obtain the form of bridging interaction
as a function of the macroion density. We conclude the paper
with a discussion of the significance of these findings as well
as with a proposal for more detailed numerical calculations
of the interaction for the full range of macromolecular den-
sities.

II. MODEL OF A CHARGED ASSEMBLY OF STIFF
RODS AND FLEXIBLE POLYELECTROLYTES

The model system has two components, in addition to
the background ionic solution. The first component is a set of
infinitely stiff, charged, cylindrical macroionsse.g., DNAd of
radiusa on a 2D hexagonal lattice with lattice constantR.
Each macroion acts as a source of screened Debye–Hückel
electrostatic potential.19 The second component is a set of
oppositely charged flexible polyelectrolyte chainsse.g.,

positively-charged polyelectrolyte chainsd. We assume that
the most important part of the total energy is the interaction
of the flexible chains with fixed macroion charges and disre-
gard self-interactions among the polyelectrolyte chains. The
latter would in fact only renormalize the persistence length,
an effect which we will disregard. Moreover, we also neglect
the interaction of flexible chains with one another, an ap-
proximation valid for sufficiently low polyelectrolyte den-
sity. A schematic representation of the geometry and the
model is given in Fig. 1.

The polyelectrolyte chains are described with a con-
tinuum Edwards model17 of N freely jointed segments, each
of Kuhn’s length,,, with a total contour lengthN,. The total
number of polymer chains isN. The total number of macro-
ions is taken asM. As indicated, all electrostatic interactions
are mediated by screened Debye–Hückel interactions.8 The
configurational part of the Hamiltonian of a single chain can
be written as17

bHfr sndg =
3

2,2E
0

N Fdr snd
dn

G2

dn+ bE
0

N

Vfr sndgdn, s1d

whereb=skBTd−1 is the inverse thermal energy andr snd is
the position of thenth segment of the polyelectrolyte chain.
Since by assumption the chains do not interact with one an-
other but interact only with the macroions, the total Hamil-
tonian decouples into a sum of one-particle Hamiltonians.
The many-chain effects thus show up additively in the free
energy, where the result for the single chain is simply mul-
tiplied by the total number of chainsN ssee belowd.

The external interaction potential of fixed macroions is
characterized by the potential energyVfr sndg, which repre-
sents the screened electrostatic interaction between one of
the flexible polyelectrolyte segments and all of the charge on
the macroions. Taking thesnegatived charge per unit length

FIG. 1. A schematic presentation of the model system. Long infinitely stiff
charged macroions of radiusa occupy the sites of a 2D hexagonal array with
lattice spacingR. Oppositely charged flexible polyelectrolyte chains interact
with an electrostatic field provided by the lattice of macroions.
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along the macroion rods to be −m and the charge per seg-
ment of the flexible polyelectrolyte to bee, we have

Vsrd = −
me

4pee0
E

−`

+` e−kur−r8u

ur − r 8u
dz

= −
me

4pee0
K0skrd = − kBTw0K0skrd, s2d

where the long axis of the macromolecules is oriented along
the z axis. HereK0sxd is the cylindrical Bessel function,r
= uru, with r=sx,yd, and the dimensionless interaction
strengthw0;me/ s4pee0kBTd=sm /e0dse/evd,B, where,B is
the standard Bjerrum length. We assume that the macroion
radius a is small and that their finite size, which can be
effectively hidden inw0, can be neglected. The total interac-
tion potential, obtained by summing the above expression
over all the 2D hexagonal lattice sites, is then

Vsrd = − kBTw0o
i

K0sur − riud. s3d

Clearly the interaction between a polyelectrolyte chain and
the macroions depends only on thesx,yd coordinates since
the system is assumed homogeneous in thez direction, i.e.,
its properties do not depend on thez coordinate. For DNA
this is a reasonable assumption only for low densities.20 Fur-
thermore the interaction potential has the same symmetry as
the underlying lattice of charged macroions.

For the Hamiltonian Eq.s1d, and for a system that is
homogeneous in thez direction, the Green function of the
polyelectrolyte chain, being the probability density that the
chain of N links will end up at r8 if it starts from r, is
defined by21

Gsr,r8;Nd =E
rs0d=r8

rsNd=r

Dfrsndg

3expH−
3

2,2E
0

N Fdrsnd
dn

G2

dn

− bE
0

N

VfrsndgdnJ , s4d

From the Green function it is straightforward to obtain the
corresponding free energy of the chain in the form21

F = − kBT logFE E Gsr,r8;Ndd2rd2r8G . s5d

The definition of the Green function for a system homoge-
neous in thez direction leads in a straightforward way to the
solution of a “Schrödinger equation” of the form21

]Gsr,r8,Nd
]N

−
,2

6
¹'

2 Gsr,r8,Nd + bVsrdGsr,r8,Nd

= d2sr − r8ddsNd, s6d

where¹'
2 is the 2D Laplace operator in thesx,yd plane. If

we now introduce the standard eigenfunction expansion for
the Green function

Gsr,r8,Nd = o
n

cnsrdcnsr8de−EnN s7d

we obtain the Schrödinger equation for the eigenfunction
cnsrd and their dimensionless eigenvaluesEn in the form

S−
,2

6
¹'

2 − w0o
i

K0sur − riudDcnsrd = Encnsrd, s8d

where we employed Eq.s3d. The eigenfunctions, being real,
are subject to normalizationecn

2d2r=1. The above equation
is very similar to the Schrödinger equation for an electron in
a 2D lattice22 except that the unscreened Coulomb interac-
tion is replaced by the screened Debye–Hückel interaction.
In what follows we shall exploit this obvious analogy.

Since in Eq.s7d the exponent depends linearly on the
length of the chainN, for a sufficiently long chain only the
lowest eigenvalue and thus only the lowest term in the sum
Eq. s7d should matter. This statement is usually known as the
ground-state dominanceansatz in the polymer literature.23 In
this limit the Green function and the polyelectrolyte free en-
ergy assume the approximate forms

Gsr,r8,Nd > c0srdc0sr8de−E0N

and

F > kBTE0N, s9d

whereas the monomer density can be written as

rsrd > c2srd. s10d

One should differentiate here between the above density and
the 2D radius vectorr=sx,yd. The lowest-lying eigenvalue
of the Schrödinger equation thus determines the polyelectro-
lyte free energy directly. Similarly the square of the eigen-
function determines the polyelectrolyte density in complete
analogy with quantum mechanics. This simple correspon-
dence is somewhat obscured if one goes beyond the ground-
state dominance ansatz. In order to get the complete free
energy one has to multiply the above result by the number of
the chains, thus

F > kBTE0sNNd = kBTE0N, s11d

whereN is now the total number of monomers in the system.
The additivity of the free energy applies only on the level
where the interchain interactions can be neglected.

III. PERIODIC LATTICE OF RODS

We now consider the Schrödinger equationfEq. s8dg ex-
plicitly. For finite-size impenetrable macroions the boundary
condition at their surface is that the polyelectrolyte density is
zero, orrsuru=ad=c2suru=ad=0. Therefore, at the surface of
the macroioncsuru=ad=0, wherec is now the eigenfunction
corresponding to the lowest-energy eigenvalue. For simplic-
ity, we treat each rod as having zero radius, so the boundary
conditioncsuru=0d=0 applies on the axis of each rod. Near
each rod the potentialVsrd is strongly attractivesi.e., nega-
tived, and dominates the eigenenergyEn. Hence, near the rod
the curvature of the wave function is negative, corresponding
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to an oscillatory behavior; starting from the value zero at
each rod, the solution will resemble a sine function.

A second boundary condition is that the solution must be
periodic as one goes from cell to cell, as we will see shortly.
Since the total interaction potential has the same symmetry
as the underlying lattice it can be expanded in terms of the
reciprocal lattice vectorssRLVsd G as22

Vsrd = o
G

eiG·rVsGd, s12d

where we define the Fourier coefficients of the interaction
potential as

VsGd =
1

S
E

S

d2re−iG·rVsr d

= −
kBTw0

S
E

S

d2re−iG·ro
i

K0skur − riud

= −
kBTw0

S
E

S

d2ro
i

e−iG·rie−iG·sr−ridK0skur − riud,

s13d

whereS is the total area of the system perpendicular to the
long axes of the macroions. Taking into account that on sum-
ming over a lattice ofM sitesri one has

o
i

e−iG·ri = M, s14d

it follows that

VsGd = − kBTw0

M
S
E

S

d2re−iG·rK0skurud

= − kBTw0

M
S

2p

G2 + k2 . s15d

Hence the interaction potential has only Fourier components
with inverse lattice vectors. Moreover the total strength of
the macroion-polyelectrolyte interactionw0M /S obviously
depends on the macroion density. We will comment on this
as we proceed.

The periodicity of the interaction potential has to be
taken into account also in the Schrödinger equation in a way
completely analogous to the case of electrons in a crystal.22

The Schrödinger equation has a solution

cnksrd = eik·runksrd, s16d

where by Floquet’s theorem for any lattice vectorR the func-
tion unksrd is periodic

unksr + Rd = unksrd, s17d

and can thus be expanded in terms of the RLVs as

unksrd = o
G

eiG·runsGd. s18d

Note thatunksr=0d=0 to satisfy thecsr=0d=0 boundary
condition. This leads straightforwardly to

o
G

unsGd = 0. s19d

As already alluded to for long chains, the dominant contri-
bution to the partition function comes from the lowest-lying
eigenvalue, which we assume corresponds to the ground
state withk =0. Therefore, in the limit of very long chains
we only consider

cnsrd = o
G

eiG·runsGd. s20d

This ansatz leads to a Schrödinger equation of the form

,2

6
G2unsGd + bo

G8

VsG − G8dunsG8d = EnunsGd, s21d

or, if we take into account the form of the interaction poten-
tial in reciprocal space,

EnunsGd = o
G8

S,2

6
G2dG,G8 − 2p

M
S

w0

uG − G8u2 + k2D
3unsG8d, s22d

wheredG,G8 is the Kronecker delta. The similarities with the
theory of electrons in a crystal22 are now even more appar-
ent. The only difference is that for polyelectrolytes we re-
strict ourselves to thek =0 solution, and the interaction po-
tential is of a screened Debye–Hückel type as opposed to
standard Coulomb potential. The solution of the above equa-
tion clearly depends on the symmetry of the reciprocal lat-
tice. Let us now assume that the macroions are arranged in a
2D hexagonal lattice with lattice spacingR, where the real
space basis is

a1 = Ri
s23d

a2 =
R

2
si + Î3j d,

so the unit cell area isS/M=a13a2=R2Î3/2. The RLVs
can then be written as

G = n1b1 + n2b2, s24d

wheren1, n2 are integers and the basis vectors are given by

b1 =
2p

RÎ3
sÎ3i − j d,

s25d

b2 =
2p

RÎ3
2j .

The square of the RLVG is thus

G2 = S2p

R
D24

3
sn1

2 + n2
2 − n1n2d. s26d
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The RLVs can now be ordered into sets according to their
magnitude. A few of the lowest-lying sets are given in Table
I, together with the magnitude of the corresponding recipro-
cal lattice vector and the compound indices used later for
bookkeeping purposes. In what follows we will find numeri-
cal, and in one case analytical, solutions for the eigenvalue
systems defined by compound indicess0–6d, s0–12d, and fi-
nally for s0–18d. The first set of compound indices corre-
sponds to the central “point” together with its six first neigh-
bors, the second one to the additional six next nearest
neighbors and the last one to the final six next-next nearest
neighbors.

These solutions will give us an idea of how the eigen-
values and, in particular, the smallest eigenvalue behave as a
function of the lattice spacing. In what follows we will mea-
sure energies relative tobVsG=0d. The Schrödinger equa-
tion sEq. s22dd for the first two sets of RLVsssee Table Id
with compound indicess0–6d leads to the following 737 set
of eigenvalue equations:

Eu0 = − bVsG2dsu1 + u2 + u3 + u4 + u5 + u6d,

Eu1 =
,2

6
G2

2u1 − bVsG2dsu0 + u2 + u6d − bVsG3dsu3 + u5d

− bVsG4du4,

Eu2 =
,2

6
G2

2u2 − bVsG2dsu0 + u1 + u3d − bVsG3dsu4 + u6d

− bVsG4du5,

Eu3 =
,2

6
G2

2u3 − bVsG2dsu0 + u2 + u4d − bVsG3dsu1 + u5d

− bVsG4du6, s27d

Eu4 =
,2

6
G2

2u4 − bVsG2dsu0 + u3 + u5d − bVsG3dsu2 + u6d

− bVsG4du1,

Eu5 =
,2

6
G2

2u5 − bVsG2dsu0 + u4 + u6d − bVsG3dsu1 + u3d

− bVsG4du2,

Eu6 =
,2

6
G2

2u6 − bVsG2dsu0 + u1 + u5d − bVsG3dsu2 + u4d

− bVsG4du3,

where the four RLVs corresponding to the first two sets of
Table I are given byG1=0, G2=2p /RÎ4

3, G3=Î32p /RÎ4
3,

G4=2 2p /RÎ4
3. Also we have hereVsGd=2pM /S w0/ uG

−G8u2+k2. Thus the lowest-lying energyE is obtained from
the determinant of the following matrix

3
E bVsG2d bVsG2d bVsG2d bVsG2d bVsG2d bVsG2d

bVsG2d E −
,2

6
G2

2 bVsG2d bVsG3d bVsG4d bVsG3d bVsG2d

bVsG2d bVsG2d E −
,2

6
G2

2 bVsG2d bVsG3d bVsG4d bVsG3d

bVsG2d bVsG3d bVsG2d E −
,2

6
G2

2 bVsG2d bVsG3d bVsG4d

bVsG2d bVsG4d bVsG3d bVsG2d E −
,2

6
G2

2 bVsG2d bVsG3d

bVsG2d bVsG3d bVsG4d bVsG3d bVsG2d E −
,2

6
G2

2 bVsG2d

bVsG2d bVsG2d bVsG3d bVsG4d bVsG3d bVsG2d E −
,2

6
G2

2

4 . s28d

The seven eigenvalues of the matrix Eq.s28d can be found analytically and are given by

E1,2=
,2

6
G2

2 + bVsG2d + bVsG3d − bVsG4d,

TABLE I. First several sets of reciprocal lattice vectorssRLVsd. We only
use compound indices 0–18 in the main text.

Set sn1,n2d n1
2+n2

2−n1n2 Compound index

1 s0, 0d 0 0
2 s1,0ds1,1ds0,1ds1̄,0ds1̄, 1̄ds0, 1̄d 1 1–6

3 s1, 1̄ds1̄,1ds2,1ds1,2ds1̄, 2̄ds2̄, 1̄d 3 7–12

4 s2,0ds0,2ds2̄,0ds0, 2̄ds2̄, 2̄ds2,2d 4 13–18

5 s2, 1̄ds1̄,2ds2̄,1ds1, 2̄ds3,1ds1,3d
s3̄, 1̄ds1̄, 3̄ds3,2ds2,3ds3̄, 2̄ds2̄, 3̄d

7 19–30

¯ ¯ ¯ ¯
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E3 =
,2

6
G2

2 + 2bVsG2d − 2bVsG3d + bVsG4d,

s29d

E4,5=
,2

6
G2

2 − bVsG2d + bVsG3d + bVsG4d,

E6,7= F,2

6
G2

2 − 2bVsG2d − 2bVsG3d − bVsG4dG11 ±Î 24bVsG2d2

F,2

6
G2

2 − 2bVsG2d − 2bVsG3d − bVsG4dG22 .

Their dependence onR is shown in Fig. 2. In the limit of
largeR the lowest eigenvalue is degenerate and equal toE4,5.
The eigenvectors corresponding to it satisfy the condition of
Eq. s19d, which stems from the impenetrability of the mac-
romolecular rods on the lattice sites, approximated as infi-
nitely thin cylinders. Other eigenvectors do not satisfy Eq.
s19d, but additional solutions can be obtained by taking lin-
ear combinations of higher-energy eigenvectors, with relative
amplitudes chosen to satisfy Eq.s19d. The corresponding
eigenenergies are then given by appropriate weighings of the
associated eigenvalues.

It is instructive to investigate the lowest-lying eigen-
value in the limiting cases of eitherR→0 or R→`, respec-
tively. We find from Eq.s29d that in these two limits

E4,5sR→ 0d → 8p2

9

,2

R2 ,

s30d

E4,5sR→ `d → − S64w0Mp2

Sk2 −
8sk,d2p2

9
D 1

skRd2 .

For small values ofR the lowest-lying eigenvalue scales as
R−2. For ground-state dominance, where the lowest-lying ei-
genvalue is related to the free energy of the polyelectrolyte
chainfsee Eq.s11dg, this means that the polyelectrolytes add
a repulsive contribution to the interactions between the mac-
roions. In the opposite limit of large values ofR but simul-
taneously with large values of the strength of interactionw0,
the interactions are attractive, as can be again seen from Eq.
s30d, and scale as −R−2. The sign of the asymptotic form of
the lowest-lying eigenenergy depends on the value ofw0.
There is a critical valuew0=wc, above which the lowest-
lying eigenvalue becomes negative. Attractions are thus seen
only for w0.wc ssee Fig. 3d. In the asymptotic limit of Eq.
s30d the critical value ofw0 is seen to be

wc =
sk,d2k2

72
M
S

, s31d

and is obviously a function of the ionic strength of the me-
dium. The critical valuewc also strongly depends on the
partial set of RLVs and converges slowly, just like the eigen-
values themselvesssee belowd. Its exact value would be thus
difficult to evaluate in the reciprocal space analysis. A better

and faster estimate can be obtained from the WKB ansatz to
be discussed shortly.

Let us next analyze the monomer density distribution
given by rsurud=c2surud, for the lowest-lying eigenvalue at
small and large values ofR, R=3 Å andR=30 Å for RLV
sets0–6d. We first consider smallR, depicted on the left part
of Fig. 4. Here the polymer density is mostly concentrated in
the interstitial regions of the hexagonal lattice, with no over-
lap between different lattice sites. For smallR the polymer is
thus squeezed in the interstices between lattice sites leading
to repulsion in the total free energyspositive eigenenergyd.
This steric effect is due to the boundary condition of vanish-
ing monomer density at the surface of the macroion, or in the
limit of small macroion size, vanishing density at the lattice
sites, csuru=0d=0. An analogous distribution of monomer
density is observed also in the 1D case11 at small intersurface
separations. We now consider largeR, depicted on the right
part of Fig. 4. Here a different type of monomer density
distribution occurs, where the monomers tend to concentrate
around the lattice sites, away from interstitial regions, with
nonnegligable density between lattice sites. This means that
parts of the chains span the regions between lattice sites in a
bridging configuration. The eigenenergy corresponding to
these bridging configurations is negative, leading to attrac-
tive interactions. Again the situation is completely analogous
to bridging in the 1D case for large intersurface
separations.11

Let us delve a bit also into the other two sets of com-
pound indicesfthey are s0–12d and s0–18d as defined in
Table Ig for which no analytical solution to the eigenvalue
problem exists and we obtain only numerical solutions for
the eigenenergies presented on Figs. 5 and 6. The qualitative
behavior of the lowest-lying energy eigenvalue is exactly the
same as for the first set of compound indicesssee Fig. 2d.
The lowest-lying energy eigenvalue starts from a large posi-
tive value at smallR, then goes through zero for a finiteR
and finally becomes negative with a minimum at intermedi-
ate values ofR. The asymptotic behavior of the lowest-lying
eigenvalue always seems to follow theR−2 form irrespective
of the choice of the basis set.

By comparing the eigenvalue behavior on Figs. 2, 5, and
6, we see that the above method of consecutive construction
of eigenvalues with partial sets of reciprocal wave vectors
converges very slowly. Although one could in principle con-
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tinue this line of reasoning by going to progressively larger
sets of RLVs, it is desirable to have even an approximate
analytical asymptotic form of the lowest-lying energy eigen-
value in place of detailed numerical computations. In the
next sections we will explore the possibilities of obtaining
these forms.

The most important drawback of the above calculation is
that we did not take into account the fact that the compound
magnitude of the macroion-polyelectrolyte interaction,
w0M /S, explicitly depends on the macroion density orR. In
principle that could also be taken into account but the price
one would have to pay is that it would be much more diffi-
cult to identify the lowest-lying eigenvalue and derive its
analytical properties in terms of dependence onR. This is
due to the fact that the magnitude of interactions would vary
with R and for different values ofR different energy eigen-
values would be minimal. Rather then making the above cal-

FIG. 2. Energy eigenvalues of the first two sets of RLV characterized by the
compound indicess0–6d ssee Table Id, as a function of the lattice constantR.
In this case, and only in this case, can the energy eigenvalues be derived also
analytically ssee main textd. On all figures, unless indicated otherwise, we
have taken 1/k=1 Å, ,=1 Å, w0M /k2S=1, so thatw0 is way above the
critical valuewc fsee Eq.s31dg.

FIG. 3. Lowest-lying energy eigenvalues of the set of RLVs characterized
by the compound indicess0–6d ssee Table Id as a function of the lattice
constantR for subcriticalsw0=0.01d and supercriticalsw0=1d value ofw0.
In the subcritical case the attractive part of the curve is clearly missing. The
exact critical value ofw0 could be obtained only with time consuming
numerical search and would depend on the RLV basis set.

FIG. 4. Monomer density profilesbright regions correspond to high densityd
for RLV set s0–6d and for eigenfunctions corresponding to lowest-energy
eigenvalue at two different values of the lattice constantsR=3 Å and R
=30 Å with w0=1d, rescaled so that the whole unit cell is shown in both
cases. For smallR sleftd the monomer density is confined to the lattice
interstitial regions, given by the triangle centers at ±s30,90,150d degrees
from the x axis. The energy eigenvalue here is positive, corresponding to
repulsive interactions. For largeR srightd the monomer density consists of
circular distributions centered around each lattice point, with a small density
increasesbridgingd along the lines joining the lattice points, which are at
±s0,60,120d degrees to thex axis.

FIG. 5. Energy eigenvalues of the set of RLV characterized by the com-
pound indicess0–12d ssee Table Id, as a function of the lattice constantR. It
is clearly discernible that the difference between the lowest-lying eigenvalue
and the rest is becoming larger. This trend persists as one augments the RLV
basis set.
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culation less transparent and in fact resorting to heavy nu-
merics, while nevertheless still remaining limited by the slow
convergence of the results in the RLV space, we proceed by
a more complete analysis on the Wigner–Seitz cell level,
addressed next.

IV. WIGNER–SEITZ APPROXIMATION

Let us now consider the Wigner–Seitz approximation,
commonly employed in the theory of electrons in crystals.22

Here one deals with a single cylindrical cell instead of a
periodic array. In our case the cell area is set by the macroion
density, and the periodicity of the wave function across the
array is simulated by an appropriate boundary condition at
the edge of the cell. The effective strength of interaction does
not depend on the macroion density anymore.

We thus must solve the following equation within the
cylindrical cell, of radiusR8=ÎÎ3/2pR, chosen so that
pR82=S/M:

F−
,2

6
¹'

2 − w0K0skrdGcsrd = Ecsrd. s32d

There are two boundary conditionssBCsd. One is at the inner
wall of the cell, coinciding with the surface of the macroion,
where the polymer boundary condition enforces the solution
csrd to take the value zero. Again if one approximates the
macroions with thin rods this BC reduces tocs0d=0. The
second BC is that the solution from one Wigner–Seitz cell
should smoothly connect with the solution in the neighboring
cell. This is mimicked by the BC that the normal derivative
of the solution at the outer wall has to vanish. Thus

cs0d = 0, n · = csR8d = 0. s33d

Since by symmetry the wave function can depend only on

coordinater we havein extenso

F−
,2

6

1

r

d

dr
Sr

dc

dr
D − w0K0skrdGcsrd = Ecsrd. s34d

This equation, subject to the zero value BC aturu=0 and zero
slope BC aturu=R8, gives us the complete solution on the
Wigner–Seitz level. Unfortunately, simplified as this ap-
proach already is, it is solvable only numerically. We shall
postpone a detailed numerical analysis of this equation and
the ensuing eigenvalue for a later publication and analyze
here only its salient asymptotic behavior.

We can, however, make some general comments. On
moving away from the rod,c develops a nonzero amplitude,
but has a negative curvature tending to bend it back to zero.
The lowest-energy solution is the one where the wave func-
tion bends back to zero only once in order to match the
zero-slope Wigner–Seitz BC at the outer wall. A simple and
intuitive solution occurs for small values ofw0, where the
potential matters only for smallr. In that case the large
K0skrd factor forces negative curvature on the eigenfunction,
which is, however, not enough to curve the solution down-
wards to satisfy the boundary conditionudcsrd /drur=R8=0.
This can only be achieved if in addition the eigenenergy is
sufficiently large and positive. IfR8 is increased at fixed
eigenvalueE, the wave function will overshoot the bound-
ary; hence, to match the boundary condition at the largerR8,
the eigenenergyE must decrease because this decreases the
curvature. For mostr the potential will be ineffective. Hence
the free-space solution will dominate. It has the formcsrd
,sinkr /Îr, wherekR8=p /2 to ensure the second BC that
csR8d has zero slopesneglecting theÎr termd at the outer
boundary and the sin was taken to ensure the first BC at the
origin. The corresponding eigenvalue is thus

E =
spld2

24R82 . s35d

For finitew0 there is no intuitively straightforward argument
that would describe the general properties of the ensuing
solution.

V. WKB SOLUTION TO THE WIGNER–SEITZ
APPROXIMATION

Before solving Eq.s32d numerically, we will first invoke
the WKB method, an analytical approach that has already
proved useful in the context of polyelectrolyte bridging
interactions.11 This will allow us to find accurate analytical
approximation and asymptotics which is indeed what we are
after.

Let us summarize the general features of the bridging
interaction in the related 1D case,11 involving two charged
planes with a polymer chain in between. There the polymer
density was zero at each plane and the slope was zero at their
midpoint because of symmetry constraints. Two regimes
were found. For smallslarged separation between the planes
relative to the screening length, the polymer density had a
maximumsminimumd at the midplane, leading to prevailing
steric repulsions or bridging attractionssfor details see the
discussion in Ref. 11d. In the present lattice problem the

FIG. 6. Energy eigenvalues of the set of RLV characterized by the com-
pound indicess0–18d ssee Table Id as a function of the lattice constantR. It
is again discernible that the difference between the lowest-lying eigenvalue
and the rest is becoming larger.
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Wigner–Seitz cell corresponds roughly to one-half the con-
fining space between the plates in the 1D case. Depending on
the spacing between the macroions the polymer density will
by analogy have a maximumsminimumd at the edge of the
cell for small slarged macroion separations leading again to
repulsivesattractived interactions. Most of the physics of the
1D case is thus strictly preserved in the 2D case, which is
both surprising and encouraging.

First we rewrite the Schrödinger equation in terms of the
new variablex=log r. It reads

d2csxd
dx2 +

G

,2fE + w0K0skexdge2xcsxd = 0, s36d

allowing for a very straightforward application of the stan-
dard WKB formalism.24 Depending on the sign ofE
+w0K0skexd the WKB solution has two standard forms. To
see this we revert back to the original variabler, and intro-
duce the auxiliary function

gsrd =
6

,2fE + w0K0skrdg. s37d

In terms ofgsrd, the two types of solution can be written as

csrd , fgsrdr2g−1/4 expf± iEr

gsrd1/2drg, gsrd . 0,

s38d

csrd , f− gsrdr2g−1/4 exph±Er

f− gsrdg1/2drj, gsrd , 0.

As indicated above the wave functioncsrd should be zero at
the center of the cell and have zero slope at the outer bound-
ary of the cell, or

csr = 0d = 0

and

Udcsrd
dr

U
r=R8

= 0. s39d

These two BCs and Eq.s36d allow us to calculate the energy
eigenvalue in the standard manner. Considerk and l to be
fixed. The lowest eigenvalueE is still a function ofw0 and
R8: E=Esw0,R8d. At fixed R8 let us consider the effect of
increasingw0 from 0, whereE is given by Eq.s35d. By Eq.
s36d, to maintain the same average curvature integrated over
r, an increase inw0 should be accompanied by a decrease in
E. For E.0 sso w0 is not too larged, at fixedw0 let us now
consider the effect of increasingR8. By Eq. s36d, to maintain
the same average curvature integrated overr, an increase in
R8 should be accompanied by a decrease inE. Thus the
system tends to self-repel. For some critical valuewcsR8d of
w0, the system attains the valueE=0. For largerw0, so E
,0, the behavior can be more complex, because for larger
the curvature can become positivesi.e., dominated by nega-
tive Ed. In this case, for a given value ofw0, there is a value
of R8 beyond whichE becomes less negative asR8 increases.
We will see this behavior in what follows. The equilibrium
valueR0sw0d of R8 occurs fordE/dR8=0.

Using the parameters 1/k=1 Å and,=1 Å, Fig. 7 pre-
sents two families of ground-state eigenvaluessw0=0.01 and
w0=1.0d as functions ofR8. As expected, the curve for larger
w0 has the smallerE. The twoEsR8d curves have the same
qualitative characteristics as the corresponding solutions in
Fig. 5, obtained by solving the Schrödinger equation in re-
ciprocal lattice space. In this case, however, we explicitly
consider the completeR8 dependence of the eigenvalue.

These curves also show that, as indicated above, for suf-
ficiently large w0 the eigenenergy becomes negative. This
indicates a binding, i.e., a bridging attraction. For the small
value R8=3 Å, the corresponding monomer density is pre-
sented on the left-hand side of Fig. 8, and shows sterically
confined polymer chains with a maximum in the density pre-
cisely at the outer wall of the WS cell. For the large value
R8=30 Å, presented on the right-hand side of Fig. 8, the
density maximum is displaced to the interior of the cell with
finite but small density of the polymer at the outer wall of the

FIG. 7. Energy eigenvaluesEsR8d obtained with the WKB method in the
Wigner–Seitz model. The upper curve is forw0=0.01 and the lower curve is
for w0=1.0. The qualitative form of the eigenvalue as a function ofR8 is
very similar to the one obtained from the reciprocal lattice method. All the
parameters are taken the same as in the reciprocal lattice case.

FIG. 8. Monomer density profile for Wigner–Seitz WKB approximation
with w0=1, for two WS radiisR8=3 on the left andR8=30 on the rightd,
rescaled so that the whole unit cell is shown in both cases. For smallR8 the
configurations are confined, with most of the chain at the outer wall of the
cell, whereas for largeR8 there again are bridging configurations, with a
density maximum in the interior of the cell. The two density profiles repre-
sent WKB Wigner–Seitz approximations to the lattice calculations, Fig. 4.
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WS cell. This distribution of the chain corresponds to bridg-
ing configurations where the finite monomer density at the
outer wall simulates chain bridging between neighboring
cells. Qualitatively the state of affairs is exactly the same as
in the reciprocal lattice space calculation. All this is again
completely analogous to the 1D case,11 where at small sepa-
rations between the plates the polymer accumulates in the
middle of the intersurface space, leading to repulsive inter-
actions, or close to the plates, leading to bridging attractions.

In order to derive analytical estimates forE=Esw0,R8d
from the WKB ansatz, we will proceed separately for the two
cases wheregsrd.0 for all r sas occurs forE.0d and
wheregsrd,0 for large enoughr sas occurs forE,0d.24

A. Solution if g„r…>0 for all 0 <r<R8

For gsrd.0 one hasuEu,w0K0skrd in the whole inter-
val 0,r,R8. As indicated above, this does not necessarily
imply that E.0 and one can thus have repulsive as well as
attractive polyelectrolyte-mediated interactions. Let us take a
closer look at this solution. The BC at the center of the
Wigner–Seitz cell sets the WKB wave function to be of the
form

csrd , fgsrdr2g−1/4 sinFE
0

r

gsrd1/2drG . s40d

Taking into account the zero-slope boundary condition atr
=R8, the phase of the sine of the argument in Eq.s40d is p /2,
so

E
0

R8 ÎE + w0K0skrddr =
p

2
Î,2

6
. s41d

This may be written in dimensionless form as

E
0

kR8Î E

w0
+ K0suddu=

p

2
Îsk,d2

6w0
. s42d

In principle, this givesE/w0=FskR8 ,sk,d2/w0d. The critical
value wcsR8d of w0, where E=0, is obtained on setting 0
=FfkR8 ,sk,d2/wcg.

There is no closed form analytical solution to Eq.s42d
since the integral on the left-hand side cannot be reduced to
elementary quadratures. There are nevertheless a few limit-
ing cases that can be dealt with explicitly. First note that the
E=0 line separates bridging configurations from nonbridging
configurations. We have already encountered this phenom-
enon in the reciprocal lattice calculation where a critical
valuewc separated the case with no attractionssnonbridging
configurationsd and the case with finite attractionssbridging
configurationsd. In the above WKB limit we are able to ob-
tain an approximate value forwc in the following way. The
branching point is defined byE=0 andw0=wc, thus leading
to

E
0

R8 Îw0K0skrddr =
p

2
Î,2

6
. s43d

This equation has a solution only forw0ùp2/24
32.119552sk,d2<0.0915sk,d2. The branching point is thus
defined by

wc = sm/edc,B <
p2

0.1
sk,d2. s44d

The WKB solution thus allows us to compute the critical
ratio of the charge per unit length of the macroionm and
charge per segment of the polyelectrolytee that allows for
bridging configurations. For anyw0.wc there will be a re-
gime of R8 with bridging configurations. This is all very
similar to the 1D case.11

One cannot, however, compare Eq.s30d with the limit
fEq. s44dg directly, since in the former case we assumed that
the effective strength of the interaction is macroion density
independent. The result in Eq.s44d thus presents the correct
form of the condition for the branching point in the solution.

Let us now try to extract some limiting laws from the
WKB solution fEq. s41dg. For smallw0, Eq. s41d leads to the
expression

E
0

R8 ÎE + w0K0skrddr . ÎER8 +
w0

2ÎE
E

0

R8
K0skrddr

+ ¯ =
p

2
Î,2

6
. s45d

Thus we furthermore have

EsRd . Sp

2
D2 ,2

6R2s1 + 1
2
Î1 − asR8d − 1

4f2 + asR8dgd ,

s46d

where

asR8d =
12w0

S 2

p
D2

sk,d2

skR8dE
0

kR8
K0suddu. s47d

From this we conclude that for weak enough electrostatic
attractions between macroions and flexible polyelectrolyte
chains, i.e., for sufficiently smallw0, the electrostatic effects
are only a perturbation to dominant steric effects. Note that
Eq. s47d reduces to Eq.s35d asw0→0, as expected.

B. Solution if g„r…<0 for some 0 <r<R8

Here again our analysis follows the analogous 1D case.11

For E+w0K0skrd,0, the situation is more complicated than
above. Clearly in this case one should haveuEu.w0K0skrd
corresponding either to smallE,0 with a weaksattractived
interaction characterized byw0, or to a large enough cell that
the interaction is well screened at the Wigner–Seitz radius
R8.

In this case, for smallr the curvature of the wave func-
tion as deduced from the Schrödinger equationfEq. s32dg is
negative for smallr, but positive for larger,R8. We will
call the pointr0, where the curvature is zero, the classical
turning point. It is the solution of

− uEu + w0K0skr0d = 0. s48d

In principle this givesr0sw0,Ed, but E is not yet known, and
the method of the previous subsection does not apply to the
present case.
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By neglecting the prefactorgsrd−1/4, the WKB solution
for small r with zero value atr=0 varies as a sine, and for
r.r0 the solution is a sum of sines and cosines. The two
solutions have to be continuous at the turning point, which
gives us the necessary constants as they are typically ob-
tained in the WKB framework.24 Specifically,

csrd , fw0K0skrd − uEug−1/4

3sinHÎ 6

,2E
0

r

fw0K0skrd − uEug1/2drJ,

0 , r , r0,

csrd , fuEu − w0K0skrdg−1/4HeM0 sinFp

4
− jsrdG

+ e−M0 cosF p

12
+ jsrdGJ, r0 , r , R8, s49d

where we introduce two auxiliary quantities

M0 =Î 6

,2E
0

r0

fw0K0skrd − uEug1/2dr,

s50d

jsrd =Î 6

,2E
r0

r

fuEu − w0K0skrdg1/2dr.

The sin term of the interior solution already takes into ac-
count the boundary condition at the originr=0, while the
boundary condition of zero slope at the outer boundary of the
Wigner–Seitz cell has to be taken into account explicitly.
This boundary condition atr=R8 reduces to

cosFp

4
− jsR8dG + e−2M0 sinF p

12
+ jsR8dG = 0. s51d

As M0 is strictly positive and varies from +̀ to +0, the
solutionjsR8d of this equation varies from 3p /4 to 5p /6. In
the general case,jsR8d can be obtained only numerically,
although clearly it depends only weakly onR8. We can ex-
ploit this weak dependence onR8 and derive a closed form
approximate analytical solution for the eigenenergy in the
asymptotic regime ofR8→`.

To obtain this approximate solution we introduce the di-
mensionless variablekr=u, with kR8=U andkr0=u0. Then

M0 =Î 6w0

sk,d2E
0

u0

fK0sud − K0su0dg1/2du,

s52d

jsR8d =Î 6w0

sk,d2E
u0

U

fK0su0d − K0sudg1/2du.

In the asymptotic limit where we assume thatuEu→0, we can
approximateK0sud.Îp /2ue−u in the equation forj and
K0sud.−log u/2−g in the equation forM0. Then we expand
j in terms ofK0sud andM0 in terms ofK0su0d. This reason-
ing leads to the following approximate forms:

M0 .Î 6w0

sk,d2E
0

u0 SÎ− log
u

2
+ . . .Ddu

=Î6w0p

sk,d2 h1 +Ofes−u0dgj,

s53d

jsR8d .Î 6w0

sk,d2
ÎÎ p

2u0
e−u0E

u0

U

s1 + . . .ddu

=Î 6w0

sk,d2
ÎÎ p

2u0
e−u0

3hU − u0 − 1
2 + Ofe−su−u0dgj .

We have taken into account above that bothU and u0 are
large in the asymptotic limit. From the boundary condition it
now follows thatj is a function only ofM0, which itself is a
function of 6w0p / sk,d2 and no longer depends onu0. Invok-
ing now the definitionfEq. s48dg of the classical turning
point u0 andK0sud.Îp /2ue−u, we find that

jsR8d .Î 6

sk,d2uEu1/2SU − u0 +
1

2
D . s54d

In the asymptotic limit of large cell size the conditionU
.u0.1 is satisfied and one can obtain the following ap-
proximate expression:

uEu .
sk,d2j2

6sU − u0d2 +
1

2

.
sj,d2

6R82 . s55d

Here we need to keep in mind thatj is a function only ofM0

and is always within the interval 3p /4,jsR8d,5p /6. Since
this solution is only valid for large enoughR8 fthe opposite
limit is covered by Eq.s46dg the above equation effectively
claims that

−
3sp,d2

32R82 & E & −
25sp,d2

216R82 . s56d

We see that the free energy has a long-range attractive tail, as
already tentatively derived in the reciprocal space calcula-
tions of Eq.s30d, falling off algebraically with the size of the
Wigner–Seitz cell. The form of the dependence of the com-
plete WKB solution onR8 ssee Fig. 7d completely corrobo-
rates the derived asymptotic forms. Since the radius of the
WS cell is derived from thes2Dd density of the macroions,
rM =1/pR82, we can immediately write down that

E . − gs,2rMd,

where

0.094p3 , g , 0.116p3. s57d

It is surprising that such a good estimate can be obtained for
the magnitude of the polyelectrolyte bridging interaction in
the system under investigation. We are not aware of any
simple scaling argument that would reproduce the exponent
of 1 in the density dependence of the bridging attraction. One
of course has to be aware that this is a limiting form valid
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only within restrictive conditions and constraints detailed
above.

VI. RESULTS AND CONCLUSIONS

This work analyzes the polyelectrolyte-mediated interac-
tions in an array of oppositely charged macroions. Apart
from geometry and dimensionality this is the same problem
as already discussed for the case of two charged surfaces
with intervening polyelectrolyte chains.11 The physics in
both cases is the same but the nature of the two-dimensional
array makes the range of the polyelectrolyte-mediated inter-
actions much larger.

In our analysis of the polymer-mediated interactions on a
2D lattice of macroions we start from two different direc-
tions yielding similar results:

• We formulate the polyelectrolyte on a 2D lattice prob-
lem that we were able to solve by applying the methods
developed to describe electrons in an ionic crystalline
lattice. The only fundamental difference is that in the
polyelectrolyte case the lattice-polymer interaction po-
tential is of a screened Debye–Hückel form as opposed
to the unscreened Coulomb form appropriate for elec-
trons in a crystal. We derive that for sufficiently strong
polyelectrolyte-macroion electrostatic coupling the free
energy exhibits attractive, i.e., bridging interactions,
falling off approximately linearly with the macroion
density but with relatively poorly defined absolute mag-
nitude.

• We formulate the polyelectrolyte-mediated interactions
in the framework of a Wigner–Seitz model, where a
single cell with appropriate boundary conditions is sub-
stituted for the whole lattice. This calculation lent final
support for the rather tentative conclusions of the first
calculation. We again derive bridging interactions at
sufficiently large polyelectrolyte-macroion electrostatic
coupling and obtain an exact limiting law for small
macroion densities, of the form suggested by the lattice
calculation, but in addition we are able to derive also a
well-defined numerically bracketed coefficient.

By analyzing the energy eigenvalue equation in the lattice
approach for different RLV basis sets we were able to guess
that the lowest-lying eigenenergy has a long-range tail in the
limit of small macroion densities. In fact, the only case that
we were able to solve analytically suggested that in the
asymptotic limit of vanishing macroion density, i.e.,R→`,
the polyelectrolyte free energy behaves asF,R−2. But since
this result gives only one part of the total eigenenergy depen-
dence on macroion density, it is by itself of rather limited
validity. Fortunately we were able to corroborate these ten-
tative results by a more detailed WS calculation. The same
reasoning applies also for the tentative identification of a
branching point in the solution that delimits a regime where
polyelectrolyte-mediated interactions are repulsive, corre-
sponding to steric compression of the polyelectrolyte chains
by the macroions, from the one where they turn attractive,
corresponding to bridging configurations of the polyelectro-
lyte chain between the macroions.

The Wigner–Seitz model itself does not lead to any
simple analytical estimates since the Schrödinger equation is
not solvable by simple quadratures. We thus went one step
further and applied the WKB approximation to obtain simple
closed form solutions of the Schrödinger equation. The WKB
solution yielded simple analytical forms of the asymptotic
behavior of the polyelectrolyte free energy. We again were
able to prove that indeed in the asymptotic limit of small
macroion density, the polyelectrolyte free energy behaves as
F,R−2, and we obtained a good estimate for the numerical
coefficient in this scaling relationship. We established di-
rectly that there is a critical value of the strength of the
polyelectrolyte-macroion interactionwc that separates the
bridging from the compression regime and thus attractions
from repulsions. This appears to be a salient feature of the
behavior of this system. We are thus confident that even
more detailed numerical solutions of this problem will show
similar bifurcation in the nature of polyelectrolyte-mediated
interaction.

Similar features of the polyelectrolyte-mediated interac-
tion are clearly seen also in experiments on DNA-polycation
complexes.16 The polycations, being poly-L-lysine and poly-
L-arginine, are both about 30–100 units long and sufficiently
flexible and charged to be well described by the Edwards
model. Thus our calculation may provide an alternative in-
terpretation to these experimental findings that does not rely
on strong-coupling electrostatics.16 Our results also show
that for large macroion densities the polyelectrolytes are
sterically confined and localized in the interstices of the 2D
lattice. Here a strong-coupling electrostatics analysis16 might
be a much better choice since our model describes a spatially
inherently disordered polymer. On the other hand for small
macroion densities, where polyelectrolyte chains could be
well described as disordered, our approach might carry more
weight than strong-coupling electrostatics that relies mostly
on ordered configurations of the polyelectrolyte chains. It
may well be, however, that both effects, strong-coupling
electrostatics as well as polyelectrolyte bridging, combine to
give the complex salt-dependent interactions seen in this ex-
periment.

In spite of the similarity between the 1DsRef. 11d and
2D case of polyelectrolyte bridging interactions, there is a
huge difference in the asymptotic form of the polyelectrolyte
free energy. In 1D the free energy decays exponentially with
the separation between the two charged surfaces, where the
characteristic exponent is on the order of the single polymer
link size.11 In 2D, however, the free energy decays algebra-
ically with the macroion lattice spacing and is thus of long
range. The difference is basically due to the different topolo-
gies of the 1D and 2D cases. In the 1D case a single long
polyelectrolyte chain can only bridge two surfaces. Even
when there is an array of surfaces the polyelectrolyte chains
cannot bridge next neighbors nor, even less, surfaces that are
further apart. In the 2D case a single very long chain can
bridge the spacing between many different macroions and
can thus confer a much stronger bridging interaction to the
whole assembly. This many-body multiplication of bridging
also extends the range of the interactions, turning short-range
bridging into long-range bridging.
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One should note at the end that Edwards model on which
our calculation is based, describes inherently flexible poly-
mer chains. For semiflexible stiff chains the description
would by necessity have to start from a wormlike chain
model. Unfortunately this model is much more difficult to
solve in the presence of external interaction fields such as
screened Coulomb electrostatics.25

In this work we were mostly concerned with the concep-
tual and formal issues of how to calculate polyelectrolyte
bridging interaction in the 2D macromolecular arrays. We do
not aim for extensive numerical computations and possible
comparison with the phase behavior of this system in rel-
evant experiments.16 In that case one would have to add the
polyelectrolyte-mediated interaction termsF of Eq. s11d to
direct macroion–macroion interactions described by the free
energyFM that have been resolved and understood on a mo-
lecular level for the case of DNA.26 Such an investigation
would thus focus on the behavior of the total free energy of
the array, as a function the macroion densityrM. We will
embark on this study in a forthcoming publication.
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