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We investigate polyelectrolyte bridging interactions mediated by charged, flexible, polyelectrolyte
chains between fixed cylindrical macroions of opposite charge in a two-dimensional hexagonal
crystalline array. We show that in the asymptotic regime of small macroion density, the
polyelectrolyte-mediated attraction is long range, falling off approximately linearly with the
macroion array density. We investigate the polyelectrolyte free energy as a function of the macroion
density and derive several analytic limiting laws valid in different regimes of the parameter
space. €2005 American Institute of PhysidDOIl: 10.1063/1.1908870

I. INTRODUCTION together, i.e., charged interfaces with charged polymers, in
the seminal work of Muthukumaf. A major conclusion of
Charged polymers are ubiquitous in colloidal systemsthis work was that, due to the connectivity of the polyelec-
and soft matter in generdf, and play a fundamental role in trolyte chain, its behavior bears almost no resemblance to the
determining the interactions between, as well as the stabilit¢ase of confined unconnected ions. A self-consistent field
and structure of, variousimacrgmolecular assemblies. theory, akin to the usual Poisson—Boltzmann theory of elec-
Charged polymers are sufficiently different to set them apartrostatic interactions in colloidal systems, has been proposed
from noncharged polymersTheir effect on colloidal inter-  for confined polyelectrolytes and applied successfully to
actions has been studied and exploited in various technologpolyelectrolyte-mediated interactions between charged
cal contexts ranging from the paper industry to the pharmasyrfaces! This approach was later generalized to include
ceutical industry. Their most basic role nevertheless is steric interactions between polymer segments on adsorption
played in the biological context. They are essential and funand polyelectrolyte-mediated interactitit:> For small mac-
damental components of the cellular environment and makgoions with freé* or grafted polyelectrolyte chains a differ-
their mark in its every structural and functional aspédtss  ent approach was found to be more convenient, based on a
thus no surprise that the behavior of charged polymer chainguadratic variational ansat2.It allows for an elegant and
in the biological context has been one of the major foci ofstraightforward evaluation of the polyelectrolyte-mediated
soft matter research. interactions in the geometry where self-consistent field
The connectivity between charged segments along thgheory would be more difficult to solve.
polymer chain is an essential feature of polyelectrolytes and  A|l of the above approaches are, however, based on a
can often lead to a very peculiar interaction, whereby long+wo-body approximation. The polyelectrolyte bridging is as-
charged polymers can mediate interactions between macrgymed to involve at most two macroions, be they macromo-
ions of opposite chargéfor recent reviews see Refs. 7 and |ecular surfaces or indeed whole macromolecules. Recent ex-
8). The term bridging interactions is usually applied to thisperiments on DNA-polycation complex&s, however,
situation, where a single chain can adsorb to twomorg  syggest that polyelectrolyte bridging might involve many
oppositely charged macroions and via its connectivity mediparticles as well. A single polyelectrolyte chain can bridge
ate attractive interactions between them. These interactiongyeral macroions conferring an interaction that cannot be
have been studied intensively both experimentally as well agpproximated on a pairwise level. We take this picture as a
theoretically. motivation for our present work, which investigates the
Polyelectrolyte chains in the bulk, worked out at differ- many-body bridging interactions that occur when a single
ent levels of approximatiohare reasonably well understood. polyelectrolyte chain mediates interactions between several
Confined (neutra) polymers are also well understood, and gppositely charged macroions. The theoretical framework for
the forces between confining surfaces have been studied @is analysis is based on the Edwards model of a flexible
various levels of approximatiohThe two were first brought  chairt” in an external-screened Coulomb potential provided
by the lattice of charged macroions. In what follows we will
¥Electronic mail: rudi@helix.nih.gov concentrate exclusively on conceptual framework and will
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try to derive approximate limiting laws for the
polyelectrolyte-mediated interactions. We will leave detailed
numerical solutions to a forthcoming paper.

The present work is, apart from the difference in geom-
etry, closely related to previous work of one of the autHbrs.
There, in a background ionic solution, charged polymers
(e.g., of positive sighproduced a short-range attraction be-
tween two charged planés.g., of negative signAssuming
no lateral inhomogeneities, the problem discussed was effec-
tively one dimensional1D). Here for a two-dimensional
(2D) hexagonal lattice model in a background ionic solution,
charged polymerge.g., positively charged polylysine or
polyarginine of between 30 and 100 monomeysoduce a
long-range attraction in an array of rodlike cylindrical mac-
roions (e.g., negatively charged DNA molecule$Ve show
that this long-range attraction stems from bridging configu-
rations of flexible polyelectrolyte chains in the macromo-
lecular array at sufficiently low macromolecular densities.
This attraction might add or compete with the polycation
correlation effect®*® FIG. 1. A schematic presentation of the model system. Long infinitely stiff

The outline of the paper is as follows. We first formulate charged macroions of radiasoccupy the sites of a 2D hexagonal array with
the model of charged polyelectrolyte chains and apply it or{a_ttice spacinR. Oppo_sitely chgrged flexible pplyelectrolytg chains interact

. R . with an electrostatic field provided by the lattice of macroions.
the mean-field level to a periodic hexagonal lattice of oppo-
sitely charged cylindrical rods. In order to make this problem
transparent and simply solvable we first assume that thpositively-charged polyelectrolyte chajndVe assume that
strength of the macroion-polyelectrolyte interaction is con-the most important part of the total energy is the interaction
stant. We then remove this constraint in the Wigner—Seitof the flexible chains with fixed macroion charges and disre-
calculation. The eigenvalue equation in the lattice model igard self-interactions among the polyelectrolyte chains. The
directly analogous to that for electrons in a 2D crystal. Welatter would in fact only renormalize the persistence length,
calculate the eigenenergy for a few of the lowest-lying eigenan effect which we will disregard. Moreover, we also neglect
states using a reciprocal lattice vect®LV) basis set, and the interaction of flexible chains with one another, an ap-
we show that for sufficiently strongly charged macroions itproximation valid for sufficiently low polyelectrolyte den-
leads to attractive polyelectrolyte-mediated interactions thasity. A schematic representation of the geometry and the
correspond to polyelectrolyte bridging configurations. Themodel is given in Fig. 1.
slow convergence of the RLV formulation together with the ~ The polyelectrolyte chains are described with a con-
assumption of fixed, i.e., macroion density-independentinuum Edwards modé&] of N freely jointed segments, each
strength of the interaction, precludes us from establishingf Kuhn's length,¢, with a total contour lengtiN¢. The total
any firm limiting laws. In order to get stronger analytical number of polymer chains i&. The total number of macro-
estimates and/or limiting laws we then formulate the saméons is taken as\1. As indicated, all electrostatic interactions
problem on the Wigner—Seitz cell level and solve it approxi-are mediated by screened Debye—Huickel interacfiofise
mately with the Wentzel-Kramers—BrillouitWKB) ansatz.  configurational part of the Hamiltonian of a single chain can
This allows us both to numerically estimate the critical linearbe written a&’
charge density of the macroions that leads to attractive bridg-
ing interactions and to obtain the form of bridging interaction 3 (N {dr(n)

2 N

as a function of the macroion density. We conclude the paper BHIr(n)] = 2¢2 0
with a discussion of the significance of these findings as well

as with a proposal for more detailed numerical Ca":U'atiO”?Nhereﬁ:(kBT)‘l is the inverse thermal energy an¢h) is

o_f _the interaction for the full range of macromolecular den-i,q position of thenth segment of the polyelectrolyte chain.
sities. Since by assumption the chains do not interact with one an-
other but interact only with the macroions, the total Hamil-
tonian decouples into a sum of one-particle Hamiltonians.
The many-chain effects thus show up additively in the free
The model system has two components, in addition teenergy, where the result for the single chain is simply mul-
the background ionic solution. The first component is a set ofiplied by the total number of chain¥” (see below.
infinitely stiff, charged, cylindrical macroior&.g., DNA) of The external interaction potential of fixed macroions is
radiusa on a 2D hexagonal lattice with lattice constaéit  characterized by the potential energlr (n)], which repre-
Each macroion acts as a source of screened Debye—Hick&tnts the screened electrostatic interaction between one of
electrostatic potentiéﬁ The second component is a set of the flexible polyelectrolyte segments and all of the charge on
oppositely charged flexible polyelectrolyte chairte.g., the macroions. Taking thénegative charge per unit length

Il. MODEL OF A CHARGED ASSEMBLY OF STIFF
RODS AND FLEXIBLE POLYELECTROLYTES
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along the macroion rods to beu—and the charge per seg- G(p.p' N =S () th(p')eEN (7)
ment of the flexible polyelectrolyte to k& we have o T
we [T erl we obtain the Schrédinger equation for the eigenfunction
V(p) =~ 47Teeof_w r—r'] dz Jn(p) and their dimensionless eigenvalugsin the form
62
e ——VZ—WEK(p—p-))d/(p):E I(p), (8)
=" 4:66 Ko(kp) = = kgTWoKo(xp), (2 ( 6 - i o D) e
0

. o where we employed Ed3). The eigenfunctions, being real,
where the long axis of the macromolecules is oriented alon%re subject to normalizatiofy2d?p=1. The above equation
. . o ) = .
the 7 axis. HereKq(x) is the cylindrical Bessel functior is very similar to the Schrodinger equation for an electron in

=lpl, V‘k’]ith _p:(>/<,y), aEd the /dime/nsionlessh Interaction 5 atticé? except that the unscreened Coulomb interac-
sr:rengt ‘éVOTj“e, (4"“(') BT)E('““ &o)(e ev)gB'hW err]e{’B 'S tion is replaced by the screened Debye—Hiickel interaction.
the standard Bjerrum length. We assume that the macroiofy, ¢ follows we shall exploit this obvious analogy.

radiu;a is gmall gnd that their finite size, which can be Since in Eq.(7) the exponent depends linearly on the

gffectlvely hldden IMWo, Can be neglected. The total mterag- length of the chaim\, for a sufficiently long chain only the

tion potential, obtained by summing the above EXPressioihyest eigenvalue and thus only the lowest term in the sum

over all the 2D hexagonal lattice sites, is then Eq. (7) should matter. This statement is usually kI’IOV\ég as the
_ ground-state dominancansatz in the polymer literatuféin

Vip) =~ kBTWOEi: Kollp = pil)- (3 this limit the Green function and the polyelectrolyte free en-
ergy assume the approximate forms
Clearly the interaction between a polyelectrolyte chain and LN N —E-N
the macroions depends only on they) coordinates since Gp.p"N) = tho(p)dlp')e ™
the system is assumed homogeneous inztd&ection, i.e., and
its properties do not depend on thecoordinate. For DNA _
this is a reasonable assumption only for low densftigzur- F=ksTEN, ©)
thermore the interaction potential has the same symmetry aghereas the monomer density can be written as
the underlying lattice of charged macroions.

For the Hamiltonian Eq(1), and for a system that is plp) = y7(p). (10
homogeneous in the direction, the Green function of the One should differentiate here between the above density and
polyelectrolyte chain, being the probability density that thethe 2D radius vectop=(x,y). The lowest-lying eigenvalue
chain of N links will end up atp’ if it starts from p, is  of the Schrodinger equation thus determines the polyelectro-
defined by" lyte free energy directly. Similarly the square of the eigen-

p(N)=p function determines the polyelectrolyte density in complete

G(p,p":N) = D[p(n)] analogy with quantum mechanics. This simple correspon-

p(0)=p’ dence is somewhat obscured if one goes beyond the ground-
p{ 3 (N dp(n)r state dominance ansatz. In order to get the complete free
Xexp)y - d

energy one has to multiply the above result by the number of

5p2
2¢°)o L dn the chains, thus

F = kgTEy(NN) = kg TEQN, (11

whereN is now the total number of monomers in the system.
The additivity of the free energy applies only on the level
where the interchain interactions can be neglected.

N
- BJ V[p(n)]dn}, 4)
0

From the Green function it is straightforward to obtain the
corresponding free energy of the chain in the form

F=-kgTlo ff ,p';N)d?pd? } 5
B 9{ Glp.p";N)d"pdp ®) lll. PERIODIC LATTICE OF RODS

The definition of the Green function for a system homoge-  We now consider the Schradinger equatj&y. (8)] ex-
neous in thez direction leads in a straightforward way to the plicitly. For finite-size impenetrable macroions the boundary

solution of a “Schrodinger equation” of the foff condition at their surface is that the polyelectrolyte density is
, 5 zero, orp(|p|=a)=¢?(|p|=a)=0. Therefore, at the surface of
5g(p,p ’N) ¢ 2 ’ ’ i =a)= i i i
e 2 V2G(p,p' N) + BV(p)G(p,p' N) the macroion/(|p|=a)=0, wherey is now the eigenfunction
oN 6 corresponding to the lowest-energy eigenvalue. For simplic-
=&(p-p")sN) (6) ity, we treat each rod as having zero radius, so the boundary

condition ¢A|p|=0)=0 applies on the axis of each rod. Near
whereVi is the 2D Laplace operator in the&,y) plane. If  each rod the potentidl(p) is strongly attractivei.e., nega-
we now introduce the standard eigenfunction expansion fotive), and dominates the eigeneneigy Hence, near the rod
the Green function the curvature of the wave function is negative, corresponding
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to an oscillatory behavior; starting from the value zero at S u,(G)=0. (19)
each rod, the solution will resemble a sine function. G

A second boundary condition is that the solution must be
periodic as one goes from cell to cell, as we will see shortlyAs already alluded to for long chains, the dominant contri-
Since the total interaction potential has the same symmetrigution to the partition function comes from the lowest-lying
as the underlying lattice it can be expanded in terms of theigenvalue, which we assume corresponds to the ground
reciprocal lattice vectoréRLVs) G as? state withk=0. Therefore, in the limit of very long chains

_ we only consider
V(p) =2 €°7V(G), (12)
G

n(p) = 2 €°Pu,(G). (20)
where we define the Fourier coefficients of the interaction G

otential as . . .
P This ansatz leads to a Schrodinger equation of the form

1 )
V(G)=Z| d?pe’®PV 2
© SL pe VD) %qun(e)wE V(G -G U (G) =Eun(G), (21

kg Tw ¢
=- uf d?pe P Ko(klp— pil) . . . .
S Js i or, if we take into account the form of the interaction poten-
tial in reciprocal space,
keTWo [ =G p; a-iG-(p-p)
=-—— | d?®pX e C P (klp-p)),
5 Js Eu(G)—2<€—2G25 Lo o )
(13) A N N
where S is the total area of the system perpendicular to the XU,(G'), (22
long axes of the macroions. Taking into account that on sum-
ming over a lattice ofM sitesp; one has wheredg ¢/ is the Kronecker delta. The similarities with the
_ theory of electrons in a crysfﬁlare now even more appar-
e'CPi= M, (14)  ent. The only difference is that for polyelectrolytes we re-
i strict ourselves to th&=0 solution, and the interaction po-
; tential is of a screened Debye—Hiickel type as opposed to
it follows that . .
standard Coulomb potential. The solution of the above equa-
M . tion clearly depends on the symmetry of the reciprocal lat-
V(@) =—kgTwo— | dpe PKo(x|pl) tice. Let us now assume that the macroions are arranged in a
s 2D hexagonal lattice with lattice spacii®) where the real
B M 27 space basis is
== kBTWOEm' (15
al =Ri
Hence the interaction potential has only Fourier components (23
with inverse lattice vectors. Moreover the total strength of R
the macroion-polyelectrolyte interactiom M /S obviously Q= E(I +13j),
depends on the macroion density. We will comment on this
as we proceed. so the unit cell area i§/M=a, X a,=R%/3/2. The RLVs

The periodicity of the interaction potential has to be .4 then be written as
taken into account also in the Schrédinger equation in a way
completely analogous to the case of electrons in a cr%tal. G =nyb, +nby, (24)
The Schrddinger equation has a solution

ik whereny, n, are integers and the basis vectors are given b
Yo (p) = €5 Pu(p), (16) L M g given by
where by Floquet's theorem for any lattice vedithe func-

_ 2w i
tion un(p) is periodic by = RV’E(\'BI D,

Ui+ R) = Uni ), (17) . @9
and can thus be expanded in terms of the RLVs as b, = ﬁzj
Unk(p) = % €8u,(G). (18 The square of the RL\G is thus
2
Note thatu,(p=0)=0 to satisfy they(p=0)=0 boundary G2= (2_77> 4 n2+n-nn 26
condition. This leads straightforwardly to R 3( 1+ Nz~ MiMy). (26
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TABLE |. First several sets of reciprocal lattice vectgRLVs). We only £2
use compound indices 0-18 in the main text. Eu, = EG%UI = BV(Gy)(ug + Uy + Ug) — BV(G3) (U3 + Us)
Set (ny,Nny) nZ+n3-n;n, Compound index — BV(G,)u,
1 ©, 0 0 0 ,
2 (1,0(1,1(0,1)(L,0/(1,1)(0,1) 1 1-6 ¢
=— +u, + +
3 (1 )(1 02 DL 202D 3 712 Eu, 6 GaU, = BV(Gy)(Ug + Uy + Ug) — BV(G3) (Uy + Up)
4 0,2(2,0)(0,2(2,2)(2,2) 4 13-18
l - BV(Gy)us,
s LICACH OIS T 19-30 PV(Galts
(3,1)(1,3)(3, )(2 3)(3,2)(2,3) €2
Eus= s G3u3 — BV(G,)(Ug + Uy + Uy) = BV(G3)(Uy + Us)
= BV(Gy)ug, (27)

The RLVs can now be ordered into sets according to their
magnitude. A few of the lowest-lying sets are given in Table ¢2
I, together with the magnitude of the corresponding recipro-  Eu, = —Gau, — BV(G,)(Ug + Ug + Us) — BV(G3)(Up + Ug)
cal lattice vector and the compound indices used later for 6

bookkeeping purposes. In what follows we will find humeri- - BV(G,uy,
cal, and in one case analytical, solutions for the eigenvalue
systems defined by compound indid€s-6), (0-12, and fi- 2

¢
nally for (0-18. The first set of compound indices corre-  EUs=— 6 G3us — BV(Gy)(Ug + Uy + Ug) = BV(Gg)(Uy + Uy)
sponds to the central “point” together with its six first neigh-
bors, the second one to the additional six next nearest = BV(Gy)Uy,
neighbors and the last one to the final six next-next nearest
neighbors.

These solutions will give us an idea of how the eigen-
values and, in particular, the smallest eigenvalue behave as a
function of the lattice spacing. In what follows we will mea- ~BV(Gyus,
sure energies relative {6V(G=0). The Schrodinger equa- where the four RLVs corresponding to the first two sets of
tion (Eq. (22)) for the first two sets of RLVgsee Table)l  Taple | are given byG, =0, G2:2’7T/R\/§, G3:V’§27T/R\/§,
with compound indice§0—6) leads to the following K 7 set G,=2 27/R %' Also we have hereV(G)=2mM/S w/|G

of eigenvalue equations: —-G'|?+ k2. Thus the lowest-lying energs is obtained from
Euy=- BV(G,)(us + Uy + Uz + Uy + U + Ug), the determinant of the following matrix

2

{
_Ggus = BV(Gy)(ug + Uy + Us) — BV(G3)(Uy + Uy)

Eu. =
%=6

E BV(Gy) BV(Gy) BV(Gy) BV(Gy BV(Gy) BV(Gy)

€2
BV(Gy) E‘Eeg BV(Gy)  BV(Gy) BV(Gy) BV(Gy) BV(Gy)
€2
BV(Gy) BV(Gy) E‘EGE BV(Gy)  BV(Gy) BV(Gy)  BV(Gy)

€2
BV(Gy)  BV(Gy  BV(Gy) E—gGg BV(Gy)  BV(Gy)  BV(Gy) 28)

€2
BV(Gy) BV(Gy)  BV(G3  BV(GY) E—EGg BV(Gy)  BV(Gy)

62
BY(Gy) BV(Gy  BV(Gy)  BV(G3y  BV(Gy E—EGE BV(G2)

62
BV(G,) BV(Gy) BV(Gy BV(G) V(G BVG) E- G

The seven eigenvalues of the matrix E88) can be found analytically and are given by
2,
Ei2= Eez + BV(Gy) + BV(G) — BV(G.),
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€2
Es= gG% +2BV(G,) — 2BV(Gy) + BV(Gy),

(29

€2
Ey5= 5 G5~ BV(Gy) + BV(Gy) + BV(Gy),

2

¢ 248V(G,)?
Ee7= EG%—ZﬂV(GZ)—Z,BV(Gg)— gv(GA)] 1+ { BV(Gy)

2 |-

62
5 G~ 2BV(G,) ~ 2BV(Gy) - BV(Gy)

Their dependence oR is shown in Fig. 2. In the limit of and faster estimate can be obtained from the WKB ansatz to
largeR the lowest eigenvalue is degenerate and equBk  be discussed shortly.
The eigenvectors corresponding to it satisfy the condition of  Let us next analyze the monomer density distribution
Eq. (19), which stems from the impenetrability of the mac- given by p(|p|)=¢?(|p|), for the lowest-lying eigenvalue at
romolecular rods on the lattice sites, approximated as infismall and large values d&® R=3 A andR=30 A for RLV
nitely thin cylinders. Other eigenvectors do not satisfy Eq.set(0-6). We first consider smaR, depicted on the left part
(19), but additional solutions can be obtained by taking lin-of Fig. 4. Here the polymer density is mostly concentrated in
ear combinations of higher-energy eigenvectors, with relativghe interstitial regions of the hexagonal lattice, with no over-
amplitudes chosen to satisfy E(¢L9). The corresponding |ap between different lattice sites. For snialthe polymer is
eigenenergies are then given by appropriate weighings of th@ys squeezed in the interstices between lattice sites leading
associated eigenvalues. _ . _ to repulsion in the total free enerdpositive eigenenergy
It is instructive to investigate the lowest-lying eigen- This steric effect is due to the boundary condition of vanish-
value in the limiting cases of eithét— 0 or R— <, respec-  jng monomer density at the surface of the macroion, or in the
tively. We find from Eq.(29) that in these two limits limit of small macroion size, vanishing density at the lattice
872 02 sites, ¥(|p|=0)=0. An analogous distribution of monomer
Ess(R—0) — o R density is observed also in the 1D cHsat small intersurface
separations. We now consider larBedepicted on the right
part of Fig. 4. Here a different type of monomer density
distribution occurs, where the monomers tend to concentrate
(kR)?’ around the lattice sites, away from interstitial regions, with
nonnegligable density between lattice sites. This means that

For small values oR the lowest-lying eigenvalue scales as . . . o
R°2. For ground-state dominance, where the lowest-lying ei_parts of the chains span the regions between lattice sites in a

genvalue is related to the free energy of the polyelectrolyt bridging configuration. The eigenenergy corresponding to

chain[see Eq(11)], this means that the polyelectrolytes addef.hes.e bridg!ng configuration_s is.negative, leading to attrac-
a repulsive contribution to the interactions between the mac: & |nt.er<’;.\ct|on-s. Again the situation is complete-ly analogous
roions. In the opposite limit of large values Bfbut simul- to brld.gmgl in the 1D case for large intersurface
taneously with large values of the strength of interactign separatloné. . )

the interactions are attractive, as can be again seen from Eq. L6t US delve a bit also into the other two sets of com-
(30), and scale asR2 The sign of the asymptotic form of Pound indices[they are(0-12 and (0-18 as defined in

the lowest-lying eigenenergy depends on the valuavgf Table ] for .WhICh no analytlgal solution to' the elgelnvalue
There is a critical valuavy=w,, above which the lowest- probl_em eX|sts_and we obtain on_ly numerical solutlons_ fo_r
lying eigenvalue becomes negative. Attractions are thus sedfi€ €igenenergies presented on Figs. 5 and 6. The qualitative
only for wy>w, (see Fig. 3. In the asymptotic limit of Eq. behavior of the lowest-lying energy eigenvalue is exactly the

(30) the critical value ofi, is seen to be same as for the first set of compound indi¢ese Fig. 2
The lowest-lying energy eigenvalue starts from a large posi-
(k)?K? tive value at smalR, then goes through zero for a finiR
W = , (31 . X . - . .
M and finally becomes negative with a minimum at intermedi-
72§ ate values oR. The asymptotic behavior of the lowest-lying
eigenvalue always seems to follow tRe” form irrespective
and is obviously a function of the ionic strength of the me-of the choice of the basis set.
dium. The critical valuew, also strongly depends on the By comparing the eigenvalue behavior on Figs. 2, 5, and
partial set of RLVs and converges slowly, just like the eigen-6, we see that the above method of consecutive construction
values themselvesee below. Its exact value would be thus of eigenvalues with partial sets of reciprocal wave vectors
difficult to evaluate in the reciprocal space analysis. A betteconverges very slowly. Although one could in principle con-

(30

64w Mm* 8(K€)2ﬂ2> 1

E4’5(R—> OO) — = ( SKZ 9
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1.0

0.5

0.0

FIG. 4. Monomer density profiléright regions correspond to high dengity
for RLV set (0-6) and for eigenfunctions corresponding to lowest-energy
eigenvalue at two different values of the lattice const@t3 A andR

=30 A with wy=1), rescaled so that the whole unit cell is shown in both
cases. For smalR (left) the monomer density is confined to the lattice
interstitial regions, given by the triangle centers #8@&,90,150 degrees
from the x axis. The energy eigenvalue here is positive, corresponding to
repulsive interactions. For large (right) the monomer density consists of

1.0k I | L | = circular distributions centered around each lattice point, with a small density
0 20 40 60 80 increase(bridging along the lines joining the lattice points, which are at
R [A] +(0,60,120 degrees to the axis.

FIG. 2. Energy eigenvalues of the first two sets of RLV characterized by the
compound indice§0—6) (see Table)l as a function of the lattice constaRt The most important drawback of the above calculation is

In this case, and only in this case, can the energy eigenvalues be derived altsrcrat we did not take into account the fact that the Compound
analytically (see main text On all figures, unless indicated otherwise, we

have taken Lé=1 A, €=1 A, woM/x?S=1, so thatw, is way above the ~Magnitude of the macroion-polyelectrolyte interaction,
critical valuew, [see Eq/(31)]. woM /S, explicitly depends on the macroion densityRrin
principle that could also be taken into account but the price

tinue this line of reasoning by going to progressively largerone would have to pay is that it would be much more diffi-
sets of RLVs, it is desirable to have even an approximatéult to identify the lowest-lying eigenvalue and derive its
analytical asymptotic form of the lowest-lying energy eigen-analytical properties in terms of dependenceRonThis is
value in place of detailed numerical computations. In thedue to the fact that the magnitude of interactions would vary
next sections we will explore the possibilities of obtaining With R and for different values oR different energy eigen-

these forms. values would be minimal. Rather then making the above cal-
1.0 -
0.5
0.5
0.0
w05
uf 0.0
-1.0
0.5 1.5 —
20 -
1.0 1 ! 1 1 1 h s
25 1 1 ] 1 =
0 5 10 15 20 25 30
R [A] 0 20 40 60 80

R [A]
FIG. 3. Lowest-lying energy eigenvalues of the set of RLVs characterized
by the compound indicef0—6) (see Table )l as a function of the lattice FIG. 5. Energy eigenvalues of the set of RLV characterized by the com-
constantr for subcritical(wy=0.01) and supercritica(w,=1) value ofw. pound indiceg0-12 (see Table)l, as a function of the lattice constaRt It
In the subcritical case the attractive part of the curve is clearly missing. Thés clearly discernible that the difference between the lowest-lying eigenvalue
exact critical value ofw, could be obtained only with time consuming and the restis becoming larger. This trend persists as one augments the RLV
numerical search and would depend on the RLV basis set. basis set.
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coordinatep we havein extenso

d
{— ———(pd—;f) - WoKo(KP)} (p) = Ei(p). (34)

This equation, subject to the zero value BGgt0 and zero
slope BC at|p|=R’, gives us the complete solution on the
Wigner—Seitz level. Unfortunately, simplified as this ap-
proach already is, it is solvable only numerically. We shall
postpone a detailed numerical analysis of this equation and
the ensuing eigenvalue for a later publication and analyze
here only its salient asymptotic behavior.

We can, however, make some general comments. On
moving away from the rody develops a nonzero amplitude,
but has a negative curvature tending to bend it back to zero.
The lowest-energy solution is the one where the wave func-
tion bends back to zero only once in order to match the
zero-slope Wigner—Seitz BC at the outer wall. A simple and

2.5k ! L 1 ! = intuitive solution occurs for small values @f, where the

0 20 40 60 80 potential matters only for smal. In that case the large
RIA] Ko(kp) factor f fi ture on the eigenfuncti
o(kp) factor forces negative curvature on the eigenfunction,
FIG. 6. Energy eigenvalues of the set of RLV characterized by the comWhich is, however, not enough to curve the solution down-
pound indiceg0-18 (see Table) as a function of the lattice constaRt It ~ wards to satisfy the boundary conditiodgl/(p)/dp|p:R, =0.
is again discz_—:-rnible th,_at the difference between the lowest-lying eigenvalughis can only be achieved if in addition the eigenenergy is
and the rest is becoming larger. sufficiently large and positive. IR’ is increased at fixed
eigenvalueE, the wave function will overshoot the bound-
culation less transparent and in fact reSOrting to heaVy nUary; hence, to match the boundary condition at the |amer
meriCS, while nevertheless still remaining limited by the SlOWthe eigenenergE must decrease because this decreases the
convergence of the results in the RLV space, we proceed byurvature. For most the potential will be ineffective. Hence
a more complete analysis on the Wigner—Seitz cell levelihe free-space solution will dominate. It has the fofip)

addressed next. ~sinkp/\p, wherekR' =/2 to ensure the second BC that
#(R’) has zero slopéneglecting theyp term) at the outer
IV. WIGNER=SEITZ APPROXIMATION boundary and the sin was taken to ensure the first BC at the

) _ ) ~_origin. The corresponding eigenvalue is thus
Let us now consider the Wigner—Seitz approximation,

commonly employed in the theory of electrons in crysféls. E= (W_I)Z (35)
Here one deals with a single cylindrical cell instead of a 24R'?
periodic array. In our case the cell area is set by the macroio
density, and the periodicity of the wave function across th
array is simulated by an appropriate boundary condition a
the edge of the cell. The effective strength of interaction does
not depend on the macroion density anymore.

We thus must solve the following equation within the V- WKB SOLUTION TO THE WIGNER-SEITZ

cylindrical cell, of radiusR’=w"§/27-rR, chosen so that APPROXIMATION

Bor finite Wy there is no intuitively straightforward argument
hat would describe the general properties of the ensuing
olution.

mR'2=S/IM: Before solving Eq(32) numerically, we will first invoke
02 , the WKB method, an analytical approach that has already
=5 V1~ WoKo(kp) |#(p) = Eiip). (32)  proved useful in the context of polyelectrolyte bridging

interactions:* This will allow us to find accurate analytical
There are two boundary conditiofBCs). One is at the inner approximation and asymptotics which is indeed what we are
wall of the cell, coinciding with the surface of the macroion, after.
where the polymer boundary condition enforces the solution Let us summarize the general features of the bridging
#(p) to take the value zero. Again if one approximates theinteraction in the related 1D caSkjnvolving two charged
macroions with thin rods this BC reduces #§0)=0. The planes with a polymer chain in between. There the polymer
second BC is that the solution from one Wigner—Seitz celldensity was zero at each plane and the slope was zero at their
should smoothly connect with the solution in the neighboringmidpoint because of symmetry constraints. Two regimes
cell. This is mimicked by the BC that the normal derivative were found. For smalllarge separation between the planes
of the solution at the outer wall has to vanish. Thus relative to the screening length, the polymer density had a
_ N _ maximum(minimum) at the midplane, leading to prevailing
WO =0, n-VyR)=0. (33 steric repulsions or bridging attractioffor details see the
Since by symmetry the wave function can depend only ordiscussion in Ref. 1 In the present lattice problem the
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Wigner—Seitz cell corresponds roughly to one-half the con-  '°f
fining space between the plates in the 1D case. Depending o
the spacing between the macroions the polymer density will
by analogy have a maximuitminimum) at the edge of the
cell for small (large) macroion separations leading again to
repulsive(attractive interactions. Most of the physics of the
1D case is thus strictly preserved in the 2D case, which is
both surprising and encouraging. w 00
First we rewrite the Schrédinger equation in terms of the
new variablex=log p. It reads

2
ddﬁ(zX) * %[E+WoKo(KeX>]e2*¢(x> =0, (36) °*
allowing for a very straightforward application of the stan-
dard WKB formalism?* Depending on the sign oE 10k L L L ' 4
+WoKo(k€¥) the WKB solution has two standard forms. To 1 ? R [A] : * s
see this we revert back to the original variapleand intro-
duce the auxiliary function FIG. 7. Energy eigenvalugs(R’) obtained with the WKB method in the

Wigner—Seitz model. The upper curve is fag=0.01 and the lower curve is
6 for wy=1.0. The qualitative form of the eigenvalue as a functiorRofis
9(p) = [E+woKo(xp)]. (37) very similar to the one obtained from the reciprocal lattice method. All the
¢ parameters are taken the same as in the reciprocal lattice case.

In terms ofg(p), the two types of solution can be written as
) Using the parameters k£1 A and€¢=1 A, Fig. 7 pre-
W) ~ [9(p) g2V exr{iif 9(p)Y2dpl, g(p) >0, sents two famllle_s of ground-state eigenval(sg=0.01 and
wy=1.0 as functions oR’. As expected, the curve for larger
(39 wy has the smalleE. The twoE(R’) curves have the same
P gualitative characteristics as the corresponding solutions in
Wp) ~ [~ 9(p)p°T™ exp{iJ [-9(p)]"?dp}, g(p) <O. Fig. 5, obtained by solving the Schrodinger equation in re-
ciprocal lattice space. In this case, however, we explicitly
As indicated above the wave functigiip) should be zero at consider the complet®’ dependence of the eigenvalue.
the center of the cell and have zero slope at the outer bound- These curves also show that, as indicated above, for suf-
ary of the cell, or ficiently large wy the eigenenergy becomes negative. This
indicates a binding, i.e., a bridging attraction. For the small
Wp=0=0 value R'=3 A, the corresponding monomer density is pre-
sented on the left-hand side of Fig. 8, and shows sterically
confined polymer chains with a maximum in the density pre-
dyAp) cisely at the outer wall of the WS cell. For the large value
dp p:R,‘O- (39 R'=30 A, presented on the right-hand side of Fig. 8, the
density maximum is displaced to the interior of the cell with
These two BCs and E36) allow us to calculate the energy finite but small density of the polymer at the outer wall of the
eigenvalue in the standard manner. Consideand| to be
fixed. The lowest eigenvalug is still a function ofw, and
R’: E=E(wp,R’). At fixed R’ let us consider the effect of
increasingw, from 0, whereE is given by Eq.(35). By Eq.
(36), to maintain the same average curvature integrated ove
p, an increase imv, should be accompanied by a decrease in
E. ForE>0 (sowg is not too largg at fixedw, let us now
consider the effect of increasii®). By Eq.(36), to maintain
the same average curvature integrated gvean increase in
R’ should be accompanied by a decreaseEinThus the
system tends to self-repel. For some critical valyéeR') of
Wy, the system attains the valle=0. For largerw,, so E
<0, the behavior can be more complex, because for Iarge FIG. 8. Monomer density profile for Wigner—Seitz WKB approximation
the curvature can become posititiee., dominated by nega- with wy=1, for two WS radii(R'=3 on the left andR’=30 on the righk,
tive E). In this case, for a given value of,, there is a value rescaled so that the whole unit cell is shown in both cases. For &ntie
of R’ beyond whichE becomes less negative RSincreases. configurations are confined, with mpst of thg chain at the ouFer waII'of the
. . .. A cell, whereas for larg&’ there again are bridging configurations, with a
We will see this behavior in what follows. The equilibrium  gensity maximum in the interior of the cell. The two density profiles repre-
value Ry(wp) of R’ occurs fordE/dR’ =0. sent WKB Wigner—Seitz approximations to the lattice calculations, Fig. 4.

and

Downloaded 25 May 2005 to 193.2.6.210. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



204902-10  R. Podgornik and W. M. Saslow J. Chem. Phys. 122, 204902 (2005)

WS cell. This distribution of the chain corresponds to bridg- 5
ing configurations where the finite monomer density at the = We= (ule)clg = 0_1("{5) : (44)
outer wall simulates chain bridging between neighboring '
cells. Qualitatively the state of affairs is exactly the same aghe WKB solution thus allows us to compute the critical
in the reciprocal lattice space calculation. All this is againratio of the charge per unit length of the macroipnand
completely analogous to the 1D cdSayhere at small sepa- charge per segment of the polyelectrolgi¢hat allows for
rations between the plates the polymer accumulates in theridging configurations. For amy,>w, there will be a re-
middle of the intersurface space, leading to repulsive intergime of R" with bridging configurations. This is all very
actions, or close to the plates, leading to bridging attractionssimilar to the 1D casé!

In order to derive analytical estimates = E(wg,R’) One cannot, however, compare E§0) with the limit
from the WKB ansatz, we will proceed separately for the twolEd. (44)] directly, since in the former case we assumed that
cases whergy(p)>0 for all p (as occurs forE>0) and the effective strength of the interaction is macroion density

whereg(p) <0 for large enoughp (as occurs folE < 0).** independent. The result in E¢4) thus presents the correct
form of the condition for the branching point in the solution.

A. Solution if g(p)>0 for all 0 <p<R’ Let us now try to extract some limiting laws from the
WKB solution[Eq. (41)]. For smallw, Eq.(41) leads to the

For g(p) >0 one hagE| <wyKq(kp) in the whole inter- expression
val 0<p<R'. As indicated above, this does not necessarily
imply thatE>0 and one can thus have repulsive as well as
attractive polyelectrolyte-mediated interactions. Let us take a
closer look at this solution. The BC at the center of the

RO wa (R
f VE +wWoKo(xp)dp = VER' + _r&f Kolxp)dp
0 2VEJo

Wigner—Seitz cell sets the WKB wave function to be of the 4.7 /€_2 (45)
form 2 V6
P
Wp) ~ [g(p)pz]'”“sinlf g(p)llzdp]. (40) Thus we furtherzmozre have
0 1 ———
o N E(R) = (7—7) —2(1+%\/1—a(R’)—;11[2+a(R')]),
Taking into account the zero-slope boundary conditiop at 2/ 6R
=R’, the phase of the sine of the argument in &) is 7/2, (46)
SO
where
F E+woKo(kp)d 7T\/gz (41) 12w, R
/ K, = — —. K|
PR (R = TO(KR')f Ko(u)du. (47)
£ 2 0
This may be written in dimensionless form as (77) (i)
R E _m (k) From this we conclude that for weak enough electrostatic
+Kg(u)du= . (42) . . .
0 Wo 2V 6w attractions between macroions and flexible polyelectrolyte

chains, i.e., for sufficiently small,, the electrostatic effects
In principle, this givesE/wo=F(«xR’, («€)*/wp). The critical  are only a perturbation to dominant steric effects. Note that
value we(R’) of wp, whereE=0, is obtained on setting O Eq. (47) reduces to Eq(35) asw,— 0, as expected.
=F[«R’, (k€)?/wW,].

There is no closed form analytical solution to E42)

since the integral on the left-hand side cannot be reduced . Solution if g(p)<0 for some 0 <p<R’
elementary quadratures. There are nevertheless a few limit- Here again our analysis follows the analogous 1D thse
ing cases that can be dealt with explicitly. First note that thg:Or E-+woKo( kp) <O, the situation is more complicated than-
E=0 line separates bridging configurations from nonbridging, ' C(:)Ie%rly in this case one should hdE> WoKo( xp)
configurations. We have already encountered this phenomc‘orresioonding either to small< 0 with a weak(at(t)ra(z:tive

enon in the reciprocal Iattlce_ calculation _where a (.:r'tlcalinteraction characterized by, o to a large enough cell that
valuew, separated the case with no attractiénsnbridging

configurationg and the case with finite attractioriisridging tF?,e interaction is well screened at the Wigner—Seitz radius

configurations In the above WKB limit we are able to ob-
tain an approximate value fav, in the following way. The
branching point is defined big=0 andwy=w,, thus leading

In this case, for smalp the curvature of the wave func-
tion as deduced from the Schrodinger equafigq. (32)] is
negative for smallp, but positive for largep<R’. We will

to call the pointpy, where the curvature is zero, the classical
RO ——— w62 turning point. It is the solution of
VWoKo(kp)dp = \s (43)
0 — |E| + woKo(kpo) = 0. (48)

This equation has a solution only fomwy,=a?/24 In principle this givesoy(Wo, E), but E is not yet known, and
X 2.1195%(kx€)?~0.0915«¢)°. The branching point is thus the method of the previous subsection does not apply to the
defined by present case.

Downloaded 25 May 2005 to 193.2.6.210. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



204902-11  Polyelectrolyte bridging interactions J. Chem. Phys. 122, 204902 (2005)

By neglecting the prefactag(p)~*/4 the WKB solution 6w, [0 u
for small p with zero value ap=0 varies as a sine, and for Mo = (K€)Zf —log>+ ... jdu
0

p>po the solution is a sum of sines and cosines. The two

solutions have to be continuous at the turning point, which BWor )
gives us the necessary constants as they are typically ob- = ( K€)2{1 +0[e™]},
tained in the WKB framework? Specifically, 53
- _IE[1-1/4 6w, U
¥(p) ~ [WoKo(kp) = [E[] ER) =\ —31/ \/le‘uof (1+ ...)du
6 p (Kf) 2U0 Uo
Xsin \/ _Zf [WoKo(xp) = |E|]l/2dp )
€ | ewy ,le‘uo
0< p< po, (k€)? 2,
x{U - up- 3+ O[e 0T}
p) ~ [|E| —WOKO(Kp)]_llA{eMO sin{z— g(p)] We have taken into account above that bbothand u, are
4 large in the asymptotic limit. From the boundary condition it

. T ) now follows thaté is a function only ofM,, which itself is a
terocog o p)[(» Po<p<R', (49  function of Bnym/(x¢)? and no longer depends og. Invok-
ing now the definition[Eq. (48)] of the classical turning

where we introduce two auxiliary quantities point Uy and Ko(u) = Var/2ue™, we find that
6 " 2 ER) = 6|EW{U—%+3) (54)
Mo = 72 [WoKo(xp) = |E[[*dp, (x0)? 2
0
(50) In the asymptotic limit of large cell size the conditidh
6 (* >ug>1 is satisfied and one can obtain the following ap-
€p) =13 J [|E| = woKo(kp)V2dp. proximate expression:
P
i (0?2 (&0

The sin term of the interior solution already takes into ac- [E| = 1 6R?Z2’ (55)

count the boundary condition at the origic0, while the 6(U - Uo)2+§
boundary condition of zero slope at the outer boundary of the
Wigner—Seitz cell has to be taken into account explicitly.Here we need to keep in mind théats a function only of\M,,

This boundary condition ga=R’ reduces to and is always within the interval@/ 4 < £(R’) <57/6. Since
this solution is only valid for large enoudR’ [the opposite
cod T - R | + eMosin . &R) | =o0. (51) Ilm!t is covered by Eq(46)] the above equation effectively
4 12 claims that
2 2
As My is strictly positive and varies fromo+ to +0, the - M <E<- 2Y(mt) ) (56)
solution&(R’) of this equation varies from/4 to 57/6. In 32R"? 216R'2

the general casei(R’) can be obtained only numerically,
although clearly it depends only weakly &. We can ex-
ploit this weak dependence d® and derive a closed form
approximate analytical solution for the eigenenergy in th
asymptotic regime oR’ — .

To obtain this approximate solution we introduce the di-
mensionless variablep=u, with kR’=U and kpy=ugy. Then

We see that the free energy has a long-range attractive tail, as
already tentatively derived in the reciprocal space calcula-
tions of Eq.(30), falling off algebraically with the size of the
E‘\Nigner—Seitz cell. The form of the dependence of the com-
plete WKB solution orR’ (see Fig. J completely corrobo-
rates the derived asymptotic forms. Since the radius of the
WS cell is derived from thé2D) density of the macroions,

\/W uo pv=1/7R'?, we can immediately write down that
Mo = Of Ko(u) — Ko(ug) 1M2du,
07 N ey, o =Rl E= = %),
(52 where
, 6wo [° 12 3 3
&R = (x0)? [Ko(up) = Ko(u)]*du. 0.0947° < y< 0.1167°. (57)
Uo

It is surprising that such a good estimate can be obtained for
In the asymptotic limit where we assume tH&t— 0, we can  the magnitude of the polyelectrolyte bridging interaction in
approximateKO(u)zvme‘“ in the equation for¢é and  the system under investigation. We are not aware of any
Ko(u) =-logu/2 -7y in the equation foM,. Then we expand simple scaling argument that would reproduce the exponent
£in terms ofKy(u) and Mg in terms ofKy(ug). This reason-  of 1 in the density dependence of the bridging attraction. One
ing leads to the following approximate forms: of course has to be aware that this is a limiting form valid
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only within restrictive conditions and constraints detailed  The Wigner-Seitz model itself does not lead to any

above. simple analytical estimates since the Schrédinger equation is
not solvable by simple quadratures. We thus went one step
VI. RESULTS AND CONCLUSIONS further and applied the WKB approximation to obtain simple

This work analvzes th velectrolvte-mediated inter _closed form solutions of the Schrédinger equation. The WKB
IS work analyzes the polyelectrolyte-mediate © actzolution yielded simple analytical forms of the asymptotic
from geometry and dimensionality this is the same problem ehavior of the polyelectrolyte free energy. We again were

as already discussed for the case of two charged surfacgg le to prove that indeed in the asymptotic limit of small

with intervening polyelectrolyte chaild. The physics in macroion density, the polyelectrolyte free energy behaves as

. . . F~R?, and we obtained a good estimate for the numerical
both cases is the same but the nature of the two-dimensional ... . : . . . ) . .
. -~ coefficient in this scaling relationship. We established di-
array makes the range of the polyelectrolyte-mediated inter- . 2
: rectly that there is a critical value of the strength of the
actions much larger.

; . : . olyelectrolyte-macroion interactiow, that separates the

In our analysis of the polymer-mediated interactionson g . - . ) . .
: : . . ridging from the compression regime and thus attractions

2D lattice of macroions we start from two different direc- . ) :

. L T ) from repulsions. This appears to be a salient feature of the

tions yielding similar results:

behavior of this system. We are thus confident that even

» We formulate the polyelectrolyte on a 2D lattice prob- more detailed numerical solutions of this problem will show
lem that we were able to solve by applying the methodssimilar bifurcation in the nature of polyelectrolyte-mediated
developed to describe electrons in an ionic crystallindnteraction.
lattice. The only fundamental difference is that in the  Similar features of the polyelectrolyte-mediated interac-
polyelectrolyte case the lattice-polymer interaction po-tion are clearly seen also in experiments on DNA-polycation
tential is of a screened Debye—Hiickel form as opposedomplexes? The polycations, being poly-L-lysine and poly-
to the unscreened Coulomb form appropriate for eleci -arginine, are both about 30—100 units long and sufficiently
trons in a crystal. We derive that for sufficiently strong flexible and charged to be well described by the Edwards
polyelectrolyte-macroion electrostatic coupling the freemodel. Thus our calculation may provide an alternative in-
energy exhibits attractive, i.e., bridging interactions, terpretation to these experimental findings that does not rely
falling off approximately linearly with the macroion on strong-coupling electrostatits.Our results also show
density but with relatively poorly defined absolute mag-that for large macroion densities the polyelectrolytes are
nitude. sterically confined and localized in the interstices of the 2D

« We formulate the polyelectrolyte-mediated interactions/@tticé. Here a strong-coupling electrostatics ar1_a1§smaght _
in the framework of a Wigner—Seitz model, where a_be a much b_etter choice since our model describes a spatially
single cell with appropriate boundary conditions is sub-Nherently disordered polymer. On the other hand for small
stituted for the whole lattice. This calculation lent final M&croion densities, where polyelectrolyte chains could be
support for the rather tentative conclusions of the firstVell described as disordered, our approach might carry more
calculation. We again derive bridging interactions atWeight than stropg-cogplmg electrostatics that relies mostly
sufficiently large polyelectrolyte-macroion electrostatic ©" ordered configurations of the polyelectrolyte chains. It
coupling and obtain an exact limiting law for small May well be, however, that both effects, strong-coupling
macroion densities, of the form suggested by the lattic€lectrostatics as well as polyelectrolyte bridging, combine to
calculation, but in addition we are able to derive also agive the complex salt-dependent interactions seen in this ex-

well-defined numerically bracketed coefficient. periment. S
In spite of the similarity between the 1Ref. 11) and

By analyzing the energy eigenvalue equation in the lattice2D case of polyelectrolyte bridging interactions, there is a
approach for different RLV basis sets we were able to guesBuge difference in the asymptotic form of the polyelectrolyte
that the lowest-lying eigenenergy has a long-range tail in théree energy. In 1D the free energy decays exponentially with
limit of small macroion densities. In fact, the only case thatthe separation between the two charged surfaces, where the
we were able to solve analytically suggested that in thecharacteristic exponent is on the order of the single polymer
asymptotic limit of vanishing macroion density, i.&—%, link size In 2D, however, the free energy decays algebra-
the polyelectrolyte free energy behavesfas R™2. But since  ically with the macroion lattice spacing and is thus of long
this result gives only one part of the total eigenenergy deperrange. The difference is basically due to the different topolo-
dence on macroion density, it is by itself of rather limited gies of the 1D and 2D cases. In the 1D case a single long
validity. Fortunately we were able to corroborate these tenpolyelectrolyte chain can only bridge two surfaces. Even
tative results by a more detailed WS calculation. The sam&hen there is an array of surfaces the polyelectrolyte chains
reasoning applies also for the tentative identification of acannot bridge next neighbors nor, even less, surfaces that are
branching point in the solution that delimits a regime wherefurther apart. In the 2D case a single very long chain can
polyelectrolyte-mediated interactions are repulsive, correbridge the spacing between many different macroions and
sponding to steric compression of the polyelectrolyte chaingan thus confer a much stronger bridging interaction to the
by the macroions, from the one where they turn attractivewhole assembly. This many-body multiplication of bridging
corresponding to bridging configurations of the polyelectro-also extends the range of the interactions, turning short-range
lyte chain between the macroions. bridging into long-range bridging.
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