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Strongly adsorbed polymers are shown to undergo an isotropic-nematic surface-ordering transition as
a consequence of interactions mediated by the supporting elastic membrane. Depending on the elastic
coupling ratio between the membrane and polymer elasticity, the supporting membrane can concurrently
undergo a transition into either preferred saddle or tubular shapes. It is argued that this scenario is
relevant for the initial stages of the DNA-cationic liposome interactions.

Introduction

Though we have approached reasonable separate
understandingsof thebehavior of lipidbilayermembranes
and that of biological polyelectrolytes,most notablyDNA,
in terms of their effective elastic Hamiltonian and
macromolecular interactions with the surrounding elec-
trolyte solution, we are just beginning to grasp the
intricacies of their respective interactions. Apart from
its fundamental aspects, the problem of DNA-lipid
membrane interactions has proved crucial to the under-
standing of the colloidal state of the genosomes (DNA-
cationic liposome complexes) used to translocate DNA
across cellular membranes in vivo.1

There have been quite a few proposals as to the alleged
structure of the genosomes, but consensus has yet to be
reached on the most appropriate model.2 The most
probable scenario emerging fromnumerous experimental
studies is that a cationic lipid induces condensation of
DNA while DNA induces liposome restructuration and
its encapsulation into elongated bilayer liposomes. DNA
thus becomes shielded from intercalating agents and
digestive enzymes but available for translocation across
the cellularmembrane. TheseDNA-lipid complexes can
later aggregate into higher order assemblies, creating
stacked lipid-DNA multilayers.3 It appears that the
shuttling capabilities of these supramolecular complexes
in vivo strongly depend on their colloidal state.
Even the primary stages of DNA-cationic lipid inter-

actions can hardly be interpreted within the standard
models of polymer adsorption. AFMstudies of adsorption
of DNA to constrained cationic lipid bilayers, deposited
on a mica substrate, reveal that DNA under low salt
screeningconditionsadsorbs to theextentof closepacking.4
Nodanglingendsor loose loops,usuallypresent instrongly
adsorbedpolymers,havebeenobserved in thecaseofDNA.
The adsorbed DNA is typically found in a 2-D nematic
phase (in 2-D this is equivalent to a smectic phase) with
ordered domains of variable size. The energetics of the

DNA-adsorbed state for immobilized charged substrates
has been rationalized in terms of attractive interactions
generated by local curvature changes as DNA comes into
close vicinity of the oppositely charged bilayer,5 aswell as
repulsive forces betweenDNAhelices in close apposition,
known to exist in the collapsed state in the bulk.8

In order to understand the properties of the DNA-
cationic lipid complexation, one first has to understand
whathappenswhena flexiblepolymeradsorbs toa flexible
surface. The process of adsorption itself is a separate
problem9 that I shall not analyzehere, butwill concentrate
instead on the state of DNA when it is already adsorbed
tightly to the surface. Assuming that DNA in close
association with a flexible bilayer surface will locally
modify its curvature in the direction perpendicular to its
longaxis (Figure1), one canderiveaneffective anisotropic
attraction between different polymer segmentsmediated
by the membrane elasticity. Even if there is no other
anisotropic interaction between DNA segments of the
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Figure1. Schematic representationof tightadsorptionofDNA
to a cationic lipid-supportingmembrane. Locally DNA induces
a curvature on the membrane in the transverse direction with
respect to its long axis (above). If the adsorbed DNA is not
orientationally ordered, this local curvature does not amount
toanetmembrane curvature. If howeverDNAis orientationally
ordered, then this local curvature stress is relaxed by inducing
anetmembrane curvature that encapsulates theadsorbedDNA
(below).
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general type described in ref 6, this interaction alone is
capable of inducing nematic ordering of adsorbed DNA.
Nematic order coupled to the preferred curvature of the
bilayer membrane in close proximity to the DNA could
furthermore lead to a tubulization transition, similar to
the curvature instability from anisotropic membrane
inclusions,78 and encapsulation of DNA within a lipid
bilayer tubule (Figure 1). This I believe to be an effective
triggeringmechanism for encapsulation ofDNAand later
restructuration of the complete genosome. What I intend
to investigateare thedetailsand limitationsof thisprocess.
If I consider the supporting lipid bilayer to be described

in Monge parameterization as z ) ú(x,y) ) ú(Fb), where
obviously Fb ) (x,y) is a 2-D radius vector, then the
Hamiltonian of the adsorbed polymer described by a
position vector of the nth monomer r(n) ) (x(n),y(n),z(n))
with r3b(n) ) drb(n)/dn, has the form

whereN is the total lengthof thepolymer, ε is its curvature
modulus, and â is the inverse thermal energy. This form
of the polymer elastic free energy already assumes that
the polymer chain is so tightly adsorbed to the surface
that there is no difference between adsorption and total
embedding. This is the lesson of DNA adsorption experi-
ments performed by Yang et al.4
For the level of our theory (mean-field) it is irrelevant

whether we deal with a single polymer chain or many
polymerchains,andtheresults for the twocasesare closely
connected. In fact if I haveM chains, themonomerdensity
simply getsmultipied byM. To the polymerHamiltonian
(eq1) Iadd first ofall theHelfrich-Canham-Evanselastic
energy of the supportingmembrane, which in the limit of
small deformations assumes the form

whereH ) 1/2 Tr Kk
i ) ∇⊥

2ú(Fb) is the local mean curvature,
K ) det Kk

i is the Gaussian curvature, and Kk
i (Fb) is the

curvature tensor of the supporting membrane. I assume
that the bare membrane prefers planar conformations,
thus setting κj ∼ Kc.
The last term in the overall energy expression is the

coupling between the membrane curvature and the
embedded polymer. I assume that the polymer adsorbs
only to one side of the membrane, thus breaking its
transverseup-downsymmetry. Theappropriate coupling
has to be of the general form (Model I in the language of
ref 10)

where Sik(Fb) is a traceless 2-D tensor connected with the
orientational stateof thesurface-embeddedpolymer.Since
we assume that only orientationally ordered polymer
states couple with the supporting surface curvature, we
have to set

where

is the orientational tensor of the polymer chain,11 with
δ(Fb) being the 2-D Dirac delta function. In the case of
many chains this expression simply changes with ∫0N dn
f ∑i)1

M ∫0N dni. In this way disordered polymer states
with σik ∼ δik are truly uncoupled from the membrane
curvature. c0 is on the order of themicroscopic curvature
induced by a single polymer molecule in the direction
perpendicular to its long axis (Figure 1).
As noted in our previous work,12 σik(Fb) is also one of the

collective variables that can simplify an approximate
evaluation of the partition function for an embedded
polymer. If one ignores fluctuations, one candemonstrate
that σik(Fb) satisfies the equality Tr σik(Fb) ) F(Fb),11 valid
standardly in 3-D, where F(Fb) is now the polymer surface
density, defined as

Again formany chains I have ∫0N dnf ∑i)1
M ∫0N dni. On the

mean-field level this simply means that the monomer
density gets multiplied by M.
The evaluation of the partition function for the system

defined with HP + HM + HMP now proceeds through the
collective variablesσik(Fb) and F(Fb). In themean-field limit
where all the collective variables and physical fields are
constant along the surface, the free energy (F) can be
derived approximately in the form of an extremum of12

whereA is the total area of the supporting surface. Here
the second term is themembrane elastic energywhile the
third term is due to embedding or strong adsorption of the
polymer chains to themembrane. It stems from the term
ú̈(n)2 in the elastic energy of the polymer chains (eq 1); see
ref 12 for details. The next term in eq 7 is the lowest
order coupling term between the membrane curvature
and the polymer orientation, both described through the
respective tensorsKikandσik, allowedby symmetry.10 The
fieldsψikandφareactuallyLegendre functions thatpermit
the transformation from the original variables F̆bi(n) and
Fbi(n) to the collective variables σik(Fb) and F(Fb). Quantities
without the explicit coordinatedependencearemean-field
values. The above free energy has to be extremized with
respect to all the Legendre fields as well as Kik, σik, and
F. In the above formalism FP(ψik,φ) is simply the free
energy of a single polymer chain subjected to the external
fieldsψik and φ. It can be derived in an explicit form only
within the mean-field ansatz as11,13
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âHP(rb(n)) ) 1/2âε∫0Nr1b(n)2 dn )
1/2âε∫0N(F̈b(n)2 + ú̈(n)2) dn (1)

âHM(ú(Fb)) ) 1/2âKc∫d2Fb H2 - âκj∫2Fb K (2)

âHMP(Fb(n),ú(Fb)) ) -âKcc0∫d2Fb Sik(Fb) Kik(ú(Fb)) (3)

Sik(Fb) ) σik(Fb) - 1/2δik Tr σik(Fb) (4)

σik(Fb) ) ∫0Ndn F̆bi(n) F̆bk(n) δ(Fb-Fb(n)) (5)

F(Fb) ) ∫0Ndn δ(Fb-Fb(n)) (6)

F
A
≈ Extremum[FP(ψik,φ)

A
+ 1
2

âKc(Tr Kik
2 ) +

1
2

âε
F
(σikKik)

2 + âKcc0(Kikσik - 1
2
(Tr Kik)(Tr σik)) -

Fφ - σikψik] (7)
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where the index R refers to the eigenvalues, so that ψR is
the indexed eigenvalues of ψik. The reader will find all
the relevant details of the above calculation in, ref 12, eq
7 being just a simplified (λ ) 0, u ) 0) version of eq 30 in
ref 12.
Ignoring the fluctuations in the mean-field approxima-

tion has the effect of leaving the curvaturemodulus of the
membraneat its barevalue. Their inclusionwould simply
renormalize theeffectivevalueofKc, aswell as thestrength
of the anisotropic attraction between polymer segments
(see below). Qualitatively none of the conclusions for the
surface nematic ordering transition reached on themean-
field level would be invalidated.
The free energy (eq 7) is not complete but can be shown

to be a reasonable approximation in the case where both
the polymer and as the supporting membrane are stiff,
i.e. âε, âKc >> 1.
TheextremalEuler-Lagrange (EL) equations thatnow

follow from the above free energy essentially describe two
types of coupling between the membrane curvature and
orientational order of the embedded polymers, one local
and the other one nonlocal. Firstly locally themembrane
curvature is directly proportional to the polymer orien-
tational order at that same position. Secondly polymer
order at two different positions along the membrane is
coupled through membrane elasticity via a nematic-like
interaction. The two together account for the ordering
transitionof theadsorbedpolymeraswell as theassociated
change in the membrane shape.
Starting from the Euler-Lagrange equations, one can

derive explicit forms of the two couplings in the following
form. The first type of coupling is expressed formally as

the curvature tensor of the membrane being thus pro-
portional to the orientational tensor of the polymers. The
effect of membrane elasticity-mediated nematic interac-
tions between polymer order at two different positions
along the membrane can be deduced from the second EL
equation in the form

R and â index the two eigenvalues, while the function
f(x,σik) is defined as

Though it is difficult to see the effect of membrane-
mediatednematic interactions from the above formalism,
comparisonwith a theory thatwould take into account an
explicit intersegment contact potential of a nematic form
and strength ua

leads to the conclusion that in the mean-field approxima-
tion the membrane-mediated interactions leading to eq
10 are essentially equivalent to such a potential with ua
∼ c0(1+1/[γ(1+ γ)])1/2. Here andbelow,γ ) εF/2Kc, which
is a dimensionless quantity considering the definition of
the polymer elastic energy in eq 1.
Assuming now that the mean-field equations can be

solved by means of the ansatz

where S is the orientational order parameter, with S )
0 corresponding to a completely disordered case and S )
1 to a perfect nematic order, I obtain from eq 10

where theelastic couplingparameterγweights therelative
strengths of polymer vs membrane elastic moduli. The
solutions of eq 14 describe a second-order transition
between an orientationally disordered state (S ) 0) and
a nematic state (S * 0) if the condition 4/[(âεFc0)2] e 1 +
1/[(1 + γ)] is satisfied (Figure 2). In the above analysis
this transition is driven purely by nonlocal membrane-
mediatednematic interactionsbetweenpolymersegments.
In case there are other anisotropic forces,6 they would
simply displace the transition point.
The consequences of the ordering of the polymers for

the supporting surface are profound. If one evaluates the
membrane curvature through eq 9, it is obviously vanish-
ing in thedisordered state of thepolymers. In thenematic
phase two different things can happen, depending on the
magnitude of the elastic coupling γ. From eq 9 I obtain
the following eigenvalues for the curvature tensor

which lead to the following two limits in the case of
membrane-dominated and/or polymer-dominated elastic
coupling

and

In the limit of perfect nematic ordering of the embedded
polymer, i.e. S f 1, saddle-like shapes of the supporting
membrane would be promoted in the case of membrane
elasticity-dominated elastic coupling, while tubular or
cylindrical membrane shapes would be preferred in the
opposite limit. The dimensionless elastic coupling ratio
γ is thus a crucial parameter leading to a bifurcating

FP(ψik,tik,φ) )
N

x2
(∑

R
)x(ψR

âε) + Nφ (8)

Kik ) c0 (
1/2δik(Tr σik) - σik) -

c0( ε

KcF)
1/2(Tr σik)

2 - σik
2

1 + (ε/KcF)(Tr σ2ik)
‚ σik (9)

(σR - σâ)( F2
8âε

Tr σik
σR
2σâ

2
- âKcc0

2f( ε

KcF
,σik)) ) 0 (10)

f(x,σik) ) x
(Tr σik)

2

2
+ 1
1 + x(Tr σik

2 )
+

1
2
(Tr σik)

2 - Tr σik2

(1 + x(Tr σik
2 ))2

x (11)

V(rb(n),rb(m)) )
1/2 ∫0N∫0Ndn dm (r3b(n) × r̆b(m))2uaδ(rb(n) - rb(m)) (12)

σR ) F
2
(1 + S) (13)

S[(1 - S2)2 -

4
(âεFc0)

2

γ(1 + γ(1 + S2))2

1 + 2γ + 2γ2(1 + S2) + γ3(1 + S2)2] ) 0 (14)

KR ) c0
F
2
S(1 + γ) + γS2

1 + γ(1 + S2)
(15)

lim
γ<<1

KR ){- c0F
2
S

+ c02F
2
S} (16)

lim
γ>>1

KR ){- c0F
2
S

S - 1

1 + S2

+ c0F
2
S

S + 1

1 + S2} (17)
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scenario for the membrane shape after the adsorbed
polymer has undergone the ordering transition.
Right at the disordered-nematic (DN) transition point

the scale of the typical induced curvature radius R of the
membrane changes with the nematic order parameter as

In the first limit it is thus set only by the persistence
length of the polymer,while in the second limit it depends
on both polymer and membrane parameters. One con-
cludes that at the transition point for γ >> 1 typical
inducedmembrane curvatures would beR∼ Lp, where Lp
is the polymer persistence length, Lp ∼ 500 Å in the case
of DNA. The final curvature of the cylindrical DNA-

membrane aggregate would be set by the surface DNA
density as R ∼(c0F)-1 and would thus be quite small,
assuming that c0 ∼ DDNA, where DDNA is on the order of
the radius of DNA ∼ 20-30 Å, as indeed observed in
experiments.2
If one assumes now nematic order along the surface,

with polymers lying parallel at a distance l⊥ apart, then
the elastic coupling for the case of DNA on a cationic lipid
membrane is obtained as γ ) εF/2Kc ∼ kTLp/2Kcl⊥ ∼ 1/2-
(kT/Kc)(500/30), where the value for l⊥ can be estimated
experimentally.3,4 It appears that for cationic lipids γ
would turn out to be on the order of ∼1, meaning there
is no clear cut preference for any of the two scenarios.
However, different, though not completely conclusive,
experiments by Gershon et al., Sternberg et al., and
Felgner et al.2,14 show that DNA encapsulation leads to
elongated complexes,which, translated into the language
developed in this contribution, would mean that never-
theless γ >> 1. The larger than expected value of γ is
probably connectedwith the effect of the couplingbetween
the elastic properties of the lipidmembrane and the ionic
strength of the surroundingmediumon the encapsulation
ability of the cationic membrane. This fine tuning of γ,
which was not explicitly considered in this contribution,
could make it sufficiently large in order to favor the
scenario of tubular encapsulation.
The theory presented in this paper is of course ap-

proximate. The main limitation of the above analysis is
the mean-field assumption. Relaxing this constraint
would change the effective anisotropic forces acting
between polymer segments. Most notably elastic fluctua-
tions of the underlying membrane would contribute
additional Casimir-like interactions of a general nematic
type.6 These interactions would tend to displace the DN
transition point but would not modify the qualitative
featuresof thescenarioof theDNAencapsulationproposed
here.
In this short Letter we have established and analyzed

a close connection between the orientational order of
strongly adsorbed ()embedded) polymers on an elastic
membrane surface and the equilibrium shape of the
supporting membrane. The main conclusion is that
orientational ordering of the polymers promotes curving
of the supporting surface, leading eventually to complete
encapsulation of the embedded polymers.
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Figure 2. Schematic presentation of the solutions to eq 14.
Thephasediagramhasdisordered (D) andnematic (N) regions.
The phase boundary follows a linear dependence on γ for γ <<
1 and quadratic dependence on γ for γ >> 1. Changing the
adsorbedDNAdensityFhas the effect of transversing thephase
diagram horizontally, i.e. γ ) (ε/2Kc)F. An example of the iso-
(âKcc0) line is shown on the figure. The value of (âKcc0)
determines if in the anisotropic DNA state the supporting
membrane will prefer cylindrical γ >> 1 or saddle-like γ <<
1 shapes.

lim
γ>>1

∂

∂S(1R)DN ∼ ε-1

lim
γ<<1

∂

∂S(1R)DN ∼ (c0εKc)
-1 (18)
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