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ABSTRACT: Recent measurements of forces between DNA polyelectrolytes have shown a direct and con-
tinuous coupling between intermolecular forces and molecular disorder in lattices of interacting particles.
Over a wide range of conditions the work of assembly is dominated by the configurational entropy of mol-
ecules restricted by repulsive forces from their neighbors. This observed entropic force decays half as fast
as what is predicted from the decay lengths for an electrostatic double layer or hydration forces between
parallel molecules. It cannot be fit by the traditional model of flexible molecules with an effective hard
wall radius. In this paper we develop a statistical mechanical model of a Gaussian randomly walking poly-
mer surrounded by an effective “tube” of its neighbors, a model that can be solved in strict formal analogy
to the problem of a bounded two-dimensional quantized oscillator. The doubling of the underlying expo-
nential decay length emerges naturally. One may also extract the underlying direct intermolecular force

through which molecular motion is restricted.

Introduction

Ever since the seminal work of Onsager® on the pack-
ing of stiff rods into ordered structures, it has been known
that purely repulsive forces can act to create condensed
assemblies of particles. The entropic consequences of
steric repulsion have come to be a popular topic in sta-
tistical mechanics. The key simplifying feature of virtu-
ally all theories has been the assumption that the con-
tinuously variable repulsive force between rods can be
replaced by that of a hard cylinder whose radius of sud-
den repulsion depends on the strength of the actual force
(see, e.g., the discussion of Stigter?).

Recent simultaneous measurements of the molecular
disorder of and the forces between polyelectrolytes in par-
allel arrays® suggest that this hard particle assumption
is incorrect. For the specific system observed, parallel
double helices of polyelectrolyte DNA, one sees two regimes
of repulsion:

At separations less than 10 A, molecules repel with an
exxonentially decaying force whose decay constant is about
3 A and is negligibly dependent on salt concentration, as
expected for hydration forces;* repulsion is so powerful
that it suppresses energetically significant molecular dis-
order.

At greater separations, one observes the onset of molec-
ular disorder and an exponentially decaying intermolec-
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ular force whose decay rate depends on salt concentra-
tion but is approximately one-half that expected from
the standard double-layer theory.

Indeed, this extended decay is the key to the model
that we develop here to explain molecular packing. Steric
repulsion within an array of parallel flexible rods varies
as a power of separation, R,>" quite different from what
is'observed. The only effect of the underlying soft (e.g.,
electrostatic) potentials is to change the effective sep-
aration.? This assumption is again not substantiated by
the observed forces.

To develop a better description of the observations,
we have formulated a Gaussian model of a polymer
enclosed in an effective “tube” of its neighbors confined
to their main positions. Solution of this model, formally
equivalent to a quantized two-dimensional harmonic oscil-
lator held inside fixed circular boundaries, predicts the
two experimentally observed regimes—one close in where
forces are just those that act directly between molecules
and a second one with appreciable molecular disorder,
where forces decay exponentially at half the rate of the
underlying direct force.

The length of the Gaussian polymer steps, a priori
unknown for a free flight chain, is found to be ~40 A
when the model is fit to measured values. This step length
is essentially the same as the 45-A length of the indepen-
dently fluctuating unit length previously inferred ther-
modynamically from correlation of measured lateral fluc-
tuations and osmotic compressibilities. It is also close
to the “deflection” length introduced by Odijk®” to describe
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Figure 1. Scheme of a linear polymer in an effective tube of
nearest neighbors in the hexagonal lattice. The radius R is based
on the average location of neighbor axes. The variable p(n) mea-
sures the deviation of the polymer axis from its mean position

at the link n.
1
OM

Figure 2. Nature of the Gaussian model of the confined poly-
mer in an effective tube provided by its neighbors. Forward
steps in length [ to off-axis positions p(n). Confinement is both
by the potential ¢(p) and the hard wall at p = R. In the regime
of experimentally relevant R’s the latter is negligible.

the behavior of an elastic polymer confined to a “hard
wall” tube of radius R.

From this analysis we have concluded that the laws of
polymer association by steric forces are rather different
from those predicted by earlier statistical mechanical mod-
els of such systems. It explains deviations from expec-
tation of observations made on other systems such as the
muscle filaments®® and tobacco mosaic virus parti-
cles,®?® which were the motivation for Onsager’s early
formulation. We are able also to estimate to good accu-
racy the linear charge density that is the source of the
electrostatic double-layer potentials emanating from lin-
ear DNA polyelectrolytes.

Analysis

If we consider a single molecule in a hexagonal array
(Figure 1), we can to lowest approximation replace its
nearest neighbors by an effective tube wherein the forces
exerted by these neighbors are written in the form of an
axially symmetric restoring field. This construction is
analogous to the Einstein model in solid-state physics.

More specifically, we will consider a free flight chain
composed of N links each ! long. The full polymer, of
length NI, is enclosed in a tube of radius R and with an
imposed soft centrally symmetric potential depending only
on the radial coordinate p(n), a vector in the x,y direc-
tion, at a link n (Figure 2). Following Freed'®!! we can
write the partition function in the form of a functional
integral

=lim . S do(1) do@) .. o) (1)
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where the action of the functional integral can be obtained
as

_ 3 ~(dn) N¢(P(n))
=opdo (an)d+0 g dn @

with ¢(p) the external potential per step of length I. Intro-
ducing now the Green’s function of the polymer starting
at vector p’ and ending at vector p we can obtain by stan-
dard methods!!

6G Py . 20)

on V G+ 5T

with the addmonal boundary condltlon at the walls of
the tube in the form

G(lpl = R,p") =0 (4)

The free energy per unit length can be now obtained
in the standard form*!

70 = 5(p p)é(n —n’) 3

W=-== ln (S fGlpp") d% &%) (5)

Assuming now that the external potential ¢(p) is a slowly
varying function of p, we can develop it around its min-
imum up to second order, obtaining

¢(p) = ¢(R) + (1/2)¢"(R)p? (6)
In this approximation the equation for the Green func-
tion becomes analogous to the Schréodinger equation of
a bounded two-dimensional harmonic oscillator. Prob-
lems of this kind have been extensively studied by Chan-
drasekhar!'? and Auluck and Kothari*? in a different phys-
ical context. Here we shall mainly follow their approach.
We 1x}ow use the standard ground-state-dominance an-
satz

G(p.p") = exp(-WNW(p)y(p') (7N

and introduce the dimensionless variables

S\
=t = (SRLE)Y ®
with
&= 6" R)/$(R) ©

(In the special case where the variation in potential ¢ at
r = R is given by the linearized Poisson—Boltzmann equa-
tion, the quantity « is the inverse Debye—Hiickel length.
In general, it is the quantity defined by eq 9 for what-
ever potential ¢ is appropriate.) We then get the follow-
ing equation for ¥(¢{)

%d%(rg—é)— w- =0 (10)

where w is closely connected with the free energy of the
polymer (cf. eq 11) and is determined from the bound-
ary condition eq 4 at the walls (i.e., ¥({,) = 0, where ¢, is
the value of { at the wall). The free energy follows as

oR) 2212
W=w (2kT 6) (n

With these notations the solution of eq 10 can be obtained
as

Yo = e"“/%(—-— 1 ;2) (12)

where ®(a; b; ¢) is the standard degenerate hypergeomet-
ric function.’> We shall not follow the derivation of the
energy in detail since it follows in almost every respect
the analysis of Auluck and Kothari.'3



Macromolecules, Vol. 23, No. 8, 1990

We can derive two different regimes of behavior of W
as a function of R, or better as a function of {;. How-
ever, if we take the experimental values for the hydration/
electrostatic double-layer soft potential we can convince
ourselves that in the whole range of experimentally acces-
sible values of R, only the {® — i3 physically relevant.
We therefore investigate the asymptotic properties of the
solution of eq 12 in this limit, which leads to the follow-
ing approximation

v = El];/"zMw/A;ﬂﬂ(fz) (13)

where M is the standard parabolic cylinder function.'®
Since y¥(¢) of eq 13 has its first zero at {;, the free energy
is obtained in the following approximate form

W= ¢(R) +
kT(dz’g,? “6‘ ) [1 +2(8/)!" exp- %gf)g,] (14)

Clearly, the total free energy per unit length decouples
into a “mean field” term, ¢(R), plus a contribution of
fluctuations around the mean position (p = 0). The
remarkable feature of this relation is that the energy of
the confined polymer is a sum of a term with the direct
interparticle potential ¢(R) itself and a term in the square
root of that same potential. If, as is the case for electro-
static double layer or hydration forces,®* ¢(R) decays expo-
nentially, then one expects the energy to decay either
with the fundamental decay constant or with an appar-
ent constant exactly one-half the fundamental value. This
is what has been reported experimentally.°

The origin of electrostatic interactions is of course the
fixed negative charges of the phosphate groups on the
DNA backbone. After the counterions condense, a resid-
ual negative charge creates an electrostatic double-layer
potential around the helix. This potential can be calcu-
lated within the framework of the Poisson-Boltzmann
theory. We shall not follow the details of the derivation,
extensively treated elsewhere (e.g., refs 8 and 16-18) but
will instead use a simple form convenient for the present
case.!®17 At distances between molecules greater than
the Debye decay length A = 1, the double-layer poten-
tial about each molecule takes on a form

o) = 5=—Ky(xr) (15)
€€y

where K(x) is the zero-order Bessel function of the sec-
ond kind, r is the distance from the cylinder axis, ¢ is the
dielectric constant, and » is proportional to the density
of charge on the molecule. An analogous equation can
also be obtained in the formalism of the Marcelja the-
ory'® of the hydration forces, where the inverse hydra-
tion decay length replaces «, while the magnitude is depen-
dent on the extent of perturbation of water molecules at
the surface of DNA.

The mutual energy of interaction per unit length between
parallel molecules of radius a at a separation R is obtained
as

#(R) = 2k_T 2K_°('(Rl__
! Ly" (kaK,(xa))?

where L, is the Bjerrum length and ¢ is the dimension-
less linear charge density defined as L, /b, where b is the
distance between the charges along the DNA backbone.
In the limit of large (xa), this result would result in the
limiting form used by Parsegian and Brenner!” in their
analysis of forces acting in TMV arrays. Equation 16 is

(16)
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for charges set at a radius a but again stated as hypo-
thetical charges that set up a potential following the lin-
earized PB equation.?

Experimentally, the free energy W/! per unit length
of polymer is taken from the integral of the force per
unit length versus separation as determined by osmotic
stress measurements.>*

Numerical Results

Before proceeding to test and to apply the con-
strained random walk formula, eq 14, one must convince
one’s self of the inapplicability of any flexible hard rod
model. By quite general arguments, Helfrich and Har-
bich®?! have shown that the free energy needed to con-
fine a flexible hard rod will have the form of an inverse
2/3 power of the effective diameter d g, of an encasing
tube. Later, Odijk® 7 showed that the confinement basi-
cally acts to divide the polymer into statistically inde-
pendent segments, each one deflection length long. He
derived the deflection length for a sterically confined poly-
mer in the form

LP=d,4L an

where £ is the persistence length of the polymer. The
conflnement free energy then follows as
L

F = kT 7, (18)
with L the total length of the polymer. (Both expres-
sions follow conventions in the polyelectrolyte field; their
use does not imply that we believe that the linearized
equation gives more than a convenient language for cod-
ifying data and comparing parameters with their equiv-
alents derived by other methods.) This is basically the
same result as derived by Helfrich and Harbich. The
force per unit length acting to confine a single polymer
can be now obtained as

fr) = 2EL g o

5 o (19)

The effective diameter is given as the polymer intersur-
face separation minus a distance corresponding to an extra
effective exclusionary region of thickness o), where A is
the decay distance of the underlying exponential repul-
give force and « an adjustable parameter for setting the
hypothetical “effective” rod diameter.

Attempts to fit the above formula to forces measured
between polymers (Figure 3) clearly show that the exper-
imental data belong to a different class of interaction
potentials. This discrepancy was the original motiva-
tion for the present work to reconsider the interaction of
densely packed polymers.

We may now proceed to compare the derived result,
eq 14, with experimental data. In the physically rele-
vant limit of large R the interaction free energy per unit
length, W/! (cf. eq 14), can be approximated to suffi-
cient accuracy by a simpler expression that neglects the
extra confinement of a hard wall

le "’(R) kT[(¢(R))1§ZT v (20)

(This simphflcatlon will also be verified below after com-
parison of the theoretical expression with measured forces
versus separation. For cases of very soft potentials with
consequent large spatial fluctuations of the central chain,
one must, of course, retain the second term in the square
brackets in eq 14.)
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Figure 3. Failure of a flexible rod model to predict experimen-
tally observed behavior. The data, for DNA in 1 and 0.2 M
NaCl solutions, show two exponential decays and not the (R -
2a - a))™®/2 dependence that can be deduced from an equiva-
lent hard elastic rod picture. A was set equal to 3.14 or 6.7 A
and a = 1, thereby mimicking the hydration or electrostatic
forces,® respectively. Cylinder radius @ was taken as 10 A.
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Figure 4. Repulsion between DNA double helices in NaCl solu-
tions of concentrations 0.2, 0.3, 0.4, 0.8 and 2 M, fitted with the
effective step length | = 40 A by using eq 20 and the force curve
in the high ionic strength case (I = 2 M), which clearly displays
the mean-field and the fluctuation-enhanced region. This step
length is very close to the 45-A coherence length inferred directly
from thermodynamic analysis of the experimental data on forces
in DNA arrays.? The electrostatic parameters obtained from
the fit via eq 16 to the low-salt region, where only the fluctua-
tion-enhanced interaction potential is seen experimentally, are
displayed in Table L.

The experimental data are for the force per unit length,
f(R), acting between molecules in a hexagonal array.® In
the effective tube model, this is equal to the derivative
of interaction free energy per unit length, W /[, with respect
to R. We recognize that only at large values of ionic
strength (I = 0.8 M NaCl) can one measure a force curve
that reflects the action of the same ¢(R) throughout, both
in the “mean-field” and fluctuation-enhanced regions. At
these concentrations electrostatic double-layer forces are
completely screened,® and ¢(R) is an exponentially vary-
ing hydration force. At lower ionic strengths, the mean-
field part of the measured force curves still corresponds
to these powerful forces that dominate most interac-
tions at <10 A separation but the fluctuation-enhanced
part of the force curve now reflects underlying electro-
static double-layer forces. The sensible thing to do is
therefore to obtain the value of | from the set of high
salt measurements and then use this value to extract the
parameters describing the electrostatic interaction. This
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Table I
Na-DNA Parameters®
ILM Ap, A b A
0.2 - 6.7 3.3
0.3 5.5 3.8
04 4.7 4.6
0.8 3.6 4.2

@ Jonic strength I, Debye-Hiuckel decay length Ay, and effective
distance between the charges b for low-salt Na-DNA.

procedure is validated by a thermodynamic analysis show-
ing that the independently fluctuating segment length
does not depend crucially on the ionic strength.?

We begin then by examining data for forces between
DNA double helices in NaCl solutions of greater than
0.8 M ionic strength. Above this concentration, where
there is no sensitivity of forces to ionic strength; one is
apparently observing forces of molecular hydration. One
sees the two decay rates that would be predicted by eq
20. The points at shorter range give the direct potential
¢(R)/1; those at greater separation, with one-half the ear-
lier decay rate, then provide a clean demonstration of
the square-root term and a value, 40 A, for the Gaussian
step length. This value is effectively the same as the
thermodynamic estimate of 45 A for the fluctuating unit
size® and is close to the corresponding values of Odijk’s
deflection length. From the magnitude of the soft poten-
tial in the range of relevant R, it is also clear that the ¢,
term in eq 14 can be safely neglected.

At lower ionic strengths, the electrostatic double-layer
force expected at shorter separations is overwhelmed by
the more powerful hydration forces, but salt concentra-
tion dependent forces do appear at interaxial distances
greater than 30 A. In this long-range salt concentration
dependent regime, the decay is close to half the expected
Debye length, again showing the behavior expected from
the square root term in eq 20. We use the second term
in eq 19 with | = 40 A to estimate the coefficient of the
direct force potential ¢(R). Then by eq 16 we turn the
magnitude of the force potential into an effective linear
charge density expressed through the effective distance
b between the charges (cf. Table I). The actual fits to
the data are presented in Figure 3 and clearly show the
mean-field and the fluctuation-enhanced regions at larger
values of R.

The forces measured have thus been described in terms
of a linear charge density, b, for charges residing on the
surface of a cylinder taken at 10-A radius and computed
from measured forces by the linearized Poisson-~
Boltzmann equation. Interested readers can convert the
tabulated b so computed for other radii of charge loca-
tion or other forms of the Poisson—Boltzmann equation.

Discussion

Though our model is deliberately simplified, it still
retains all the essential features of the system revealed
by the experiment.® These include the independently
fluctuating unit of a size much smaller than the persis-
tence length (=600 A for native DNA) and the reduction
of the decay rate produced by the action of thermal fluc-
tuations in the shape of the molecule.

Within the framework of our basically phenomenolog-
ical random walk model, it is not possible to derive the
step length from microscopic considerations. We expect,
however, that a more detailed analysis taking into account
the elastic bending energy as well as the actual full form
of the interaction potential, and not only its small fluc-
tuation expansion (cf. eq 6), can provide an independent
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estimate for the size of the Gaussian step. First, there
is likely to be an association between our step length !
and Odijk’s® deflection length L4 (eq 17), which can be
computed for d;,, = 30-40 A as £, =~ 40-60 A, close to
the fitted step length or the thermodynamically obtained
independently fluctuating unit size. Second, it has been
observed experimentally® as well as in preliminary numer-
ical simulations?? that the effect of the bending stiffness
on the properties of a confined polymer is small and prob-
ably indirect, as seen in the case of L, that depends only
weakly on £,

In any event we circumvented the problem of choos-
ing a step length a priori by connecting the predictions
of our model with the results of experimental measure-
ments on the forces between DNA molecules. The step
length was deduced from the hydration force curve that
clearly exhibits that bare and the fluctuation-enhanced
regions. We used the step length so obtained also in the
electrostatic regime, where only the fluctuation-
enhanced region is observable and thus extracted the elec-
trostatic parameters.

We are now aware of a new broad class of phenomena
occurring in a polymer assembly. The qualitative truth
of Onsager’s early idea is still correct; packing is domi-
nated by configurational entropic factors. But the oper-
ative changes in entropy are tightly coupled to slowly
varying long-range forces between assembling particles.
The continually varying interplay of these electrostatic
double-layer or hydration forces and macromolecular dis-
order creates a variation between packing free energy and
separation quite unlike predictions from earlier theo-
ries. In particular, it is now apparent that the unexpect-
edly slow variation of forces measured between muscle
fibers® or TMV particles®® might reflect changes in con-
figurational disorder rather than anomalous decay of elec-
trostatic double-layer potential fields. If one can obtain
an independent estimate of the polymer configurational
parameters (e.g., [ in the case of our Gaussian model), it
should be possible to derive far better estimates of the
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electrostatic double-layer potentials in these polymer
assemblies.

We would therefore like to encourage further theoret-
ical work that would take into account more microscopic
features of the system, e.g., dealing appropriately with
the elastic part in the hamiltonian, and may be leading
to an estimation for the step size in terms of persistence
length and soft potential parameters. Also it might be
appropriate to put more effort into the numerical simu-
lations of spacially constrained polymers in external con-
fining fields.
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