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1 Casimir effect

1.1 A history of Casimir force

The understanding of the nature of the force between molecules has a long
history. We will start with Wan der Waals. It was early recognized, that
the ideal gas laws of Boyle and Gay-Lussac could be explained by the kinetic
theory of noninteracting point molecules. This laws were hardly exact. Van
der Waals found in 1873 that signification improvements could be effected
by including a finite size of the molecules weak forces between the molecules.
At the time, these forces were introduced by placing two parameters in the
equation of state. (

p +
a

V 2

)
(V − b) = NkT

Fig. 1. The molecul B near the wall will have less kinetic energy then molecule A
in the interior, because of attraction by other moleculec.

Cohesive forces between the wall and B are ignored
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It required the birth of quantum mechanics to begin to understand the
origin of atomic and interatomic forces. An early analysis of the force between
pair of non–polar molecules was by Wang (1927) who used perturbation
theory to solve the Schrödinger equation for two hydrogen atoms at large
separation including the interactions between the elektrons and protons of
the two atoms, and found that the interaction energy is given by

V (R) = −8, 7
e2a5

R6

Eisenschitz and London (1930) analysed the same problem and came to the
same kind of result, with a factor of the order of 6, 5 instead of 8, 7.

In 1930 London showed, that the force between molecules possessing elec-
tric dipol moments falls off with the distance r between the molecules as 1/r6.
The simple argument goes as follows: The interaction Hamiltonian of a dipole
momend ~d with an electric field ~E is H = −~d. ~E. From this, one sees that
the interaction energy between two such dipoles, labelled 1 and 2, is

Hint =
(~d1.~d2)r

2 − 3(~d1.~r)(~d2.~r)

r5

where ~r is the relative position vector of the two dipoles. Now in first order of
perturbation theory, the energy is given by < Hint >, but this is zero because
the dipoles are oriented randomly, < ~di >= 0. A nonzero result first emerges
in second order,

Veff =
∑
m6=0

〈0|Hint|m〉 〈m|Hint|0〉
E0 − Em

which evidently gives Veff ∼ r−6. This is a short distance electrostastic
effect. This London’s analysis provide the framework for working out the
force between two large dielectric materials by summing the London forces
between the molecules in one and the molecules in the other.

In 1937 Casimir and Polder included retardation. They found that at
large distances the interaction between the molecules goes like 1/r7. This
result can be understood by a simple dimensional argument. For weak electric
fields ~E the relation between the induced dipole moment ~d and the electric
field is linear (isotropy is assumed for convenience),

~d = α~E

where the constant of proportionality α is called the polarizabiility. At zero
temperature, due to fluctuations in ~d, the two atoms polarize each other.
Because of the fallowing dimensional properties:

[d] = eL, [E] = eL−2, ⇒ [α] = L3
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where L represents a dimension of lenght, we conclude that the effective
potential between the two polarizable atoms has the form

Veff ∼
α1α2

r6

h̄c

r

while at high temperature the 1/r6 behavior is recovered

Veff ∼
α1α2

r6
kT, T →∞

The London result is reproduced by noting that in upper arguing, we implic-
itly assumed that r � λ, where λ is a characteristic wavelenght associated
with the polarizabillity, that is

α(ω) ≈ α(0) for ω <
c

λ

In the oposite limit is

Veff ∼
h̄

r6

∫ ∞

0
dωα1(ω)α2(ω), r � λ.[2]

1.2 A derivation of the Casimir force

The origin of the dispersion force between two molecules is linket to a process
which can be described as the induction of polarization on one due to the
instantaneous polarization field of the other, and the value of the dispersion
interaction energy is the exspectation value of the corresponding interaction
term in the Hamiltonian. Since the interaction occurs through the electro-
magnetic field, it stands to reason that an alternativ viewpoint could be de-
veloped, accordind to which the dispersion interaction of a pair of molecules
could be considered to be due to the effect of the pair on the energy of the
electromagnetic field.

Historically, this approach was developed in a series of papers by Casimir
(1949, 1949) and by Casimir and Polder (1946, 1948). An important result
obtained by Casimir and Polder using quantum electrodynamics was that the
dispersion interaction energy between a pair of molecules at a distance larger
then the wavelenght of the radiation due to dipolar transitions in them falls
off as (1/R7), according to the formula

E(R) = − 23

4π
h̄c

α1(0)α2(0)

R7
(1)

The quantum elektrodynamic approach developed by Casimir and Polder
(1948) was also formulated by Casimir in semi–classical terms, in which the
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interaction energy can be defined as the change in the zero–point energy of the
electromagnetic field modes (obtained by solving Maxwell’s equations) when
the latter are perturbed by the molecules through coupling of the field with
polarization currents induced on the molecules. This kind of semi–classical
approach has attracted renewed interest lately in the study of problems in-
volving interaction of radiation with matter (Scully and Surgent, 1972) with
the development of lasers. We shall restrict our considerations here within
the semi–classical approach, in view of the considerable simplification in the
mathematical aspects of the framework over the approach based on quantum
electrodynamics. A simple illustration of the method is in the derivation of
the force between two perfectly conducting metallic plates by Casimir (1948).
Consider two perfectly conducting plates separated by distance l along the
z-direction, with the (x, y)-axes lying on one of them. The modes of the
electric fields can be written as

~E(k1, k2, n) = ~E0e
i(k1x+k2y) sin

nπz

l
(2)

where k1 and k2 are the wave numbers of propagating waves along the x- and
y-directions respectively, and (n− 1) is the nubmer of standing wave modes
along the z-direction. The corresponding frequency is

ω(k1, k2, n) = c
(
k2

1 + k2
2 +

n2π2

l2

)1/2

(3)

In addition, there will be one mode for n = 0. For other integral values of n
there will be two modes corresponding to two polarizations. The interaction
energy per unit area between the plates can be defined as

E(l) =
h̄

2

∑
k1,k2,n

(
ω(k1, k2, n)− lim

l→∞
ω(k1, k2, n)

)

=
h̄c

(2π)

∫ ∞

0
κdκ

( ∞∑
n=0

′
√

κ2 + n2π2/l2 −
∫ ∞

0

√
κ2 + n2π2/l2 dn

)
(4)

where the prime is meant to indicate that in the sum the term for n = 0 is to
be multiplied by 1/2. The integral over n is an estimate of the sum for large
l. The individual integrals diverge but their difference does not. To extract a
meaningful result we can introduce a convergence factor e−(κ2+n2π2/l2)δ2

with
δ →∞ ultimately. Then we can define a function

S(δ, n) =
∫ ∞

0
κ dκe−(κ2+n2π2/l2)δ2

√
κ2 + n2π2/n2

=
1

2

∫ ∞

n2π2/l2
du
√

ue−uδ2
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in terms of which the above sum can be expressed. We can now use the
Euler–Maclaurin formula to simplify the sum in (4) as,

∞∑
n=0

′S(δ, n)−
∫ ∞

0
S(δ, n)dn =

1

6

(
S ′(δ, n = ∞)− S ′(δ, n = 0)

)

− 1

30× 24

(
S ′′′(δ, n = ∞)− S ′′′(δ, n = 0)

)
+ · · · (5)

The limits for n = ∞ and n = 0 are taken trivially and we get for δ → 0,

E(l) ∼= − h̄c

(2π)

2π3

l3
1

30× 24
= − h̄cπ2

720l3
(6)

This would lead to an atractive force per unit area between the plates, whose
value is

F = −∂E(l)

∂l
= − h̄ c π2

240 l4
(7)

This force arises from the change in the zero–point energy per unit volume
of the electromagnetic field from the free space value to what it is when the
field is confined between the two plates separated by the distance l. If the
distance l is measured in microns, the numerical value of F is,

| F |= 0, 013.10−5

l4
N

cm2
(8)

Since no metal in nature is an ideal conductor, this result may be expected to
be valid as long as l is larger than the skin–depth, i.e., the penetration depth
of electromagnetic waves, which for most metals is of the order of 0, 1 µ.
We shall later show that a similar (1/l4 force arises between two dialectric
plates whwn l exceeds the characteristic absorbtion wavelenght of the media
(Lifshitz, 1954, 1955).

This result is very different from the 1/l3 law was obtained for the force
between slabs by pairwise summation of London (1/R6) force between the
constituent molecules in the slabs. The dispersion force between a pair of
molecules in this retarded region, where the finite velocity of propagation of
electromagnetic interactions begins to be felt, has a different character from
the London (1/R6) force. The force between two plates can also be derived
by a different approach which emphasizes the surface current fluctuation as
the source of radiation (Mitchell, Ninham and Richmond, 1972). [1]
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Fig.2-3. To the Casimir effect

There are many ways in which the Casimir effect may be computed.
Perhaps the most obvious is to compute the zero–point energy in the presence
of the boundaries. And the force between the two conducting rigid parallel
plates is just one of the manifestation of Casimir effect. There are some
others and his aplications:
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• Casimir force between parallel dielectrics

• Casimir effect with perfect spherical bondaries

• Casimir effect of a dielectric ball

• Casimir effect in cylindrical geometries

• Casimir effect in two dimensions

• Casimir effect on a D- dimensional sphere

• Cosmological implications of the Casimir effect

• Sonoluminiscence and the dynamical Casimir effect

• Casimir force in nematic liquid crystals

Aboud this last, it was measured by our professors P.Ziherl, R. Podgornik,
and S. Žumer and published in Physical Review Letters in 1999 under the
title Wetting–Driven Casimir Force in Namatic Liquid Crystals.

1.3 Experimental Verification of the Casimir Effect

Attempts to measure the Casimir effect between the solid bodies date back
to the middle 1950s. The early mesurements were, not surprisingly, some-
what inconclusive. The Lifshietz theory for zero temperature , was, however,
confirmed accurately in the experiment of Sabisky and Anderson in 1973. So
there could be no serious doubt of the reality of zero–point fluctuation forces.

New techological developments allowed for dramatic improvements in ex-
perimental techniques in recent years, and therebly permitted nearly direct
confirmation of the Casimir force between parallel conductors. First, in 1996
Lameroux used a electromechanical system based on a torsion pendelum to
mesure the force between a conducting plate and a sphere in the 0, 6 to 6 µm.
The force per unit area is no longer of

F = − π2

240l4
h̄c = −1, 3.10−27 Nm2l−4

but may be obtained from that result by the proximaty force theorem, which
here says the attractive force F between a sphere of radius Rand a flat surface
is simply the circumference of the sphere times the energy per unit area for
parallel plates

F = 2πRE(l) = − π3

360

R

l

h̄c

l2
; R > l,
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where l is the distance between the plate and the sphere at the point of
closest approach, and R is the radius of curvature of the sphere at the point.
Lameroux in 1996 claimed an agreement with this theoretical value at the
5% level. [2]

Fig.4. Details of the Lameroux pendulum. The bodi vas total mass 397 g. The
ends of the W fiber were plated with a Cu cyanide solution; the fiber ends were
bent into hairpins of 1 cm lenght and than soldered into a 0,5 mm diam, 7 mm
deep holes in the brass rods. Flat–head screws were glued to the backs of the
plates; a spring and nut held the plates firmly against their supports end ensured
good el. contact [7].
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Fig.5-6. Top: Lameroux measured force as a function of relative position.
Bottom: Measured force with electric contribution subtracted; the points

connected by lines are as expected from the Casimir force [7].

An improved experimental mesurement was reported in 1998 by Mohideen
and Roy, based on the use of an atomic force microskope in the range from 0, 1
to 0, 9 µm. They included finite conductivity, roughness, and temperature correc-
tions, although the latter remains beyond experimental reach. Spectacular agree-
ment with theory at the 1% level was attained.
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Fig. 7. Shematic diagram of Fig. 8. Scanning electron microskope
ekperimental setup. image of the metallized sphere

Fig. 9. A typical force curve as a function Fig. 10. The measured Casimir
of the distance moved by the plate force as a function of sphere–plate

surface separation.

Erdeth used template–stripped surfaces, and measured the Casimir forces with
similar devices at separations of 20− 100 nm.

Very resently, a new measurement of the Casimir force has been announced
by a group at Bell Labs, using a micromachined torsional device, by which they
measure the attraction between a polysiliconplate and a spherical metallic surface.
Both surfaces are plated with a 200 nm film of gold. The authors include finite con-
ductivity and surface roughness corrections and obtained agreement with theory
at better then 0,5% at the smallest separations of about 75 nm. Their experiment
suggests novel nanoelectromechanical applications.

The recent intense experimental activity is very encouraging to the develop-
ment of the field. Coming years, therefore, promise ever increasing experimental
input into a field that has been dominated by theory for five decades [2].
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2 An acoustic Casimir effect

2.1 Comparation between EM and acoustic Casimir
effect

In the Casimir effect, two closely spaced uncharged parallel plates mutually attract
because their presence changes the mode structure of the quantum electromagnetic
zero point field (ZPF) relative to free space. If the plates are a distance d apart, the
force per unit area is f = h̄/(240d4), where h̄ is the reduced Pnanck’s constant and
c is the speed of light in vakuum. Recently, Lamoreaux has provided conclusive
experimental verification of the Casimir force. The force between two parallel
plates can be understood in terms of the radiation pressure exerted by the plane
waves that comprise the homogeneous, isotropic ZPF spectrum. In the space
between the conducting plates, the modes formed by reflections off the plates act
to push the plates apart. The modes outside the cavity formed by the plates act to
push the plates together. The difference between the total outward pressure and
the total inward pressure is the Casimir force per unit area.Because energy per
mode has the of the zero point field has the same value 1

2 h̄ω between and outside
the plates, one can incorectly be led attribute the attractive character of the force
as due to the fact that there are fewer modes between the plates. Surprisingly, as
we show below, the force can be repulsive for band–limited noise.

Because the zero point field can be thought of as broadband noise of an infinite
spectrum, it should be possible to use an acoustic broadband noise spectrum as an
analog to at least some ZPF effects. An acoustic spetrum has several advantages.
Because the speed of sound is six orders of magnitude less then the speed of light,
the lenght and time scales are more mmanageable measurable. Also, in an acoustic
field, the shape of the spectrum as well as the field intensity can be controlled. In
this letter, i report theory and measurements of the force between two rigid parallel
plates in an externally–generated band–limited noise field.

A simple calculation shows that for the same separation distance, the Casimir
force, due to the electromagnetic zero point field is at least six orders of magnitude
greater than the Casimir force due to zero point phonons, because the speed of light
is six orders of magnitude greater then the speed of sound and because the phonon
spectrum has a natural high frequency cutoff at the Debby temperature. To be
distinguished from the effects of the zero point field, the Casimir–like effect due
to thermal phonones and photons would require separation distances d � h̄c/2kT
which would make the force extremely difficult to measure. Driven elecromagnetic
white noise (composed of real photons) would yields forces much smaller then
acoustically driven noise. The force we measure in this case are the equivalent of
30 mg, while the forces Lemeroux measured due to the actual Casimir effect are
equivalent to 10 µg.

One of the key ideas in the derivation of the ZPF Casimir force is the fact
that the energy per mode 1

2 h̄ω is the same for modes both outside and between

12



the plates, which can be understood with the adiabatic theorem. To this purpose,
imagine that the plates are initially far apart so that the spectral intensity Of the
ZPF is that of free space. If we now adiabatically move the walls towards each
other, the modes comprising the ZPF will remain in their ground state; only their
frequencies will be shiftet in such a way that the ratio of the energy per mode
E to the frequency ω remains constant, or E/ω = h̄/2. Thus the main effect of
the boundaries is to redistribute ground state modes of which there is an infinite
number.

In the acoustic Casimir efect, in contrast to the ZPF Casimir efect, broadband
acoustic noise outside two parallel rigid plates drives the discrete modes between
the plates. The adiabatic theorem does not apply in this case both because of
inherent losses in the system and because the spectrum can be arbitrary. In gen-
eral, when the response and drive amplitudes are expressed in the same units,
the response is approximately the quality factor Q multieplied by the drive (”Q
amplification”). The energy per mode being the same in the ZPF Casimir effect
therefore implies that the place between the plates cannot be considered as a reso-
nant cavity unless the quality factor of each mode is unity. While external drivers
can provide a steady state noise spectrum from which we can infer the energy per
mode by dividing by the desity of states ω2/2π2c3, this energy may be different in
the cavity formed by the plates as a result of Q amplification. However, for this
open resonant cavity the quality factor is poor, so we may asume it to be equal to
unity, which renders the energy per mode equal to its value in free space.

Fig. 11. The acoustic analog of Casimir force [6]
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In general, the radiation pressure of the wave incident at angle θ on a rigid
plate is

P =
2I

c
cos2 θ (9)

where I is the average intensity of the incident wave and c is the wave speed. The
factor of 2 is due to perfect reflectivity assumed for the plate. Eq. (9) follows of
the time–averaged second–order acoustic pressure, which equals the time–averaged
potential energy density minus the time–averaged kinetic energy density. When
the acoustic case is constrained to one dimension, mass conzervation yields an
explicite dependence of the radiation pressure on the alasticity of the medium,
characterized by γ, the ratio of specific heats, namely

P = (1 + γ)
I

c
(10)

However, for the three–dimensional open geometry in our case, the constrained,
due to the mass conservation does not apply and the acoustic and the electro-
magnetic expressions for the radiation pressure at a perfectly reflecting surface are
identical.

With appropriate filters, one may shape the spectrum on an acoustic driver
and obtain, in principle, different force law. For an isotropic noise spectrum with
spectral intensity Iω, (measured by a microphone) we can express the spectral
intensity in the wavevector space of traveling waves. According to the formula

jk4πk2 dk = jω dω

and
k =

ω

c

dω

dk
= c

we get

Ik =
Iω

4πk2

We choose the z axis to be normal to the plate, so that kz = k cos θ. From (9) the
total radiation pressure due to waves that strike the plate is then

Pout =
2
c

∫
dkxdkydkzIk cos2 θ (11)

when the integration is over k values corresponding to waves that strike the plate.
Regarding the discrete modes between the plates, the for convenience we con-

tinue to deal with the traveling wave modes. We label these modes with wavevector
components

kx =
nxπ

Lx
ky =

nyπ

Ly
kz =

nzπ

Lz

where nx, ny, nz, are signed integers and Lx, Ly, and Lz are the dimenzions
between the plates. As before, the z axis is chosen to be normal to the plates. As
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a result of the quality factor of the modes beeinf aproximately unity, the intensity
Iin(k) of each mode between the plates is expected to be approximately the same
as the outside broadband intensity in a bandtwidth equal to the wavevector spacing
of the inside modes:

Iin(k) = Ik∆kz∆ky∆kz

where
∆ki =

π

Li

In the limit of large dimensions, this expression for the inside intensity yields the
correct wavevector spectral intensity Ik.

We assume that the dimensions Lx and Ly of the plates are sufficiently large
that the coresponding components of the wavevectors are essentially continuous.
Thus, in comparasion to (10), the total inside pressure is

Pin =
2
c

∑
∆kz

∫
dkxdkyIk

k2
z

k2
(12)

where ∆kz = π/Lz and the sum is over values of nz > 0.
The difference between Pin − Pout is the force f per unit area between the

plates, which is a continuous and piecewise differentiable function of the separation
distance between the plates.

Pin − Pout =
2
c

∫ ∫
dkxdky(

∑
n

−
∫

dn)Ik
k2

z

k2

It can be shown, that the force can alternate between negative (attractive force)
and positive (repulsive force) values as the plate separation distance or the band–
limiting frequencies are varied. On the other hand, if the lower in the band is zero,
the force is always attractive.

In an experiment dealing with an acoustic analog to the Casimir effect, an im-
portant question is whether other nonzero time–averaged (dc) effects can play an
omportant role. The only second order dc effects in acoustic are radiation pressure
and streaming. Any other dc effect would be fourth order in the acoustic pres-
sure, and at least 40 dB smaller in our case. Employing smoke in the apparatus
descibed below, we detected no acoustic streaming when driving with broadband
acoustic noise at the intensity level used in the experiment. Because the noise
in our experiment can be thought as collection of monochromatic waves over a
band of frequencies with randomly varying phases, we would expect very little or
no streaming when the characheristic time of phase variations is less then that
the diffusion time. Furthermore, because acoustic streaming is driven along the
boudary from a pressure antinode to a pressure node, in the presence of broad-
band noise the pressure nodes and antinodes of the different noise components are
dencely distributed along the boundary, thus reducing or eliminating the streaming
[4].
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2.2 About the apparatus

Fig. 12. The apparatus to measure the acoustic Casimir force

Two 15 cm diamet plates were used for the acoustic Casimir force measuremant.
The bottom plate is 6, 35 mm thick aluminium, attachet to the top of a step motor
mount. The top plate is 5, 57 mm thivk PVC which was vacuum–aluminized and
hung beneath the analytical balance by an aluminium bar screwed into the plate
and attached to the balance by a hook. The weight of the top plate, 168, 1653 g,
is well within the 200 g maximum capacity of the balance, whose resolution is of
0, 01 mg. Both plates were grounded to a common ground to eliminate electrostatic
effects, therebly minimizing fluctuations in the force measurements. The acoustical
chamber was made from a 6, 35 mm thich steel propane tank. The amplified band–
limited output of an analog noise source drives six compression drivers that provide
the desired acoustic noise intensity within the acoustic chamber.

The step motor was mounted on a small alukinium optical bench with tree–
point leg adjustments, centered in the acoustic chamber 46 cm from the tank access.
The number of steps (1 to 255 steps) and direction (up and down) are varied with
a microchip controller. Attached to a machined screw with 20/6, 35 threads/cm,
the step motor mount yields displacement ranging from 6, 35 µm for one step
(1, 8 degrees to 1, 27 mm for 200 steps (360 degrees). We employed plate spacing
increments of 1, 27 mm through the full 6, 3 cm range of the step motor mount.
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Fig. 13. The acoustic Casimir demonstration device

Fig. 14. The photografh of apparatus. The tank is made
of 0,64 cm steel, lenght 1,5 m and diameter 0,5 m

The initialplate spacing was determined with a sparg plug gap gauge and the
plate separation distance vas verified to be uniform by measurements at at different
locations between the plates. Once, the balance reading in on the weight of the
top plate, the balance was tared to zero and all force measurements were made
relative to this zero. The acoustic noise field was turned on for each plate separation
distance and the force measurement recorded once the balance readout first looked–
in. The sound field was then turned off and the reading of the balance was verified
to return to zero. We selected a uniform broadband noise spetrum between rougly
5 and 15 kH. The lower limit was selected well above the lower modes of the tank
in order to excite the noise distribution as homogenius as possible. The upper
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limit was due to the compresson drivers rolling off 20 dB from 15 to 20 kH. Fig.3
shows the measured noise spectrum which, except for 5 dB variations throughout,
is nearly flat within the spectral range of 4, 8 to 16 kHz. The total intensity is
133 dB (10−12 W/m2) [5].

Fig. 15. The experimental spectrum

2.3 Measure resoults

Using a spark plug gouge, it was measured the initial plate separation distance to
be 0, 76 mm. As shown in Fig. 16 and Fig. 18, throught a range of distances less
then the smallest half wavelenght (no modes between the plates), the measured
force is aproximately independent of distance, and agrees with the expected velue
for an intensity level of 133 dB. When the half wavelenght of the highest frequency
fits between the plates (10, 63 mm for 16 kHz), the force begins to decrease non–
monotonically, and becomes repulsive at 30− 40 mm.

The repulsive force can be understood as follows. When the distance between
the plates is comparable to the half wavelenght associated with the lower edge of
the frequency band, the corresponding modes inside the plates have wavevectors
that are nearly perpendicular to the plates. However, the modes outside the plates
corresponding to the same frequencies are spread over all possible angles of inci-
dence. Thus, for the same total intensity, the momentum transfer due to waves
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inside the plates is over a narrow cone while the momentum transfer due to waves
outside the plates extends over all angles, leading to a repulsive force.

Fig. 16-17. Force between two parallel rigid plates as a function of the distance
between them. The points are experimental data and the curves are from

theory with no adjustable parameters for flat spectrum.

Fig. 18-19. Comparation between experimental data and the curves from theory
with piecewise power–law spectrum [5]

2.4 A possible application

Experimnatl evidence of attractive and repulsive forces within a finite acoustic
bandwindth suggests new means of acoustic levitation. The force between to ob-
jects can be malipulated by changing the distance between the objects or varying
the spectrum. While the casimir force is small compared to the force of the Earth’s
gravity, in a low gravity environment a method of material control through the ma-
nipulation of an acoustic noise spectrum or plate geometry may be possible. The
acoustic Casimir effect can also be a potential tool in noise transduction because
of direct measurement of the force can determine the total intensity of background
noise. The shape of the force over distance is effectively an instantaneous time
average over all frequencies and may provide an alternative to measurements of
background noise [5].
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