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Abstract 

 

Hictoric overwiev of van der Waals interaction will be presented in the following seminar and 

different approaches will be discussed. Pairwise Hamaker approach is first approximation for 

van der Waals interactions, but can be rigorously complemented by Lifshitz theory, 

introducing harmonic oscillator surface modes. In stead of exact but complicated Lifshitz 

theory, the derivations are based on heuristic simplificated approach. Next to theory, some 

interesting experimental examples and calculations are in the second part of seminar. 
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2. Introduction 

 

The origin of van der Waals interactions are transient electric and magnetic field  arising 

spontaneously in material body or in vacuum. Fluctuation of charge are governed in two 

different ways. Besides thermal agitation there are also quantum-mechanical uncertaintes in 

positions and momenta. Thermal agitation can be neglected in the limit of zero temperature, 

but Heissenberg quantum uncertainty principle (∆E∆t ≈ h) is unavoidable. Van der Waals 

interactions stand for collective coordinated interactions of moving charges, instantaneous 

current and field, averaged over time. Due to origin, van der Waals interactions are allways 

present. 

 

3. Historic overwiev 

 

The theory of van der Waals interactions gradually developed. Interactions are named by 

Dutch physisist van der Waals, however there are important contibutions of other scientists. 

Van der Waals formulation of non-ideal gas equation (1870) was revolutiuonary idea for 

interaction between particles, in well known equation of state for non ideal gas, iteractions (r
-

6
) are implicitely included. That time equation for electric and magnetic field were set by 

Maxwell. Hertz showed that electromagnetic oscillation could create and absorb 

electromagnetic waves. Meantime, the pairwise interparticle interactions were considered and 

the foundations for modern theory of electromagnetic modes between interacting media 

across other media were established. When van der Waals interaction between two particles 

were taken into acount, it tended to be generalized on interactions between huge bodies 

(mesoscopic, 100nm – 100um) comparing to one atom.  

 

One direction of devlopment is summation of pairwise interactions over all constituent atoms 

and was done by Hamaker (1937). The knowlege of dilute gases, where pairwise interactions 

could be applied, was  applied to solids and liquids. He generalised conviniently known types 

of two-particle interactions with three sub grups regarding to character of involved diploles: 

the contribution among permanent dipoles is Keesom interaction, Debye interaction betveen 
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one permanent and one induced dipole and London or dispersion interaction between two 

induced dipoles. The idea that incremental parts of large bodies interact by –C/r
6
 energies as 

though the remaining material were absent is well-intentioned approximation for liqiuds and 

solids, although the correspondence to reallity is not satisfactory. The pairwise summation is 

disputable, but it was the first attemption how to consider van der Waals forces between large 

bodies occuring in scientific and technological processes.  Nevertheless Hamaker calculated 

the significant decreasing in power of distance dependance of free energies from 6 to 2 for 

planar geometry. The influence of van der Waals interactions  is thus larger within 

mecoscopic bodies.  

 

Another approach is based on Maxwell electrodynamics and problem of blackbody. To solve 

the problem of heat capacity of blackbox, Planck postulated famous statement, that the fileds 

of blackbody radiation can be expressed as emission and absorbtion of oscillatory standing 

waves in walls of the cavity. Changes of energy occur at discrete units  (photons hν) with 

finite value of Plank constant (h = 6,63·10
-34
 Js). Casimir theory (1948), based on 

electromagnetic modes, benefited from blackbody properties; the force between ideally 

conducting media was considered as the force in a box having two opposite faces with infinite 

dimensions. There exist vacuum fluctuations with all allowed frequencies outside the box, but 

fewer modes within it. The inequality in number of modes results into depletion force as 

shown on Fig. 1. The most important advantage of this idea was in turning  from microscopic 

thinking about atoms to macroscopic whole. Additional advantage of Casimir work is that 

zero point electromagnetic fluctuations in vacuum are as valid as fluctuations in charge 

motions. Heissenberg uncertainty principle predict infinitely large energies for infinitesimaly 

short fluctuations. We are bathed in physically imposible infinities and therefore effects of 

divergence is cancelled.   

 

Clear classical analogy of van der Waals interaction in connection with electromagnetic 

modes is consideration of two boats in rough water (Fig. 1). Empirically, boats are pushed 

together by waves from all directions except that of wave-quelling neighbour. Van der Waals 

interactions behave in similar way. The share of quelling is in proportion to the material-

absorption spectra. Absorption frequencies are those, at which charges naturally dance and 

those at which charge polarization quells the vacuum fluctuation. This is the concept of 

fluctuation-disipation theorem, which states, that the spectrum over which charges in a 

material spontaneously fluctuate is directly connecs with the spectrum of their ability to 

absorb electromagnetic waves imposed on them. 

 

 

 

 

 

 

 
Fig 1: Depletion pressure between Casimir plates [1] and classical analogy with ship attracting on 

undulating sea level [2]. 
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Another conceptual supplement, which is neglected in Hamaker calculations, is retardation 

effect. This concept was introduced by Casimir and Polder in the same year (1948) as the use 

of Planck´s blackbox idea. At large distance between fluctuating charges, the infinite speed of 

light can not be assumed. It takes finite time for electromagnetic field come from one charge 

across space to another; meantime the first charge changes its configuration when the second 

one responses. However there is no first and second corresponding charge, but only the 

coordinated fluctuation of charges. The intensity of interaction is always reduced, the power 

in distance of separation for point particles increases from 6 to 7.  

 

The step closer to more common van der Waals interactions was by Lifshitz, Dzyaloshinskii 

and Pitaevskii (~ 1960). Vacuum gap was replaced by real materaial with its own absorption 

properties. Following to Casimir work, Lifshitz theory involves macroscopic quantities 

instead of microscopic. It limits the validity of theory to the scale, where materials look like 

cotinuua. For determining the stability of mesoscopis solution (colloids), Lifshitz theory is 

good approximation. In Lifshitz approach the only fluctuations contributing to the force 

between two media across third one are surface modes, which are alowwed to penetrate the 

outer media. In gap not all modes are allowed, but outside, what results in depletion force.  

 

Being loyal to historical development of the theory of van der Waals interaction, Lifshitz 

formulae are tended to be writen in form with Hamaker constant (G = AHAM/12πl
2
 for planar 

system). Direct proportionality between the magnitude of van der Waals interaction is 

important. If Hamaker constant is accurately appointed, then the free energy in well defined, 

as Hamaker constant measures the strength of van der Waals interactions. Van der Waals 

forces are relatively strong compared to thermal energy. The rule of thumb is, that Hamaker 

constant is within 1kBTroom to 100kBTroom for most materials interacting across vacuum and 

lower for non-vacuum intermediate media. An interesting estimation for strength of van der 

Waals forces is the case of fly on the ceiling. Fly with downcast head opposes the gravity with 

van der Waals adhesion. For AHAM = 10 kBTroom, l = 10 nm (~ 70 interatomic distance), the 

forces are balanced if cubically approximated fly has volume 8 cm
3
 (ρ ~ 1 kg/m

3
) For 

spherically approximated fly, radius comes to 10
-3
 cm. But why is it impossible to glue 8cm

3
 

cube on the celing? This principle is in reality used by many animals (Gecko) and was 

evolutionary developed. To faciliate downcast head living, fly should use golden coated legs 

and habitate on metal surface, but migration from the surface would be more energy 

consuming. 

 

Van der Waals interactions are attractive, Hamaker constant is positive. On contrary, there 

exist examples, where Hamaker constant is negative, leading to repulsion van der Waals 

interaction. It happens, when dielectric function are BmA εεε >> , i.e. dielectric functions of 

interacting media embrace the dielectric function of intemediate medium. A good example is 

liquid helium, flowing out the container. Helium is interacting media, air and any container 

with mA εε >  mutually repels if liquid helium is mediator. Helium tends to spread all over the 

container surface. The thickness of liquid helium depends on the height of liquid. Momentary 

thickness is run by balance between gravitation and van der Waals contribution, but for 

shallow container equilibrium thickness is inaccessable, because outside the container liquid 

helium drops away.  

 

 

 

 



5 

4. Heuristic derivation of Lifshitz´s general result  

 

The interaction between two bodies across an intermediate substance or vacuum is rooted on 

the electromagnetic fluctuations, which occur in material and also in vacuum. The frequency 

spectrum of fluctuations is uniquely related to absorbtion spectrum and electrodinamic forces 

can be calculated from these spectra. Lifshitz (1954) derived the force between the two bodies 

across vacuum gap from teh Maxwell stress tensor corresponding to the spontaneous 

electromagnetic fields that arise the gap between boundary surfaces. The gap is Planck-

Casimir box. The presentation of original formulation is out of this seminar, but the heuristic 

(Ninham, Parsegian Weiss, van Kampen) method will be presented, where Lifshitz´s 

procedure with Green function is omitted and free energy concept is used instead. In the 

simplified approach the electromagnetic interaction is considered as enery of electromagnetic 

waves of allowed modes. The allowed frequencies are defined by the material properties and 

boundary conditions for electromagnetic field. After deriving the interaction energy for one 

mode, the summation over all allowed modes has to be done. The heuristic approach is an 

example of elegant theory involving some mathematics and modern concepts in physics 

(integration per partes, contour integral, imaginary frequencies, eigenfrequencies), although 

the assumption of pure oscillators even in absorbtion region is far from away from reality. 

Nevertheless, the results are frequently  used ([3], [4], [5], [6], [7]) especialy in limiting forms 

(l → 0, c → ∞).  

 

In derivativation for planar system (it can be easily generalized to other geometries [3]) we 

assume the exsistence of pure sinusoidal oscillations extending over disipative media. Taking 

into account equidistant eigenenergies for simple harmonic oscillator (HO) we can calculate 

the free energy from the partition function. The index j designates the j-th oscillation mode 

across the gap. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2: Two semi-infinite media with a gap. 
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The total free interacting energy is the summation over modes ωj. Before summation all the 

eigenmodes have to be found.  
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Electromagnetic waves obey wave eguation for both electric and magnetic filed. For sake of 

simplicity and due to evident similarity between both fields, the clear derivation for electric 

field satisfy and can be applied to magnetic field equations as well.  

 

Electric field is expanded in terms of Fourier components  

 









= ∑ −

ω

ω
ω

tieEtE Re)( .       Eq. (3) 

 

Which rewrites the wave equation in frequency dependent form  

 

0
2

2
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.        Eq. (4) 

 

In a simple planar system decomposition of electric field vector in components is made 

 

kEjEiEE zyx ˆˆˆ ++=
v

.       Eq. (5) 

 

By symmetry we can guess, that the ansatz has the form of free wave in x-y direction because, 

the system is not limited in x and y directions. The proportional constant in dependent on 

direction z 
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Index j stands for conponent in coordinate system and index i designates media. It yields to   
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This diferential equation is solved by exponent functions(f(z) = Ae
ρz
 + Be

-ρz
) with  
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The quantity ρi
2
 is dependent on susceptibilities of certain media. Eigenmodes are defined by 

boundary conditions. Additional assumptions is made, i.e. there are no free charges present on 

boundaries, the first Maxwell equation is equal to zero  

 

0=⋅∇ E
vv

.         Eq. (9) 

 

Boundary conditions for electromagnetic field are, that tranversal components of E (B) to the 

wave vector and parallel components of D (H) are preserved. It is obvious that far away from 

the gap the fields must not diverge. Therefore AR and BL are set zero in the solution for 

amplitude equation. 

Considering all boundary condition for electric field we obtain from secular determinant 
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Similar expression is obtained for magnetic field as well. New defined function (dispersion 

function) is 

 

)()()( ωωω ME DDD ⋅≡ .       Eq. (11) 

 

It conects magnetic and electric allowed wave modes and has property  
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Till now we looked for eigenmodes and calculated free energy for one oscillator. To describe 

interaction between semi-infinite efficintly, we have to sum over all states and to integrate 

over all wave vectors. We desire to have such an result at the end 
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where is 
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Usually the free energy at infinite separations between media is zero and we can omit second 

term of integral over wave vectors. If the calculation was straightforward, we could skip it, 

but there are still some details to be mentioned. The connection between free energy for 

harmonic oscillators and dispersion function damands use of Cauchy integral formula 

(argument theorem) 
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where )(~ zg  is analytic in a simply conected domain D. For any point z0 in D and any simple 

closed path C in D the Cauchy integral formula is valid. 

Equation (1) has logaritmic singularities for those frequencies, where sinus hyperbolicus is 

zero. It occurs at imaginary numbers,  so called Matsubara frequencies 
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The introduction of imaginary frequencies is purely mathematical procedure, helping us 

sufficiently perform van der Waals interaction with surface modes. 

Cauchy integral formula for HO free energies rewrites into  
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Definition of dispersion relation Eq. (11) with property Eq. (12) suggests, that we can write 

 

( )∏ −=
j

jD ωωω)(         Eq. (18) 

 

and the application of Cauchy integral formula seems reasonable.  

The path of integration is aroud semicircle (Fig. 3).  

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3: Path of contour integration for HO partition function. 

 

At integrating on the semicircle the dependence of dielectric response on frequency is taken 

into account. As frequency approaches to infinity the sistem is not able to follow the 

excitation and dielectric function is equal to 1 for all materials. Dispersion relation is thus 

equal to1 in this case and the integrand is zero. The remaining term of integral is   
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After tedious calculations [3, p. 288] the simple form is obtained 
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Although it is not correct, practically we assume that ε is an even function of frequency. 

Therefore we write another summation, where the prime stands for multiplying n = 0 term by 

½. 

 

∑
∞′

=

=
0

)](ln[)(
n

nl iDkTG ξρ .       Eq. (21) 

 

The total free energy per unit surface can be expreesed as an integral over all wave numbers. 

Regarding to the Eq. (8), the low integral boundary is not zero.  

Free energy of interaction has different forms, depending on different integral substitutions. 

The most famous are with wave  number as an integral variable or with dimensionless integral 

variable x. Equations (11), (12) and (22) for free energies are fundamental for calculating van 

der Waals interactions in heuristic approach of Lifshic theory of van der Waals interactions. 
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Let us mention the third form that is commonly used: 
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where are 
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In the second form of free energy Eq. (24) is the distance of separation explicit. Following to 

the Hamaker work, it is possible to define free energy as 
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Hence the heuristic Lifshitz procedure also produces the Hamaker constat of the form 
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Hamaker constant is function of dielectric responses but also distance of separation. In 

general the Hamaker constant changes with distence of separation. 

Till now we did not mention the simplification of infinite velocity of light in heuristic 

approach. Pertinent ratio rn, the travel time to the fluctuation time ratio, becomes zero for 

infinite velocity of light. The low integral boundary is then zero and ∆ functions are 

independent on wave number. This approximation is valid for small distances of separation. 

This approximation is also useful just to estimate the interaction free energy but is less 

reliable for exact calculations.  
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Another common simplification in nonretarded limit is to replace logarithm with infnite 

summation for small ∆ functions. It holds for many cases at finite frequencies. It is also 

possible to expand logarithm for n = 0, where ∆ functions are larger (especially if water is 

solvent, ∆ ≈ 1), if exponential factor takes care for small argument of logarithm. In this 

approximation, the integral is solved per partes, which leads to additional k
2
 in denominator.  
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The result is rapidly converging summation in k (kmax ~ 30 instead of infinity) but for the 

summation in sampling frequencies is better to use larger number for upper boundary of 

summation (nmax ~ 3000). This requirement is also physically justified: the first Matsubara 

frequency starts in IR (ξ1 ~ 2.46·10
14
rad/s ~ 0.162 eV) and to include all frequency range, 

where the ∆ is significant, the nmax has to be at least 1000 (10
3
·ξ 1 ~ 10

17
rad/s).

 

 

This is the result of Lifshitz´heuristic approach, introduced by Parsegian et al [3]. We derived 

total free energy of interaction and can be used for different geometries and response-

functions-dependancies on frequencies.  

 

5. Derjaguin transformation 

 

Refered to Hamaker, Derjaguin (1934) derived equations for non planar geometries. He was 

aware of complications in curved systems comparing to planar one. Under certain 

simplifications and assumptions he modified equations for planar system with Derjaguin 

transformation (Derjaguin approximation), which was applied in nuclear physics as proximity 

force theorem. The transformation holds when three conditions are fulfilled: The smallest 

separation between curved surfaces must be small and curvarure radii large (l/R → 0), 

electromagnetic excitement in one patch are so weak and localized, that they do not perturb 

excitations in neighbouring patches, and interaction between opposite patches fall off enough 

with patch separation that closest patches contributions dominate.  

As common nonplanar geometry spherical one will be presented in Derjaguin transformation. 

As it will be shown, term for planar geomery free energy in included in interactions between 

two spheres. The three assumptions justify small-angle limit. Therefore trigonometric 

functions, connecting geometric parameters, can be properly expanded in Taylor series. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4: Derjaguin transformation for two close spheres. 
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Bringing some new substitutins in, tlh α+= , 2

1θ=t  the force between two spheres with 

radii R1 and R2 and the smallest separation l is expressed as an integral over all infinitesimaly 

small planar patches. Assumed rapid convergence of planar patches allows us to set the upper 

integral boundary to infinity  
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where GPP is Eq. (31). Since the force is negative derivative of free energy with respect to 

separation, the force between two spheres is  
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This is famous large quoted Derjaguin transformation for spherical geometry. For interactions 

between parallel cylindres another but evident geometric expressions are used within the same 

transformation procedure [3].  

 

6. Derivation of van der Waals interactions in layered planar systems 

 

Approaching to reality, interacting media are not homogenous and isotropic. Special case are 

basic material coated with thin layers of different absorbtion spectra. The thickness of layers 

and absorbtion properties of layers are important parameters. On first hand, large metal layers 

screen interactions between substract media, but on the other side, thin layers with similar 

spectra as substrat media can be neglected in first approximation.  

To express the interaction between layered system we can use the Lifshitz free energy Eq. 

(24), but secular determinat has to be properly modified [3]. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5: Van der Waals interaction between two layered media. 
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Four boundary conditions for Maxwell electrodynamics equation give two equations for 

coeficients A and B in two successive layers. Exponential terms are not equal to zero, as the  

origin of coordinate system is positioned as shown on Fig. 5, 
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It can be rewriten in matrix form, 
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where M is transition matrix. For finite dimension of layer on semi-infinite media, all 

coeficients A and B in coated layers are nonzero.  

The simplest case is one layered semi-infinite media interacting wit another uncoated semi-

infinite media. To consider boundary conditions that field components do not diverge, the 

certain coeficients (AR = 0 = BL) are zero. Multiplication of matrices is successive and 

effective transition matrix for right side is used in stead of product of two matrices 
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After exact multiplication of matrices in effective matrix, Rm interface is split into two 

interfaces, the dispersion relation D has the same form, but ∆ function for right side is 

changed. 

 

( )( )leff

RmLm

leff

RmLmnRLmB
mm eeiD

ρρξ 22
11)(

−− ∆∆−∆∆−= ,    Eq. (36) 

 

11

11

1

11

1

2

2

1 b

mBRB

mB

b

RBeff

Rm
B

B

e

e

ρ

ρ

−

−

∆∆+

∆+∆
=∆ . 

 

For multilayer systems ∆ functions have recursion form [3]. It is proper to mention the 

attention to distances when calculating, because they differ from layer to layer. The origin of 

coordinate system is usually placed in the boundary bwtween the intermediate media and first 

layer on the left medium. 

Inhomogenous media in absorption spectrum are treated as coated system with infinitesimaly 

small layers. The procedure is the same as for system with homogenous and finite large 

layers, however in nonretarded limit electric waves satisfy the first Maxwell equation with 

dielectric function inside the braket, on which derivative operator acts. It results in 

modificated Eq. (7) and qualitatively new form of force versus separation. 

 

0)()(
)(

/
)( 2 =−′+′′ zfzf

z

dzd
zf ρ

ε
ε

      Eq. (37) 
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Dielectric response in IR-VIS-UV region
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The change compared with Eq. (7) is in additional second term, containing derivative of 

dielectric function. For homogenous though layerder system with constant dielectric function, 

second term in Eq. (7) vanish. Another change in procedure for calculating interaction free 

energy in homogenous media is conversion of diferences into derivatives for the thickness of 

slice going to zero. 

 

7. Dielectric function 

 

In free energy for planar system Eq. (24), ∆ functions of dielectric properties appear. 

Beacause other geometries are closely connected with planar system, ∆ functions must be 

known for all van der Waals interactions, irrespective of geometry. For fast estimations for 

interactions A-m-B, where B = A, thus A-m-A, in nonretarded approximation the summation 

is of order 1
´

0

2

≈∆∑
∞

=n
Am . However, for exact calculations dielectric spectroscopic data are 

needed. Dielectric response function is mathematically performed as complex function. The 

real part represent the magnitude of (induced) polarization and the imaginary part is directly 

proportional to Joule heating, which dramatically increases near absorption frequencies. In the 

same frequency region, real part decreases. Dielectric functions versus frequency are 

meassured and data are available as fiting parameters of different models. The most 

widespread is dipole and damped-resonant oscillator model (Sellmeier; Ninham, Parsegian).  

 

∑∑
== ++

+
+

+=
N

j j

j
M

i i

i

g

fd
i

1
2

1 11
1)(

ξξξτ
ξε      Eq. (38) 

 

Model enables that for infinitely large frequencies dielectric response is equal to 1. First term 

is contribution of permanent dipole orientation. For some materials dielectric responses are 

shown od Graph 1. Dielectric response for water is calculated for different fitting parameters 

([3], [4], [5], [8]). 

 
 

 

Graph 1: Dielectric permittivity function for two glasses and water; ∆ are reasonablely small. 
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For water is common 6 UV/5IR damped-resonant oscillator model and was used as waterFit3 

on Graph 1 [5]. In Graph 1 are shown ∆ functions, although in dispersion function ∆
2
 is 

present. Figure show the evidence that ∆
2
 <<1. Simplified summation, Eq. (29), based on 

Taylor expansion of log[D] can be used. Visible region is marked with bright blue. 

Sampling frequencies are quantizated, remarkably, there is enormous difference between ξ0 

and ξ1 in log scale. Zero-frequency contribution is not shown on Graph 1, nevertheless it is 

not ignorable, as water is dipolar solution and has extraordinary high static dielectric cosntant 

(~ 80). In red belt in the Graph 5 are 50 Matsubara frequencies. The last red points correspond 

to 3000-th Matsubara frequency, at which the cummulative function of upper summation 

boundary 

( )
∑∑

=

∞

=

∆∆
==

´

0 1
32

3
)()(

M

n k

k

RmLm

LmR
k

kT
MAMf      Eq. (39) 

 

is well saturated, and 10000-th Matsubara frequency.  First Massubara frequency belongs to 

IR at room temperature; despite possible extreme differences in absorbtion spectra (e.g 

complete frequency range spectrum for water demontrates enormous Debye relaxation in 

microwave region), van der Waals interactions are not governed by these differences at room 

temperature. But they have to be taken into account at lower temperature. 

Real part of permitivity function can be calculated from imaginary part of permitivity via 

Kramers-Kronig relation. Absorption spectra are integrated to obtain real permittivity, which 

must be evaluated at imaginary sampling frequencies to calculate van der Waals interactions. 

 

∫
∞

−
+=′

0

22

)´´(2
1)( dx

x

x

ω
ωε

π
ωε .       Eq. (40) 

 

For imaginary argument, Kramers-Kronig relation is rewritren in adequate form 

 

∫
∞

+
+=

0

22

)´´(2
1)( dx

x

ix
i

ξ
ξε

π
ξε .       Eq. (41) 

 

On Graph 2 Hamaker constants are shown for representative materials, where van der Waals 

attraction can not be neglected [5]. The strength of interaction evidentely depends on 

intermediate media. Polar water molecule are not as transparent for charge fluctuations of 

exampling oxides as vacuum. Graph 2 includes comparison between different methods to 

determine absorption spectra from meassured data. IKK stands for integral Kramer-Kronig 

method (Eq. (38)) and SNP for summation Ninham-Parsegian method (Eq. (36)). SNP-UV 

means, that IR damped-resonant oscillators in Eq. (36) are omitted. There is no as significant 

changes between different approaches as in influence of intermediate media. These Hamaker 

constants are valid for limit c → ∞ (nonretarded) or equvivalently for small distances of 

separation.  
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Graph 2: Hamaker constant across vacuum and water. 

 

8. Field-flow fractionation 

 

Although Hammaker constants depend on amount of dipol in media, they can be meassured 

directly, avoinding dielectric spectroscopy. Let us mention atomic force microscopy (AFM) 

and surface force apparatus (SFA), the last one is in detail described in [9]. However fast but 

efficient sedimentation field-flow fractionation (SdFFF) is also useful technique to determine 

Hamaker constant [6]. SdFFF is sub-technique of field-flow fractionation (FFF), where the 

separation of the suspended particles is accomplished with a centrifugal force field and is 

applicable to colloids analysis.  Colloids are charged by nature and additional repulsion term 

appears in potential. First term in Eqs. (42) is outer force due to applied centrifugal force 

field.  

 

 

RASdFFFtot VVVV ++=        Eqs. (42) 
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d is diameter of spheriacal particle (stokes diameter) for non-spherical particles, ρ density of 

dispesing medium and ρs density of particles, G sedimatation field strenght (acceleration), ε 

dielectric constant of liquid phase, x coordinate position of the centre of mass and ψ1, ψ2 

surface potential of the particle and the chanell wall. κ is reciprocial double-layer thicknes. 

Sample colloid solution is exposed do external gravitational and cetrifugal force field. SdFFF 

is chromatographic technique, where time of moving for certain particles is measured and 

output volume is analysed. Schematically FFF is ilustrated in Fig. 6. Hamaker constant is 

estimated as fitting parameter. 
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Fig. 6: Princple of FFF technique [10]. 

 

When dispezion of SiO2 particles (490 nm) was meassured, three different cetrifugal forces 

were applied in SdFFF [6]. Electrostatic repulsion was estimated 10
-80
kBT and thus neglected. 

Attractive term in Eqs. (42) can be expressed as difference between Vtot and VSdFFF. effh  is the 

distance of the particle surface from accumulation wall of the SdFF with added electrolyte 

and 0

effh  the same distance in absence of added electrolyte. 

 

( )03

int
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4
effSdFFFeffapptrue hGhGV −∆= ρπα      Eq. (43) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Graph 3: Interaction potential for SiO2, measured by SdFFF ((■,□): 300 rpm, (○,●): 400 rpm, 

(▲,∆): 500 rpm) [6]. Insert: Rpm (rotations per minute) conversion into acceleration for 

cetrifugal force. 
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9. Calculations 

 

Graph (4) confirms, that Hamaker constant (as proportional factor in Lifshitz theory of van 

der Waals interactions) depends on distance of separation.   

For quartz-water-quartz (upper) and quartz-water-air (lower) curve Hamaker constant is 

computed using complete, improved approximate (anothe Sellmeier constant with different 

number of dumped-resonant oscillators) and Cauchy plot analysis [4]. Quartz attracts itself 

across water, the smaller distance the stronger attraction. For large distance, quartz attracts air 

across water, but repells it at small distances. Negative Hamaker constant is an indicator for 

repulsive van der Waals interaction. This case is familiar to liquid helium in container; water 

tends to spread over all available quartz surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Graph 4: Exact calculation of retarded Hamaker constant for quartz-water-quartz (upper) and quartz-water-air 

(lower). Curves differ on method to obtain spectra: complete (circles), improved approximate (diamonds) and 

Cauchy plot analysis (squares) spectra. 

 

 

For lipid-water bilayers-coated semi-infinite mica (R) in front of bare semi-infinite mica (L) 

or free standing succesive layer of lipid-water bilayers in water (R) in front of  bare semi-

infinite mica (L) van der Waals interaction was calculated numerically [11]. N = 100 bilayers 

(blue curve) screen the effect of right semi-infinite media as seen on Graph (5); from gap 

separation 200 nm further there is no significant change in free energy for both mica (full 

curve) and water (dashed curve) right semi-infinite media. For one bilyer (N = 1, black curve) 

and ten bilayers (N = 10, red curve), the the effect of right can not be neglected. Van der 

Waals forces are long range interactions (up to 1 µm). Applied parameters were: thickness of 

tetradecan (lipid, a = 5 nm), thicknes of water in bilayer (b = 2 nm), T = 300 K. Absorbtion 

spectra were obtained from resonant-damped oscillator model and certain parameters.  

 

Interesting is comparison between exact retarded regime and nonretarded approximation of 

Eq. (22) in system with three bilayers on mica semi-infinite media on Graph (6). 

Approximation predicts longer range as retarded calculation. Free energy for retardend case is 

flater, derivative is nearly equal to zero, hence the range is shorter. Nonretarded 

approximation can be used at small distances of separation; both curves coincide up to ~ 50 

nm.   
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Fig. 7: The set for bilayers-coated-system (1 – mica or water) in front of mica semi-infinite media in [11]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Graph (5): Free energy for interacting mica and coated mica (full) and water (dashed) across water 

gap for N = 1 (black), N = 10 (red) and N = 100 (blue) bilayers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Graph (6): Exact retarded and approximated nonretarded free energies are compared for 

interaction between mica bilayers-coated mica across water gap. It confirms decreasing of 

energy in retarded system. 
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10. Van der Waals interaction in vivo 

 

In everyday life we experience upside down standing insects. They take advantage of van der 

Waals interactions between their legs and grounding. Moreover, there are bigger animals, 

whose ceiling walking is based on fundamental van der Waals forces, although physiological 

mechanisms are diverse. Many species of small lizards, named geckos (Pachydactylus 

bibroni), have specialized toe pads that enable them to climb smooth vertical surfaces and 

even cross indoor ceilings with ease. Their toes adhere to wide variety of surfaces with finely 

divided spatulae. If gecko had every one of his spatulae in contact with a surface, it would be 

capable of holding a 120 kg man. In Fig. 8, gecko climbs on surface down ahead.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8: Down ahead climbing gecko on transparent smooth surface and clusters of spatulae [12]. 

 

 

 

11. Conclusion 

 

Van der Waals interactions are based on thermal and quantum charge fluctuations. As they are 

unavoidable (in vitro and in vivo), they deserve special consideration. In the first attempts in 

theory, microscopic quantities of gases were applied to liquid and solid media via pairwise 

summation. In Lifshitz theory interacting media are treated as continuum and permittivity 

functions are taken into account in stead of polarizabilities. Several experimantal techniques 

were developed to meassure the strenght of van der Waals interaction (Hamaker constant), 

fast methods as FFF appropriate merely for estimations, however if we want precise values of 

it, we have to include absorption spectra, as in seminar it was derived in detail in heuristic 

derivation of Lifshitz´general result for two semi infinite media interacting across a gap. For 

further reading, i recommend ecyclopedic rewiev for diferent geometries, available in [3]. 

  

 

 

 

 

 



20 

12. References 

 

[1] www.no-big-bang.com/process/casimireffect.html (April 2007) 

 

[2] http://www.zamandayolculuk.com/cetinbal/WormholesFieldPropulsionx.htm (April 2007)  

 

[3] A. V. Parsegian, Van der Waals Forces, a Handbook for Biologists, Chemists, Engineers 

and Physicists, Cambridge University Press, New York, 2006  

 

[4] A. V. Nguyen, Improved Approximation of Water Dielectric Permittivity for Calculation 

of Hamaker constant, Journal of Colloid and Interface Science, 229, 648-651 (2000) [hamaker 

2] 

 

[5] L. Bergström, Hamaker Constants of Inorganic Materials, Advances in Colloid and 

Interface Science, 70, 125-169 (1997) 

 

[6]L. Farmakis et al., Estimation of the Hamaker Constants by Sedimentation Filed-Flow 

Fractionation, Journal of Chromatography A, 1137 (2006), 231-242 

 

[8] http://en.wikipedia.org/wiki/Sellmeier_equation (April 2006) 

 

[9] Jacob N. Israelchvili, Intermolecular and Surface Forces, 2nd ed., Academic Press, New 

York, 1992 

 

[10] www2.chemie.uni-erlangen.de (April 2007) 

 

[11] E. Polajnar, Van der Waals – Lifšiceve sile v mnogoslojnih sistemih, BSc. thesis, 

University of Ljubljana, Ljubljana 2002 

 

[12] http://www.voyle.net  

 

[13] R. Podgornik, 50 Years of the Lifshitz Theory of van der Waals Forces, presentation, 

Ljubljana 2007   

 

 


