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Abstract: 

 

Electromagnetic vacuum fluctuations have observable consequences, one of them being the 

Casimir effect. This effect produces an attractive or a repulsive force between objects[1]. 

These effects can today be measured with good accuracy[4]. This seminar is about the 

Casimir effect in graphene, a material that is massively researched in today’s nanotechnology. 

Because it can be applied in the nanoscopic world, the fluctuation effects cannot be neglected. 

This paper presents the magnitudes of Casimir – van der Waals interactions for different 

systems of graphene layers and SiO₂ substrate arrangements. The calculations were done in 

the framework of Lifshitz theory, which gives the most detailed description of interactions in 

dielectrics[6]. 
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1     Introduction 
 

The Casimir force, or so called “the force from nothing”, is an effect which was predicted by 

Hendrik B. G. Casimir. But how can a force of any kind be created from “nothing”? To 

explain this, one has to take a step into the quantum field theory. This theory states that any 

electromagnetic field can be treated as an infinite set of oscillators as shown in Fig. 1. 

Because this is a quantum theory, we are dealing with quantum harmonic oscillators, which 

have the corresponding energy levels 
1

2
nE n

 
  

 
, with as the reduced Planck 

constant. A highly oscillating field would have a large value of n. If we now remove the 

radiation and all present particles, we are left with a vacuum state with the corresponding

0n  . The theory states, that the zero-point expectation energy of an electromagnetic field is 

not zero, but 0
2

E


 , which is also the zero-point energy of the harmonic oscillator. 

Generally the energy of the vacuum is not the same as the zero-point energy, because of the 

fluctuations of the field, which are the cause of energy fluctuations around zero point energy. 

 

 

 
Figure 1 – A figurative schematic of a field in the form 
of a set of oscillators. The displacement of an oscillator 
is proportional to the energy of the field in that point in 
space. 

 
Figure 2 - A schematic presentation of oscillation 

modes between two metal plates, which obey 

boundary conditions - the magnitude of the EM field 

is zero on the surface of a conductor 

 

If we put a metal cavity or two distanced plates in such fluctuations, they have to obey certain 

boundary conditions that depend entirely on the geometry and properties of the system as 

shown in Fig. 2. Because of these fluctuations of “nothing”, the expectation energy value 

between the plates is not the same as outside. This results in various effects such as the 

Casimir effect. 
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2     The Force ˡ 
 

Let us now make a closer look at this force for a special case of two ideally conducting 

metals, set apart at a distance D, that interact with all frequencies of the electromagnetic 

radiation. These results are valid for the temperature of absolute zero, so there is no 

interaction between bodies. The radiation between the plates takes a form of 

 

 
( )

0( , ) sin( ),ni t

n zt e k z
 

 
q ρ

E r E  (1) 

where the transverse wave vector is ( , )x yk kq and the transverse position vector is 

( , ).x yρ Boundary conditions state that there is no EM field on the surface of a conductor, 

therefore equations give us 

 

2 2
2 2 2 2 2

2
       and       ,z n

n n
k c k c q

D D

 


 
    

 
 (2) 

where the former is the normal component of the wave vector which satisfies the boundary 

conditions and the latter is a discrete spectrum of frequencies as opposed to the case of 

infinite empty space, where these frequencies take a form of a continuous spectrum 

 2 2 2 2

zc q k   . c is the speed of light. 

 

The difference of ground state energies is then defined as  

 

 
,

1 1
.

2 2
n

q n

E     
k

 (3) 

If we have a large enough space, we use the identity that 

 

 3 3

3
( ) ( ( )) ( ( )) ( ),

(2 )n

V
f f n d n f n d f


     

k

k k k k k  (4) 

where V is the volume of the space. Eq. 4 takes a form of  

 

 

2 2
2 2 2 2 2

2 2 3
2,

2 (2 ) 2 (2 )
z z

n

c S n c V
E d q d dk q k

D



 

 
     

  
  q q  (5) 

where S is the surface area of the plate and the factor 2 at the end comes from the polarization 

effects of the waves excluding the state with n=0. If we evolve Eq. 6 furthermore, we get  

 

 

2 2
2 2 2

2

0 0 0

.
2

z z

n

cS n D
E qdq q qdqdk q k

D



 

   
     

 
 
    (6) 

We should briefly stop here and note that both of these integrals are divergent, which is 

expected, because we have made an approximation of ideal metals that interact even with 

radiation with wavelengths shorter than the atomic width. For waves of this kind, real metals 

should be invisible roughly at max

1
k

a
 , where a is the atomic width.  

________________________________________________________________________ 

ˡ This derivation of the force is from reference [5] 
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We renormalize the integrals by cutting the integral borders from above at the mentioned maxk

with a cutting function defined as 

 
max1 ;  

( ) .
0 ;  otherwise

k k
f k


 


  (7) 

With a new integration variable 
2

2

2
t q

D


  and 

zk v , Eq. 7 can be written as 

 
2

2 2

3

0 0 0

( , ) ( , ) .
4 n

cS
E dt t n f t v dtdv t n f t v

D


   

     
 
    (8) 

We now define a new function 

 2

0

( ) ( , ),F v dt t v f v t



   (9) 

so we can simplify Eq. 9 in the form of 

 

 
2

3
1 0

1
(0) ( ) ( ) .

4 2 n

cS
E F F n F v dv

D






 
    

 
   (10) 

Euler – Maclaurin summation formula states that  

 

 
1 0

1 1 1
( ) ( ) (0) '(0) '''(0) ...,

2 12 720n

F n dvF v F F F





        (11) 

where '(0) 0F  , 
(3) (0) 4F   and all higher derivatives are equal to zero, due to the cutting 

function. Finally, we are left with the famous Casimir equation  

 

 

2

3
.

720

cS
E

D


    (12) 

This energy difference is finite and does not depend on the cutting function. We can now 

derive the Casimir force per unit surface (Casimir pressure) as  

 

 

2

4

( )
.

240

cF d E D c

S dD S D

 
   

 
 (13) 

The force is attractive and its existence implies that differences in the ground state energy of 

the EM field are finite and should be measurable[1].  

The next logical step is calculating the magnitude of the force. At a surface area of 1cm² 

Casimir pressure is equal to 0.001 Pa at a distance of D = 1µm, which is equivalent to a 

pressure of a water droplet. But at the distance D = 10 nm, this pressure has a surprising value 

of 1 bar, so it should be easily observable. 

In fact, various experiments for the detection of the effect have been performed: 

- (1958, Netherlands) Obtained results were not contradictory, but had large 

experimental errors 

- (1997) More accurate results of the force between a plate and a sphere[4] 

- (2001, Italy) Success in measuring the force between two plates 

 

This force is clearly a macroscopic effect predicted by the relativistic quantum field theory, 

otherwise known as quantum electrodynamics (QED). 
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3     Lifshitz theory 
 

So far we’ve talked about a special case of ideal metal plates at absolute zero temperature. A 

more applicative approach would be the calculation of the Casimir effect in common 

materials that appear in real life. Here the dielectric permittivity is generally a function of 

frequency. In addition to field fluctuations, which result as Casimir effect, van der Walls 

interactions occur as a consequence of fluctuations in matter. To sum up, in common 

materials we talk about Casimir – vdW interactions, because they both occur and act together. 

 

Evgeny Lifshizt developed a theory which is in this case very convenient to use. It is a theory 

of fluctuations in conductors and dielectrics[2]. We introduce the concept of free energy 

U TS F  with U as internal energy, T as temperature and S as entropy. This is a quantity 

through which we can calculate the stress tensor of the interactions, and from this the 

corresponding force between interacting bodies. In Lifshitz theory, free energy per unit area at 

a finite temperature is defined as[3] 

  

  
0

( )
ln ( , ) ,B n

q n

l
k T D i q

S






 
F

 (14) 

where  

 2

12 23( , ) 1 ( ) ( ) ql

nD i q e       (15) 

is the secular determinant of the system, and  

 
( ) ( )

( )
( ) ( )

i j

ij

i j

   


   


 


 (16) 

is the definition of dielectric discontinuity between two neighboring layers. We derive the 

secular determinant through the geometry of the given system while obeying boundary 

conditions and dielectric properties of specific layers. Eigenvalues of this determinant are the 

possible modes of oscillations with the corresponding dispersion relation  

 
2 2

2 2

2 2

( )
( ) ,n i n n

i n

i
i q

c c

   
      (17)  

where n  are the Matsubara frequencies[6] 
2

,B
n

nk T
   which are a set of possible 

frequencies for a bosonic system in the direction that is perpendicular to the plate. We can see 

that all of the frequency dependency is simplified to a sum over a set of discrete and 

imaginary frequencies. They also depend on temperature, which means they describe 

temperature effects.  
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4     Retardation effects 
 

The speed of light is a finite quantity, so every signal takes a finite time to propagate from one 

point to another, resulting in a delay or retardation. It is important to note what these effects 

are and predict how they affect our calculations, so we can recognize them later, if they occur. 

Casimir effect arises from the fluctuations in the electromagnetic field, which propagate with 

the speed of light, so it is retarded by nature. On the other hand, van der Waals interactions 

depend on the distance between interacting bodies, so the effects are sometimes retarded or 

non-retarded.  

It has been observed, that vdW interactions become retarded for distances larger than 10 nm 

[9]. As previously said, Casimir and vdW effects both contribute to the final result, so we 

should expect different regions where different effects take place. 

Roughly three regimes occur, due to van der Waals’ interaction theory. These regimes 

describe different dependencies of the free energy as a function of distance. They are the 

retarded, non-retarded and the long distance region. Exact behavior of the transitions 

between these regions depend on the dielectric response function of doped and undoped 

graphene[6].The non-retarded regime are the small distances that seem insignificant when 

compared to the path traveled by light (ct >>b). Increasing our distances we enter the retarded 

regime, the previous does not apply here and effects of retardation take place. Lastly, the long 

distanced or the fully retarded regime occurs, which behaves as the zero frequency, classical 

limit.  

Tab. 1 shows all scaling exponents that roughly describe the regimes in the free energy – 

distance dependency for the case of two semi-infinite slabs, an infinite slab and a thin sheet, 

and for two thin sheets. n(b) is the scaling exponent of our function, but more about it later. It 

is defined as 

 
ln ( )

( ) .
ln

d b
n b

d b
 

F
 (18) 

Regime\Exponent Two semi-infinite 

slabs 

Thin sheet & semi-

infinite slab 

Two thin sheets 

Non-retarded n=2 n=3 n=4 

Retarded n=3 n=4 n=5 

Long distance n=2 n=3 n=4 
Table 1 - A table of scaling exponents that describe the free energy dependency with respect to the distance for three 

regions (retarded, non-retarded, long distanced) and three different systems (slab-slab, sheet- slab, sheet-sheet). 

Another regime that should be noted are the vanishing distances, which are distances 

comparable to atomic dimensions. The theory here loses validity, so we cannot successfully 

predict its outcome. 
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5     Graphene 
 

Graphene is an allotrope of carbon. It is a planar sheet packed in a perfect honeycomb lattice. 

The structure of graphene is two dimensional and has the thickness of one carbon atom[7]. 

Graphene conducts electricity and its structure allows electrons to behave as massless 

particles that can travel at a very high speed (300 times slower than the luminal velocity)[10]. 

In addition, it can be doped with free charge carriers which increases its conductivity.  

Graphene is commonly known is commonly known in the form of which are graphene sheets 

stacked together with the interplanar distance of 0.335 nm[8]. These sheets have no covalent 

or ionic bonding between them. This is very convenient because any interlayer interactions 

are purely of Casimir – vdW nature and this is our main motivation for the use of this 

compound, in addition to the fact that it is heavily researched in today’s science and has 

proven to be very interesting especially on various fields in nanotechnology. Graphene clearly 

gives us a unique opportunity to research the nature of Casimir – vdW effects. 

 

As mentioned before, we need a known dielectric response function for graphene[2, 11]. This 

is obtainable through a method called random phase approximation (RPA). RPA gives the 

response function in the form of 

 ( , ) 1 ( ) ( , , ),n nq i V q q i       (19) 

where 
2

0

2
( )

4 m

e
V q

q



 
 is the transverse 2D Fourier-Bessel transform of the Coulomb 

potential with the assumption of no interlayer Coulomb interaction in the direction 

perpendicular to the plates. e is the elementary charge, 0  is vacuum permittivity and m is 

the dielectric constant for the surrounding media, which in the case of vacuum equals 1. The 

response functions are not the same for doped and undoped graphene. 

In the case of doped graphene ( , , )nq i    takes a form of  

 

2 2

2 2 2 2 2

2

2
( , , ) arcsin  

2 ( ) 16 ( ) 8 ( )

2 2
                                           + 1 ,

n
n

n n

n n

ig gq gq
q i e

v vqvq vq

i i

vq vq

 
  

   

   

  
       

   

  
 
 

(20) 

where 4g  , 6 m
10

s
v  is the Fermi velocity in graphene layer and  is the chemical 

potential which is equal to Fermi energy F Fvk   with 
4

Fk
g


 and  is the average 

electron density. In the case of undoped graphene layers the previous form simplifies 

substantially. The final dielectric response function is then expressed as  

 
2 2

( , ) 1 ,
8 ( )

n

m n

gcq
q i

vq


 

 
 


 (21) 

 where 
2

0

1

4 137

e

c



  is the electromagnetic fine-structure constant. 
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6     Casimir – vdW effects in graphene systems²  
 

All calculations were done at a temperature of 300 K and at a fixed thickness of graphene 

layer 0.1 nm. The following results were made for a bilayer graphene – graphene system, a 

graphene – substrate system with SiO₂ as a substrate and a multilayer system of graphene 

layers. Calculations have been done for doped and undoped graphene layers in all mentioned 

cases. At the end of the chapter, a table of all magnitudes for different distances is given for 

orientation in Tab. 2. 

 

6.1   Bilayer graphene system (GGS) 

The bilayer system is presented in Fig. 3. L and R are left and right semi-infinite vacuum 

spaces, B is the interlayer vacuum space, and A are the graphene layers.  

_____________________________________________________________ 

² This chapter is a rough remake of an article in the reference [6]  

In this case, the free energy takes a form of  

 2 ( )1

0 2

( ) ( )
ln 1 ,

( )
B ngg b in

B

q n n

b D i
k T e

S D i

 








 
  

 


F
 (22) 

where n  
are the Matsubara frequencies, i is the dielectric permittivity of a layer and 1 2, D D

are the previously mentioned secular determinants one for each layer. 

 
Figure 3 - A schematic presentation of a GGS system – two graphene sheets of finite thickness at a separation of b. 

The thickness of the left and right layer is a. We have labeled the left semi-infinite vacuum layer with L, the graphene 

layers with A, the intervening vacuum layer with B and the right vacuum layer with R 
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Figure 4 - Magnitude of the free energy per unit area 

of the GGS system for two undoped layers at T=300 

K. The function is compared to the plotted scaling 

exponents as a function of separation b. 

 

 

Figure 5 - Magnitude of the free energy per unit area 

of the GGS system for two doped layers (solid line) 

and ideal metal (dashed line) at T=300 K. The 

function is compared to the plotted scaling exponents 

as a function of separation b.

 

Figure 6 – Comparison of the magnitude of the free 

energy per unit area of the GGS system for the case of 

two doped (solid line) and undoped (dashed line) 

graphene layers. The magnitude of the free energy is 

higher for the case of doped graphene layers. 

 

Figure 7 – The rescaled magnitude of free energy for 

the GGS system composed of two asymmetrically 

doped graphene layers as a function of the parameter 

of asymmetry. The plot is done for different interlayer 

separations of b = 1 nm, 10 nm, 10 µm, 100 µm. Note 

that the asymmetry effects are largest at small 

separations. ( 0)gg  F  has been calculated for the 

case of two identically doped layers at
16 210 m . 
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Calculations and evaluation: 

In Fig. 4 one can observe the expected transitions for undoped graphene that go from 

vanishing distances to the non-retarded regime with n=4, then entering the retarded regime 

with n=5 and finally the long distance limit with n=4. 

Fig. 5 presents the plot for the doped graphene and includes results for an ideal metal. It is 

obvious that the magnitude of the free energy at a fixed distance is higher with better 

conductivity, so here we see the motivation for doping graphene layers. The direct effects of 

doping the graphene layer are seen in comparison with the undoped layer in Fig.6. The 

transitions here are not as obvious as before. When leaving vanishing distances, we enter a 

relatively broad regime with n=3,4, and then enter the long distance regime with n=2. In this 

case only these two regimes are recognizable.  

One may stop here and remember the Casimir energy we derived earlier for the case of ideal 

metals and see that the scaling factor there is not the same as for the case of two ideal metals 

in this case. It should be noted, that previous calculations were done at a zero temperature 

limit and in this case they were not. 

Another interesting case is what happens with the free energy when the graphene plates are 

asymmetrically doped. Let us introduce the dimensionless parameter of asymmetry 

1 2

1 2

 


 





, where 1 2 and   are the electron densities in the plates.  

The former is fixed at 
16

1 2

1
10

m
   and the other is varied. When 0   there is no 

asymmetry between the layers, leading to no change, because both layers are doped with 

16

1 2 2

1
10

m
   . If 1   then one of the plates is not doped at all, while the other still has 

the same electron density as before. Fig. 7 presents the plot of the rescaled free energy 

( )

( 0)

gg

gg



 

F

F
 for the system of two graphene layers as a function of asymmetry for different 

values of the distance b. Note that at large separations the curves tend to coincide and become 

indistinguishable, making the asymmetry effects largest at small separations of the layers. 
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6.2   Graphene – Substrate system (GSS) 

The GSS system is presented in Fig. 8. A single layer is not stable on its own, but stable in a 

multilayer system or apposed on a substrate. L and R are left and right semi-infinite spaces, L 

is a substrate (usually SiO₂) and R is a layer of vacuum, B is the interlayer vacuum space, and 

A is the graphene layer. In this case, the free energy takes a form of  

 

2
2

2
0

( )
ln 1

1

a

b

a

a
gs bAB RA

B BLa
q n AB RA

b e
k T e

S e












  
    

   


F
 (23) 

 
Figure 8 - A schematic presentation of a GSS system – a graphene layer of finite thickness at a separation of b from 

the apposed substrate. The thickness of the graphene layer is a. We have labeled the left semi-infinite substrate layer 

with L, the graphene layers with A, the intervening vacuum layer with B and the right vacuum layer with R. 

 

Figure 9 - Magnitude of the free energy per unit area 

of the GSS system for undoped graphene at T=300 K. 

The function is compared to the plotted scaling 

exponents as a function of separation b. 

 

Figure 10 - Magnitude of the free energy per unit area 

of the GSS system for doped graphene at T=300 K for 

two different charge carrier densities. The function is 

compared to the plotted scaling exponents as a 

function of separation b. 
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Calculations and evaluation: 

Results in Fig. 9 are very similar to the ones before. Again the expected transitions can be 

seen for undoped graphene that go from vanishing distances to the non-retarded regime with 

n=3, entering the retarded regime with n=4 and again the long distance limit with n=5, as 

predicted in Tab. 1. 

In the case of doped graphene in Fig. 10 the conclusions are also very similar to the ones in 

GGS system. The plot is done for two different electron densities of the graphene layer. 

Beyond vanishing distances, we enter the broad regime with a scaling exponent n=3, and then 

the long distance regime with n=2. These are the only two recognizable regimes.  

6.3   Multilayer graphene system (MGS)  

The MGS system is presented in Fig. 11. L and R are left and right semi-infinite substrates 

that will be assumed to be layers of vacuum. There are N layers of B as the interlayer vacuum 

space, and N+1 layers of A as the graphene layer. For very large values of N, the free energy 

behaves as a linear function of the number of layers and takes a form of  

 ( , ) ( , ),N gga b N f a b F  (24) 

where the effective pair interaction between two neighboring layers is 

 

2 2 2( )2

2 22 2 2
0

1 ( ) ( , , )
( , ) ln .

2(1 ) (1 )

A B A B

A A

a b a b

gg B a a
q n

e e e G a b
f a b k T

e e

   

 

   

 


    
   

  
 (25) 

Other undefined quantities in the equation are 

 

2( ) 2

2 2 2( )2

2( ) 2 24 2

( , , ) (1 )

2 [( )(1 )     and    ,

4 ] ( )

A B

A B A B

A B A B

a b

a b a b A B B A

A B B A

a b a b

G a b e

e e e

e e e

 

   

   

   

   

 

   

   

  


     



   

 (26) 

which again are all quantities that are derived from the boundary conditions and material 

properties. 

 
Figure 11 - A schematic presentation of a MGS system – N+1 layers of graphene at separation of b and thickness of a, 

and N intervening layers of vacuum. We have labeled the left semi-infinite substrate layer with L, the graphene layers 

with A, intervening vacuum layers with B and the right substrate layer with R. L and R will be assumed to be layers of 

vacuum. 
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Figure 12 - Magnitude of the free energy per unit area 

and per number of layers of the MGS system at 300 K 

for N+1 doped (solid line) and undoped (dot-dashed 

line) layers of graphene. The function is compared to 

the plotted scaling exponents as a function of 

separation b.  

 

Figure 13 - Magnitude of the free energy per unit area 

and per number of layers of the MGS system at 300 K 

for N+1 doped (solid line) and undoped (dot-dashed 

line) layers of graphene compared to the magnitude of 

the free energy per unit area for the GGS system 

composed of only two doped (red dotted line) and 

undoped (green dotted line) layers of graphene. The 

insert shows the ratio of these quantities for the doped 

(solid line) and undoped (dot-dashed line) case. 

Calculations and evaluation:  

Fig. 12 presents a plot of effective pair interaction free energy per unit area per number of 

layers calculated for doped and undoped graphene. One can see in Fig. 13 that these 

calculations almost coincide with free energy per unit area of the bilayer graphene system. 

The results are almost the same, which means all transitions in Fig. 12 are same as mentioned 

before for the bilayer graphene system. 

Another plot is given inside of Fig. 13 which presents the ratio between effective pair 

interaction free energy and bilayer graphene free energy for the doped and undoped version. 

The ratio is not equal to 1 but varies with distance and is never weaker compared to the one 

from GGS system. All we can say here is that differences occur due to many-body effect, 

because of the many constituents in our system. 

6.4   Table of magnitudes ( 16 14

1 22 2

1 1
10 ,  10

m m
   ) 

b\FE GGS: ρ=0 GGS: ρ₁ GSS: ρ=0 GSS: ρ₁ GSS: ρ₂ MGS: 

ρ=0 
MGS: ρ₁ 

1 nm 564 eV 17.7 keV 1.57 keV 5.77 keV 2.12 keV 590 eV 19.6 keV 

10 nm 0.01 eV 16.9 eV 0.36 eV 21.1 eV 3.28 eV 0.01 eV 18.7 eV 

100 nm 3.6E-7 eV 0.01 eV 8.7E-5 eV 0.027 eV 4.2E-3 

eV 

3.9E-7 

eV 

0.014 eV 

Table 2 - List of free energy magnitudes for 3 different distances and for different types of body systems 
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7     Conclusion 
 
We presented the Casimir force in perfect metals and the Casimir – vdW effects in real 
materials. We have seen that these forces can be large at the right distances, which gives the 
direct impact in technology. Specifically we have studied the interactions between two and 
N+1 graphene sheets and between a graphene sheet and a SiO₂ substrate. The calculations 
were done in the frame of Lifshitz theory and the results were presented in the form of the 
magnitude of free energy per unit area, which is a quantity that is directly connected to the 
Casimir – vdW effects between given objects. All these cases that have been analyzed and 
discussed above are relevant for many realistic geometric and nanoscopic scale systems. The 
main motivation for a detailed study of Casimir – vdW interactions between graphene sheets 
in graphite like geometries is the fact that graphitic systems belong to closed shell systems 
and thus display no covalent bonding, so any bonding interaction is by necessity of a  
Casimir – vdW type. 
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