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Abstract 
 

In this paper I'm trying to introduce the experiment that has been made on classical 
Greek and Latin poetry by mapping samples of some defining literary works from that era. As 
we will see, it's possible to prove that syntax of the poems increases in complexity from Greek 
to Latin poetry.  
The technique or better function (mutual information function) that has been and is used for 
studying symbol series (e. g. DNA) is borrowed from the information theory. In this paper we 
will also look at the theory behind this function and some differences with the correlation 
function.  
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1. Introduction 

What we want is  to study a symbolic sequence. The study of DNA has been influential in 
symbolic sequences studies. More exactly it has been revolving around the long-range 
correlation (its power spectrum scales as 1/dα , where d is the distance between symbols in the 
sequence and α ~ 1) in DNA. So all this stimulated the study of written languages and music 
with similar techniques. Most of the previous studies of letter sequences in natural languges or 
nucleotide sequences in DNA polymers were focused on entropy. In some cases, the nearest-
neighbor correlation using conditional probabilities were studied. It has been shown that [3] 
the Mutual information function M(d) is a more suitable way to study this kind of sequences 
as the more frequently used correlation function Γ(d). It is even proven that there exists a 
relationship between these two functions for binary sequences. But this is already another 
story. We really have to start at the beginning, because this theory is unknown to most of us. 

After introducing Mutual information function we will introduce the classical poetry itself 
but it's maybe a good idea to tell at this point that the whole study revolves around the verse 
form of HEXAMETER, that we will introduce properly further on. The whole literary work 
will have its syllables replaced with only three different signs; long and short syllable and 
pause, with which we can still describe its rhythm. But it's still to early to start with classical 
poetry, since we should first define and explain the tool we will use - Mutual information 
function. 
 
 
2. Mutual information function and correlation function 
 

First we have to define the mutual information function and renew our knowledge of the 
correlation function. I'm going to use one of the interpretations that have been made for M(d) 
(2.2), but there are other, too. We can say that all the interpretations are related to the same 
notion of dependence and correlation. The mutual information function is a measure of the 
dependence between two variables. If the two variables are independent, the mutual 
information between them is zero. In case the two variables are strongly dependent, e.g. one 
of them is a function of the other, the mutual information between them is large. 

The correlation function (2.1) is another frequently used method to measure dependence. 
The difference between them is the dependence they measure. Correlation function measures 
the linear dependence, while the mutual information measures the general dependence. This 
difference leads to different methods in choosing the independent variables. Another 
difference between the two functions is that the correlation can't be applied at symbolic 
sequences, but only to numeric ones, while the mutual information can be applied to both. 
This enables us to a more complete characterization of symbolic sequences. 

Now we want to define the function in a more strict way for finite sequences {xi} (i = 1, 
2,…, N), where xi  ∈ {a α }(α = 1, 2,…, K), the variable set. The correlation function is  

                    (2.1) 

2

( ) ( )d a a P d aα β αβ α α
α β α

⎛ ⎞
Γ ≡ − ⎜

⎝ ⎠
∑∑ ∑ P ⎟

Both the single-site probabilities {Pα } and the joint probabilities for two sites {Pαβ(d) } 
are accumulated from the single sequence to be analized. The (site-to-site) mutual information 
function is defined as 
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The block-to-block mutual information is defined as the mutual information between two 

L-blocks (blocks of length L), separated by distances of d. It is similar to the site-to-site 
mutual information function except that Pα are the probabilities for L-blocks and Pαβ(d) are 
the joint probabilities for two L-blocks: 

              
[ ] ( )

( ) ( ) log
L LK K

L P d
M d P d

P P
αβ

αβ
α β α β

≡ ∑∑  

In this paper, we will consider mostly the site-to-site M(d) (and the superscript is dropped). 
For better understanding at this point, we will make an illustrated comparison between the 
two functions and their effect on L-block. Fig.1 shows the M(d)[L]  (L =1,2,3,4) and  Γ(d) for 
the binary sequences generated by nearest-neighbor cellular automaton rule 110. What shows 
up is that the Γ(d) can have negative or positive values, while the M(d) remains always non-
negative. We can even see a periodicity of 14 in the sequences (the peak at d = 14).  
 

         
 

Fig.1.  Γ(d) and  M(d)[L]  (L=1, 2, 3, 4) for spatial sequences generated by 
cellular automaton rule 110 (or the following rule  000→ 0, 001→ 1, 
010→ 1, 011→ 1, 100→ 0, 101→ 1 and 111→ 0 ). The sequences lenghts 
are N = 400, 1600, 6400 and 25,600,  respectively for incresing L. 

 
 
 
 
 
 
If we look at the definition of the correlation function we see that the probabilities are 
weighted by the variable values. The result of which is that correlation function generally is 
not directly related to mutual information function. As we saw before, it is possible that the 
value of the correlation function is equal zero at a given distance d, while the mutual 
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information function can have a different value at that distance. But there is a special case 
where the joint ditribution is Gaussian and  the two functions are directly related to each other. 
 
 
 
2.1 Relation between M(d) and Γ(d) for binary sequences 
 

In this section we will look at the case of a binary sequence and how the probabilities 
of the joint for two sites is reduced from four to two.  The consequence is that we can directly 
relate the correlation function to the mutual one. 
If we write the correlation function for a binary sequence: 

 , 
2

11 1( ) ( )d P d PΓ = −
where P11(d) is a joint probability for having two symbol 1's separated by distance d and P1 is 
the probability for having symbol 1.  

If we don't take in account the different constraints, our mutual information has to be a 
function of all four joint probabilities. This constraints are a consequence of calculation for 
the two variables whose joint probabilities are extracted from the same stacionary sequence. 
First we can say that the sequence has no direction for the purposes of Mutal information 
function. And if this is true, this gives the symmetry constraint: 

 ( ) ( )P d P dαβ βα= , 
 

for α,β ∈ (0,1). 
If we now consider the definition of the joint probability, we have 

       

1

0
( )P Pα αβ

β =

= ∑ d

The interesting thing about this formula is that the right-hand side of the equation is a function 
of distance d, while the left-hand side is not. The consequence is that the function form of the 
two expressions Pαβ(d) should be such that they cancel each other's d-dependent form. 

Then there is the normalization condition, but it turns out that it is equivalent to the 
condition  ∑αPα=1 and will not provide more reductions.  

If we sum up. The first constraint provides one reduction, and the second provides two 
reductions, so the number of independent joint probabilities is only one. 

If we carry out the details, we get 

01 10 1 11( ) ( ) ( )P d P d P P d= = −  

00 1 11( ) (1 2 ) ( )P d P P d= − + . 
In term of correlation function, these become  
  

2
11 1( ) ( )P d d P= Γ +  

                                                                      (2.3) 2
00 0( ) ( )P d d P= Γ +

01 10 0 1( ) ( ) ( )P d P d d P P= = −Γ +  
So if we now write the relation between mutual information function and the correlation 
function for binary sequences,  we get the form: 
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. 

 
It is possible to approximate the equation above for when the correlation function decays 

to zero at longer distances and both Γ(d) / (PαPβ ) are small.  Now if we look at this limit case, 
we found that only second-order terms remain: 

 
22

2 2
0 1 0 1 0 1

( ) 1 1 1 1 ( )( )
2 2
d dM d

P P P P P P
⎛ ⎞ ⎛Γ Γ

≈ + + =⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎠

. 

 
We can notice from this equation that the mutual information function decays to zero 

faster than the corresponding correlation function. So for example, if  Γ(d) ~ 1/dγ,  then M(d)~ 
1/d2γ, where γ is characteristic of a spectrum. Which is important result in the study of 
symbolic noise.  

If the sequences have more than two symbols, both functions receive additional 
contributions from more independent joint probability. So in these cases any relation between 
the two power law functions will depend on a particular assumption made about the joint 
probabilities.   
 
2.2 Markov Chain and regular language 
 

To better understand the dependence among the joint probability Pαβ(d)'s for binary 
sequences we will now look at some examples of Markov chain and a regular language. 
Logically before illustrating anything, we have to tell something about the Markov chain and 
its characteristics. A Markov chain is a special class of state model that includes different 
possible states and possible transitions from one state to another (in our examples marked 
with arrows). The weight assigned to each arrow is either the probability that something in the 
state at the arrow's tail moves to the state at the arrow's head, or the percentage of things at the 
arrow's tail which move to the state at the arrow's head. At each time step, something in one 
state must either remain where it is or move to another state. The sum of the arrows into (or 
out of) a state must be one. The state vector X(t) in a Markov model traditionally lists either 
the probability that a system is in a particular state at a particular time or the percentage of the 
system which is in each state at a given time. X(t) is the probability distribution vector and 
must sum to one.  

If we now list all three properties which identify a state model as being the Markov chain: 
1) The Markov assumption: the probability of one's moving from state i to state j is 
independent of what happened after moving to state j and how one got to state i. This 
probability is fixed pij and is called a transition probability.  2) Conservation: the sum of the 
probabilities out of a state must be one. 3)The vector X(t) is a probability distribution vector 
which describes the probability of the system being in each of the states at time n. 
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Fig. 2 a) General transition matrix for a bynary markov chain. b) Example of a 
transition matrix. c) The state diagram for the example of transition matrix.  

 system can be illustrated(Fig. 2) by a state transition diagram, which shows all 
 transition probabilities. There is also transition matrix T.  
ple of Markov chain that we will need is called an Absorbing Markov chain. 
 chain has states that are called »absorbing«. When the system enters an 
te, the system remains in it. We can identify an absorbing state from a state 
at they have loops with weight one. If we examine the structure of the transition 
n absorbing chain (Fig. 3), we see it can be decomposed into blocks of the form 

 . 
⎞
⎟
⎠

     

 a) Example of a transition matrix for an absorbing Markov chain b) The state 
am for the example (missing arrows indicate zero probability.).  

l, if a Markov chain has a absorbing states and b non-absorbing states, we can 

ansition matrix to have the form . bxb bxa

axb axa

A O
B I

⎛ ⎞
⎜ ⎟
⎝ ⎠

us look at a model of continuous stochasticity. The one we need is called 
he checkout counter«. For now let us start with a model of service for one 
 check counter. At any time t there are only two possible states that the system 
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can be in; let us them call them »being served« or »finished being served« and when an 
individual has finished being served, that person stays in that state (the absorbing state). Let 
N(t) be the number of individuals at the checkout at time t and here N(t) has only two possible 
values (0,1).  The state »being served« corresponds to N(t)=1, while N(t)=0 corresponds to 
»finished being served«. Let us write the time-dependent transition probabilities for this 

system, let 
( )
( )t

p t
X

q t
⎛

= ⎜
⎝ ⎠

⎞
⎟  be the time-dependent distribution vector for states »being served« 

p(t) and »finished being served« q(t); that is, p(t) = P[N(t)=1] and q(t) = P[N(t)=0] . 
It is because p(t) represents the probability of »being served«, we can expect that the 

service will be eventually completed so lim ( ) 0
t

p t
→∞

= ,  which gives  .  
0

lim ( )
1t

X t
→∞

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
Let us now return to our examples of Markov chain in connection with the mutual 

information and correlation function. So we said that for Markov chains, the one-step 
transition probabilities Tα→β  are given and all the d-step transition probabilities can be derived 
from the one-step transition probabilities. The correlation function as well as the joint 
probabilities Pαβ(d) decay exponentially with distance d.  

 
Let us now look at a example of Markov chain with one-step transition probabilities : 
 
 

T0→ 0  =  p 
T0→ 1  = 1 - p 
T1→ 0  = 1 
T1→ 1  = 0 

 
 
 If we write this transition probabilities in a matrix, we get something similar, to what we 

saw before. 
 

           

0 1
0 1
1 1 0

p pT = −⎛ ⎞
⎜ ⎟
⎝ ⎠

, 
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Fig.4 (A)  A simple Markov chain with transition probabilities  
 0  =  p,  T0→ 1  = 1 – p,  T1→ 0  = 1,  T1→ 1  = 0.  (B) A regular language similar to 
 Markov chain  in (A). And is an exact Markov chain by the original definition.   
→β  . The d-th power of this matrix gives the d-step transition probabilities. The 
s is then: Pαβ(d) = Pα(Td) αβ. For the eigenvalue 1 the left eigenvector of the 

 invariant probabilities of the symbols( 0 1
1 1,

2 2
pP P

p p
−

= =
− −

). The form of  

f the one-step transition matrix is :  
1 1 1 (1 )1 ( 1 )
1 1 1 12 2

d
d p p pp

pp p
− − −⎛ ⎞ ⎛− +

= +⎜ ⎟ ⎜− −− −⎝ ⎠ ⎝

− ⎞
⎟
⎠

 

iply the first row with P0 and the second with P1, we get the joint probabilities 
an write in one matrix:  

( ) ( )

( )
( )
( )

2 22 2

2

2 22 2

1 1 1 1( 1 ) ( 1 )
(2 ) (2 )2 2

11 1 1( 1 ) ( 1 )
(2 ) (2 )2 2

d d

d d

p p pp p
p pp p

pp p pp p
p pp p

− − − ⎞+ − + − − + ⎟− −− − ⎟
⎟−− − − ⎟− − + + − +
⎟− −− − ⎠

 

e the formula P d 1( ) ( 1) ( )  in Eq. (2.3) indeed holds 

β= , and  if 0= α β≠  ). 
d P Pαβδ

αβ α β
−= − Γ +

e to to consider the sequence in the Fig.(4B) as a sequence  with three symbols: 
. On this case we have a 3-by-3 transition matrix instead of the 2-by-2 we had 
 above.        
we have been talking about the difference between MIF and Correlation 
uced Markov chain (to better understeand to what kind of structure Mif can be 
 have seen the possible transition in between binary and ternary sequences and 

tion matrix changes form from 2-by-2 to 3-by-3. As we already said, the 
ll be dealing with in sampling classical poetry is composed of three symbols. 
to know more about are ternary sequences and maybe even what happens in 
 when the Correlation function is equal to zero and MIF has a finite value.   
                                                                                                                                                      

orrelation in ternary sequences 

start with some definitions. Call two variables{aα} and {bβ} linearly 
 ∑αβaαbβPαβ = (∑αaα Pα)(∑β bβPβ) for all α, β and generally independent if  

9



Pαβ = PαPβ all  α, β. Where the linear independence is equivalent to the zero correlation 
function  and  generally independent to zero mutual information. Let us now examine  ternary 
sequences and look at the constraints apply to M(d) when Γ(d) = 0 .  We will call two sites 
having zero correlation but non-zero mutual information weakly correlated, instead of using  
»linearly independent but generally dependent«. 

If we apply the same logic (and symmetry condition) as we did before for the binary 
sequence, we see that our nine joint probabilities for two-site ternary sequences are reduced to 
three independent function densities. (Choose P00(d), P11(d) and P22(d) as the three 
independent functions.) 

It is easy to show that for α≠β and as the third index γ≠α≠β, the other joint probabilities 
become: 

( )1 1( ) ( ) ( ) ( )
2 2

P d P d P d P d P P Pαβ γγ αα ββ γ α β⎡ ⎤= − − + − + +⎣ ⎦   

Now let us set the correlation function  Γ(d) equal to zero (as we said before): 

( )2
11 12 21 22 1 20 ( ) ( ) 2 ( ) 2 ( ) 4 ( ) 2d P d P d P d P d P P= Γ = + + + − +  

        
2 2

00 0 11 1 22 22 ( ) ( ) 2 ( )P d P P d P P d P⎡ ⎤ ⎡ ⎤ ⎡= − − − + −⎣ ⎦ ⎣ ⎦ ⎣
2 ⎤⎦

2

What we notice is that P11(d) is no longer an independent function (now it's related to  
 

P00(d)  and P22(d) ) and it has the form of  

                  
2 2

11 00 0 22 2 1( ) 2 ( ) 2 ( )P d P d P P d P P⎡ ⎤ ⎡ ⎤= − + − +⎣ ⎦ ⎣ ⎦   
But still two joint probabilities are independent function (P00(d)  and P22(d)) 

          
2 2

01 00 0 22 2 0 1
3 1( ) ( ) ( )
2 2

P d P d P P d P P P⎡ ⎤ ⎡ ⎤= − + + − + +⎣ ⎦ ⎣ ⎦  

               
2 2

02 00 0 22 2 0 2
1 1( ) ( ) ( )
2 2

P d P d P P d P P P⎡ ⎤ ⎡ ⎤= − + − +⎣ ⎦ ⎣ ⎦  

             
2 2

12 00 0 22 2 1 2
1 3( ) ( ) ( )
2 2

P d P d P P d P PP⎡ ⎤ ⎡ ⎤= − + + − + +⎣ ⎦ ⎣ ⎦  
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Fig.5 Mutual information function versus P00+P22 in ternary sequences 
when  Γ(d) = 0. 
easy experiment to show what are possible mutual information values if Γ(d) = 
ly choose P0 and 0  < P2 < 1 - P0, then randomly choose 0  < P00 <  P0  and  0  < 
om that calculate the rest of the joint probabilities from equation above. And if 
tive it is possible to calculate the mutual information. 

ize effect: overestimation of M(d) 

ant to calculate mutual information, we have to have the value of the joint 
αβ} or in other words the numbers of occurrence for the joint configuration 
y the total number of counting N, where N is the length of the sequence. But 
 a finite number countings some problems arise. It is shown that in that  

 we get overestimation that is approximately K(K-2)/2N, where K is the 
tates for each variable. 
out all the derivations we get that for the typical fluctuation of the countings is 
e of the square root of  a variable value ( c cαβ αβδ ∼ ,  are defined 

cα− β  and c c cα αδ = − α  ) . Then  

c cα αδ ∼

( 2( ) ( )
2

K KM d M d
N

)−
− ≈      

 is the total number of states for the variable. K is always grater than 2 and this 
e-size effect is always overstimation of the mutual information.  

 noise 

ms with expended spatial degress of freedom naturally evolve into self-
cal structures of states which are barely stable. There are suggestions that 
e occurrence of 1/f noise. 

nue slowly. As we already said correlation function does not apply to symbolic 
n if sometimes the correlation of a particular symbol is calculated (the 
 is one if the symbol is present and zero if not). So we have K symbols, for K 
 functions.This is equivalent to Γα(d) = Pαα(d)- Pα

2, where α =1,2,…,K.  This 
 used to calculate correlation between different symbols (Pαβ (d)). We see that 
rmation function (MIF) for such calculation is equal zero if and only if two 
lly independent or Pαβ = PαPβ  for all α,β. 
ansformation (power spectra) and correlation function are important for 
nd classifying numeric random sequences or noise. There are different noises, 

noise, brownian noise and 1/f noise (they can be distinguished by the form of 
n function and power spectra). But we have to be aware that there is no 
to measure correlation in symbolic sequences and that none of this 
re important for application to DNA molecules and other biopolymers.  
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Wentian Li [3] proposed the name symbolic noise for those symbolic sequences with large 
value of single-site entropy but many possible forms of MIF. It was further suggested that if 
the MIF for a symbolic sequences decays to zero even at the nearest neighbor. This kind of 
sequences can be considered as the symbolic counterpart for white noise. In the case that the 
MIF decays very slowly the sequences might be something similar to the 1/f α noise, so we 
can call it symbolic 1/f noise. For the better understanding it's a good idea to look up at some 
examples in the real world. The simplest examples are letter sequences of natural language 
text, nucleotide sequences of DNA or RNA molecules and other. And the logical question that 
follows is what kind of noise are the sequences we are talking about. 
From this calculation it is visible that the MIF in figure 4 somehow decays in a way in the 
middle of power low and exponential function (short distances). But it's still possible to 
approximate the function form by a power law form: M(d) ~ 1/d3. . Till now there was no 
good name for this kind of  (symbolic) noise. The only thing we can be sure of is that it’s not 
a symbolic 1/f noise, because the correlation measure decays too fast. 
 
 
 

Fig.6 Site-to-site M(d) for letter sequences (28 symbols) from (1) Shakepeare's play 
Hamlet; (2) Associated Press news articles; (3) the five books of Moses from  the 
Bible in German; (4) 11 plays by Shakepeare. The dashed line is an inverse power 
law function 1/d3. The dotted lines are estimated residual values of M(d)  according 
to K(K - 2)/2N 
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3. Mutual information function and classical poetry 
 
3.1 Introduction to classical poetry 
 
For easier understanding of what we will be analizing it's a good idea to make a short 
overview of the ancient poetry. Of course we will also explain the methodology used to map 
the verses into a symbolic sequences. 

Homer's Iliada and Odysey are two of the chosen works for representing classical greek 
poetry. Homer is said to be the first to have used the HEXAMETER (a verse of six meters or 
foots in the above listed works). If we look at these works linguisticaly we notice that there 
are a lot of formulae (strings of words that repeat themselves in both poems) and epithets (exp. 
»owl-eyed Athena«). This forms are used to help with the poems rhythm. It is important to 
say that the hexameter wasn't only used for epic poetry, but also for geners like didactic 
poetry. An example of such poet was Hesoid who used it in Theogony in an attempt to explain 
the origins of the universe and the »family tree« of the greek gods. The last example from 
greek literature that was used is Theocritus's Idylls with which he tried to draw a picture of the 
simple countryside lifestyle. This and other authors from Syracuse were part of Virgil's 
inspiration. Something interesting to point out is that both Homer and Hesiod have written in 
an artificial language that was reserved for poetry and Theocritus used a local dialect. It is 
also true that the older poetry had a tendency to take distance from the everyday speech 
because of the search for the rhythm. 

As in greek poetry, we will now analize three latin poets: Lucretius, Vergil and Ovid. 
Lucretius in On the nature of things  explains the order in the universe and human's relation to 
it (his use of the verse is similar to that of Hesiod), Vergil's epic poem Aeneida, which is 
somehow similar to Odyssey, but lacks formulae and epithets, and didactic Georgics, an 
agricultural advices book, and in the end Ovid's Metamorphoses that is a collage of myths  
about gods, semigods and heroes. 

Hexameter is, as we said before, a verse of six meters whose basic feature is the diactyl 
(one long sylable followed by two short ones).  Graphically it's represented by: 
 

__ uu | __ uu | __ uu | __ uu | __ uu | __ u, 
 

where __ indicates the long sylable and U the short ones. Another basic feature of the 
hexameter is a spondee (represented by __ __ ). Note that the different foots are separated by 
vertical bars. The first foot can be either of the two. So it can be  
 

__ uu | __ uu | __ uu | __ uu | __ uu | __ u 
or 

__ __ | __ __ | __ __| __ __ | __ uu | __ u. 
 

Every foot is formed by a biceps. This last is formed by the first half  always long  and second 
half  being either short or long.  

Another possible hexameter feature is the caesura (pausa). It's usual for the pause to be at 
the end of word and sometimes even coincides with the foot end.  
Let us now analyze a verse from the first book in the Aeneida:   
 

Arma virumque cano, Troiae qui primus ab oris 
and is thus: 

       __ uu | __ uu | __ ⇑ u| __ uu | __ uu | __ u,  
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where the ⇑ indicates the caesura and in the verse above coincides with the comma. Now we 
can write the above verse with arsis and thesis (Ta, ta), which are the so called up and down 
beats. 

     ARma virUMque caNO, TroiAE qui PRImus ab Oris  
or 

    TA-ta-ta TA-ta-ta TA ⇑ ta TA-ta-ta TA-ta-ta TA-ta.  
 It  shows that it is convient to map the hexameter into a symbolic time series using a trinary 
system ( long 0, short 1, pausa 2). For this paper R. Mansilla and E. Bush [1] mapped the first 
100 verses of the all listed works.  
 
 
 
 
3.2 Mif and the alphabet for classical poetry  
 

Now that we have became familiar with some basic concepts of both MIF and mapping 
poetry, we can write (for this work) the alphabet A = {0, 1, 2}, where  α, β ∈ A.  If we recall 
the MIF form: 

            
( )

( ) ( ) ln
K K P d

M d P d
P P
αβ

αβ
α β α β

≡ ∑∑ . 

It's obvious that our sequences are not infinite, but large enough to allow stable statistical 
estimations of Pαβ (d) , Pα and Pβ. 

Such function as the one above have often a periodic behavior. A widely used methode to 
study those kinds of behavior  Fourier spectra (for time series analysis), which is represented 
in the frequency domain. This representation can easily reveal patterns that can indicate 
periodical behavior.    
 
 
3.3 Result and discussion 
 

After introducing the MIF and deciding the way to map the verses, let us now analyse the 
results Marsilla and Bush got from their analysis. 

We'll start by analysing the behaviour of MIF related to each verse. In fig. 3.1.a and 3.1.b 
the change that happened from greek to latin poetry is noticable. The peak at d = 2 is much 
more pronounced in the Vergil's work. This peak is related to the long syllable common to the 
dactyl and spondee and the substitution between them. The next peak in Iliad (d=9) almost 
disappears in Latin poetry, because the verse there is more relaxed. The last big change is that 
the peak d = 17 in Iliade moves to d = 16 in the Aeneida. This shift is related to the use and 
the position of the pause. If we take a closer look to the structure of the verse, they used 

partial information function (PIF, 
( )

( ) ( ) lnP P d
M d P d

P P
αβ

αβ αβ
α β

≡ ).   

A remarkable property of function M01
P(d) and M11

P(d) is that their graphs are mirror 
images of each other with respect to the horizontal axis. The important consequence of the 
above property ( M01

P(d) + M11
P(d)  = 0)  is that they don't contribute to MIF. This means that 

the peak noticed at the distance d = 2, 9 in the MIF of every poem is contribution to the 
remainder PIF.  
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We incounter another difference in Greek and Latin poetry, if we take a closer look at the 
relationship between the principes (the first part of a foot) and the caesurae. This contributes 
to the peak at d = 9, which is larger in Greek poems. Another peak which almost disappears 
from Greek to Latin poetry is the one at d =13. These facts suggest us that the use of more 
than one caesura in each verse is more often in Latin than Greek poems.   

The distance between two consecutive pauses also contributes to the difference in 
complexity between Greek and Latin poetry. For pinpointing these differences it's a good idea 
to look a the M22

P(d); If we look at the fig 3.3. it has remarkable periodic behavior. It 
indicades a high correlation between pause at the distance of 170 verses in the Iliade. 

 

. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.3.1 (A)  M(d)  for  Homer's  Iliad ,   (B)   M(d)  for  Vergil's  Aeneida. 
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Fig.3.2  Partial information 01 and 11  for  Homer's  Iliad ; 
 the periodic structure persists, althought it's weakened.  In Fig. 3.5 the 
um of Greek and Latin poems is shown. The first large peak almost 
, but is smaller in Latin poem, reflecting a lower influence of 
ic. A posible explanation is the fact that rhapsodies in harmonic times 
 pieces of verses, because no written verses exited at that time and a 
 memorization.    
Fig.3.3  Partial information 01 and 11  for  Greek and Latin  poems. 
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Fig.3.4 (A)  Partial information 22 for Homer's  Iliad ,   (B ) Partial information 22 for 
Homer's  Odissey and (C) Partial information 22 for Lucretiu's  Nature of Things. 
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