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Abstract
The shapes of elastic rods with circular cross-section are described by solutions of staticKirchho� equations. They are called the Euler-Kirchho� �laments and can have visuallyvery interesting forms. The Kirchho� equations are formally equivalent to the Euler equa-tions describing the motion of spinning tops. Principal object of this seminar is to investi-gate di�erent possible con�gurations of rods and some interesting particular cases. At thesame time, these con�gurations are compared with corresponding spinning top motions.
1 Introduction
The properties of elastic deformations in rods have been studied for a long time, sinceLagrange and Euler. The topic has many applications in practice [1], for example twistingof electric cables, study of �lamentary structures like DNA and bacterial �bres in biologyand sun spot formation or vortex tube motion in hydrodynamics.The Kirchho� theory of deformation in rods [2] is a principal tool for studying thisphenomenon and is one of the basic parts of theory of elasticity. It couples two possibledeformations, i.e. torsion and bending. It assumes thin elastic �laments, that means unidi-mensional pieces of elastic material subject to internal stresses and boundary constraints.First we will introduce this model.
2 The Kirchho� model
The shape of the �lament is described as a curve in space by a function R(s; t), where theindependent variables are arc length s and time t. We will treat only static case so we omitthe time dependence. At every point of the �lament, this means for every s we de�ne alocal basis (n; b; t). Vector t is the unit tangent vector given by t = @R@s . Vector n is callednormal vector, de�ned as @t@s = �n (1)
by introducing the curvature � = ��� @t@s ���. The remaining vector is called binormal vector andis equal to b = t� n. These three vectors form an orthonormal basis on the curve R.If we look at dot products of @b@s with b and t respectively :

@b@s � b = 12 @(b � b)@s = 0; (2)
@b@s � t = @(t� n)@s � t = (�n� n) � t+ (t� @n@s ) � t = 0; (3)
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we see that @b@s has only a component in the direction of n, therefore we can write
@b@s = �� n; (4)

which de�nes the torsion � . The torsion measures the rotation of the (n; b; t) basis aroundthe tangent vector t as the arc length increases. It can easily be seen that the remainingderivative is @n@s = � b� � t: (5)
If the curvature � and the torsion � are known for all s, equations (1), (4), and (5) can beused to �nd (n(s); b(s); t(s)) and later on R(s).Our next step is to generalise [1] the (n; b; t) basis by writing (d1;d2; t) instead, whered1 and d2 are still two perpendicular unit vectors, both perpendicular to tangent vector t,which is the same as before. Equations (1), (4), and (5) can be rewritten for the new basisin a more compact form as

@d1@s = �� d1; (6)
@d2@s = �� d2; (7)
@t@s = �� t; (8)

where we de�ned the twist vector � = �1 d1 + �2 d2 + �3 t. Now we have two curvatures,�1 and �2, describing how, at every s, the rod is bent in the two directions of d1 and d2while �3 measures how the rod is twisted.Let us explain the di�erence between those two basis. The orientation of d1 and d2around t is �xed to the rod and follows the twisting of the rod while the orientation of nand b around t was determined by the plane containing a circle that described the localcurvature of the rod. So the (n; b; t) basis measures the mathematical twisting of the curvewhich represents the rod. Contrarly, (d1;d2; t) basis measures physical twisting of the rodmaterial.With these quantities we can describe the shape of a rod. Vector R(s) follows thecenterline of the rod. Vectors d1 and d2 are attached to the material forming the rod. Wewill now write the Kirchho� equations. Two of them are dynamic equations for every sliceof the rod with the cross-section shape S which is e�ected by internal elastic stresses andboundary constraints but there is no external force �eld like gravity. We also exclude theinteraction between remote slices. Let F (s) and M(s) be the total force and total torquethat act on the surface S of a rod slice at s by its neighbour slice situated at s+ ds. Theconservation of linear momentum is written as
F (s+ ds)� F (s) = � S ds @2R@t2 (9)
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which for the static case gives @F@s = 0: (10)
Similarly, the conservation of angular momentum of the slice for the static case gives

@M@s + t� F = 0: (11)
These are two equations for the set of Kirchho� equations. The third one is the constitutiverelation [2] which describes the reaction of the rod on the applied deformation :

M = E I1 �1 d1 + E I2 �2 d2 + �J �3 t; (12)
where E is Young modulus, � is one of the two Lam�e constants, and I1, I2, J are functionsof the shape S. For a circular cross-section of radius R which is our case, one has

I1 = I2 = J2 = �R4

4 : (13)
The quantities E I1 and E I2 are bending sti�nesses which measure how much torque isneeded to bend the rod in the two principal directions while �J is torsional sti�ness whichmeasures how strong the applied torque must be to twist the rod.In order to reduce the number of independent constants, we rewrite the Kirchho�equations (10), (11) and (12) in the scaled form, taking in account the circular cross-section. The result is

@F@s = 0; (14)
@M@s + t� F = 0; (15)
M = �1 d1 + �2 d2 + p �3 t; (16)

where p = �JEI1 = 2�E is the only parameter that depends on rod material. It can also beexpressed in terms of Poisson ratio as p = 1
1+� from where we see that p 2 [23 ; 1].To derive the �nal form of equations (14) to (16), we project (15) along t and get

M 0 � t = (M � t)0 �M � t0 = 0: (17)
Substituting M from (16) and t0 from (8) we get

�0
3 = 0: (18)

We perform similar projections of (15) along d1 and d2, substitute M , d10 and d20 from(16), (6) and (7) respectively and get
�0
1 + (p� 1)�2 �3 = 0; (19)

�0
2 + (1� p)�1 �3 = 0; (20)
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In order to �nd the shape of the rod, i.e. to �nd R(s) one has to solve equations (18)to (20) �rst to obtain the curvature and torsion �1;2;3. Then equations (6) to (8) are usedto �nd d1(s), d2(s) and t(s). R(s) is obtained by integrating the tangent vector t alongthe arc length. In the next section we will stress the equivalence of the set of Kirchho�equations with Euler equations describing the motion of a spinning top.
3 Rod statics = top spinning
Let us recall from classical mechanics the equations of motion for a spinning symmetricaltop with its axis �xed at one point:

_!3 = 0; (21)
_!1 + (p� 1)!2 !3 = 0; (22)
_!2 + (1� p)!1 !3 = 0: (23)

This set is equivalent to set (18) to (20). We only have to �nd the correspondence betweenphysical quantities that describe each problem. This is done in the following table:
Rod Topt unit vector tangent to rod t unit vector from �xedpoint to the centre of massd1, d2 perp. unit vectors attached d1, d2 the same, attached to the topto the rod, both perp. to ts arc length t timeF force in the rod �Fg force equal and opposite togravityM torque in the rod L angular momentum� twist vector ! angular velocityE I1;2 bending sti�ness I1;2 moment of inertia in directionorthogonal to t�J torsional sti�ness I3 moment of inertia along tp sti�ness ratio p moment of inertia ratio

We deal with a rod which has a circular cross-section and this corresponds to a symmetricaltop (I1 = I2). The correspondence means that to every possible motion of the top we can�nd a particular static shape of the rod. The path of the free end of the top in space andtime corresponds to a certain rod shape. A particular top motion has three �rst integrals,that is the angular velocity along the axis of rotation !3, vertical component of the angularmomentum Lz and the total kinetic plus potential energy. The corresponding �rst integralsfor a rod are the twist density �3, vertical component of the torque applied at its end Mzand its total bending plus torsional energy. Formally, there is a fourth �rst integral, thatis the force opposite to gravity �Fg for the top and vertical component of the force Fz forthe rod.
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It should be noted that in our particular case where we deal with symmetrical rods andtops, the set of Kirchho� or Euler equations can be solved analytically.The described correspondence can be used to classify numerous types of rod shapes bylooking at adequate top motions which yields top a systematic classi�cation.
4 Classi�cation of shapes
We will not try to solve the Kirchho� equations which in general lead to elliptic functions.We will only observe various solutions [1]. They can be divided in di�erent classes.
4.1 Helical �laments

First we have a look at helical �laments where curvature � de�ned in (1) and torsion �de�ned in (4) are constant. Constant curvature means that the circular arc that locallybest �ts the �lament has a constant radius. Constant torsion means that the plane whichcontains this circle rotates with a constant rate in space when travelling along the arc lengths. The third quantity is the third component of the twist vector, �3, which measures how�bres that form the rod are twisted along the rod. This can be observed on the picturesthanks to the colour pattern on the rod surface.Corresponding top motions are described by depicting the path of the free end of thetop axis (top extremity) on the sphere where the �xed end is in the sphere centre. In caseof helix �laments, the top extremity describes a circle. Figure 1 shows a helix with puretorsion, that is, �3 = � .

Figure 1
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Next two �gures show an over- and undertwisted helix which are distinguished bythe sign of handedness of the helix itself (�) and the handedness of the pattern on the rodsurface (�3��). In the �rst case (�gure 2), the signs are the same while for the undertwistedhelix (�gure 3), the signs are opposite :

Figure 2

Figure 3
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If � = 0, the helix turns into a ring. For the top, this means that the top axis rotatesin the horizontal plane :

Figure 4
Straight rod solutions correspond to a sleeping top, this is one whose extremity is at rest.A rod subject to extensive tension (F3 > 0) means a top with its axis pointing upwards :

Figure 5
while a rod subject to compressive tension (F3 < 0) means a top whose axis points down-wards :

Figure 6
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4.2 Planar �laments

Planar shapes were examined already by Euler. We exclude straight and circular shapesthat were already cited within helical shapes. In general, a rod with a planar shape corre-sponds to a top which behaves like a plane pendulum, hung at the �xed point. If we lookat the phase portrait of a plane pendulum (�gure 7) we see that there exist oscillating(=closed) orbits and revolving (=open) orbits where the pendulum turns around the �xedpoint.

Figure 7
The corresponding equation describing such a pendulum is

�� + !2
0 sin � = 0: (24)
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Orbits and thus rod shapes can be ordered regarding the energy of the pendulum. Firstwe look at some planar �laments corresponding to low energy oscillating orbits of thependulum. The energy increases from a) to e) :

Figure 8
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When energy increases further on, rod shapes become more and more interesting. Withincreasig energy, the distance between loops also increases :

Figure 9
The limit case is reached when the pendulum is at the turning point from oscillating torevolving orbit :

Figure 10
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After the limit case, pendulum turns around and the rod changes its behaviour. Theenergy increases from a) to c) :

Figure 11
4.3 Generic shapes

In general case, the top precesses and nutates and its path on the sphere is limited betweentwo polar angles. This leads to a rod shape which on average, i.e. on large scales, behaveslike a helix. It is obvious that a periodic top orbit corresponds to a periodic �lament shape.A case of great importance in biochemical applications like DNA is the supercoiledhelix. It is de�ned as a curve that looks like a helix on small scales, but its central lineforms another helix on large scale. This occurs when the top precesses slowly in almostcircular loops :

Figure 12
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Such a superhelix can also be deformed into a ring, like it was the case for a simplehelix :

Figure 13
If the top extremity passes the north or the south pole, we have the followingcon�guration :

Figure 14
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If the amplitude of the small scale pattern is large enough for two large scale turns tooverlap, the shape becomes extremely complex, while the corresponding top orbit is quitesimple :

Figure 15
When the top orbit has turn-back points, this yields to a �lament with points of vanishingcurvature :

Figure 16
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As the last example we have a closed �lament :

Figure 17
5 Estimation of dimensions for macroscopic �laments
Complex structures of �laments can be observed mostly on microscopic level. We canobtain such shapes with DNA molecules. However, we will make an estimation of possibledimensions for a macroscopic �lament. This could be a piece of steel wire, for example.There is no direct restriction for the radius R of such wire. The only condition is thatthe material rests in the elastic range of deformation where the bending force is linearlyproportional to relative stretch. The estimation can easily be made ([3],[4]) by observinga segment of �lament shown in picture 18 :

Figure 18
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In the case of pure bending, the centerline of the �lament is not deformed. Maximal defor-mation occurs on the outer edge of the �lament. It can be calculated using the followinggeometric relation :
' = lR1

= l +�lR1 +R: (25)
From here we see that the relative stretch is equal to

�ll = RR1
: (26)

If we consider, as said before, a steel wire, we can �nd that the maximal relative stretch forthe steel is of the order of 0.1% [3]. Beyond this limit, the relation between the stretch andthe force which causes the bending is not linear. This means that we have the followingrelation : � RR1

�
max = 0:001: (27)

Figure 19 shows an example of maximal curvature for a given radius of wire :
Figure 19

6 Conclusion
In this seminar we showed the relation between two completely di�erent parts of physicswhich, however, are governed by the same equations and are thus directly comparable.Our intention was not to deal with mathematical properties of these equations but toobserve the behaviour of their solutions. In this particular case we saw that the solutionsare extremely varied and give very interesting results which are visually attractive. Themain goal was to show how the comprehension of a given phenomenon can be reinforcedwhen observed from a supplementary point of view.
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