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Abstract

The goal of this seminar is a brief summary of Onsager’s published and unpublished
contributions to hydrodynamic turbulence and an account of their place in the field as
the subject has evolved through the years, but main focus will be on two-dimensional
fluids, point-vortices, Saturns “stable” Great red spot explained using term of nega-
tive absolute temperature and sophisticated method using non-point-vortex model but
rather local distribution function, which is more realistic behavior of vortices.
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1 Introduction

Lars Onsager, born in Oslo, Norway, a science genius, won a 1968 Nobel Laureate in
Chemistry. He made deep contributions to many ares of physics and chemistry are widely
appreciated. His huge contribution to the thermodynamics of irreversible processes and a
key result, the reciprocal relation for linear transport coefficient. Among the other cele-
brated contributions are his work on liquid helium, including quantization of circulation,
his semiclassical theory of the de Haas-van Alpehn effect in metals 1, his entropic theory of
transition to nematic order for rod-shaped colloids, and the reaction field in his theory of
dielectrics.

Probably less known among physicists is Onsager’s interest in hydrodynamic turbulence.
He published two papers on the subject of fully developed turbulence (see [1],[7]). 1945,
Onsager predicted an energy spectrum for velocity fluctuations that rolls off as the −5/3
power of the wave number. The published abstract appeared a few years after, but entirely
independently of, the now-famous trilogy of papers by Kolmogorov, proposing his similarity
theory of turbulence. His only full-length article on the subject in 1949 introduced two
ideas - negative-temperature equilibria for two-dimensional ideal fluids and energy dissipation
anomaly for singular Euler solutions - that stimulated much later work. Reamarkably,
his private notes of the 1940s contain the essential elements of at least four major results
that appeared decades later in the literature: a mean-field Poisson-Boltzmann equation and
other thermodynamic relations for point vortices; a relation similar to Kolmogorov’s 4/5 law
connecting singularities and dissipation . . .

1often abbreviated dHvA, was descovered 1930; dHvA effect is quantum mechanical effect in the mag-
netic moment of a pure metal crystal oscillate as the intensity of an applied magnetic field B is increased.
Other quantities also oscillate, such as the resistivity (Shubnikov–de Haas effect), specific heat, and sound
attenuation. This effect is due to Landau quantization of electron energy in an applied magnetic field. A
strong magnetic field — typically several teslas — and a low temperature are required to cause a material
to exhibit the dHvA effect.
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2 Brief mathematical review of hydrodynamics

Lets first begin with behavior of ideal2 and inviscid ν := η/ρ ≡ 0 fluid. From Cauchy and
Pascal law (stress tensor: pik(xl) 6= pik(xl, t) in the absence of a shear forces)

ρüi =
∂pik
∂xk

+ ρ f exi , pik = −pδik (1)

ρ
Dv

Dt
≡ ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+ ρf (2)

where ui is deformation vector, f exi ≡ fi external forces and p hydrostatic preasure. This
equation is know as Euler equation. If we make assumptions that external forces are conser-
vative f = −∇φ, current flow is isotropic and vorticity ω = ∇× v using identity

1

2
∇v2 = v × (∇× v) + v ·∇v

0 =
Dρ

Dt
+ ρ∇ · v

we get Helmholtz equation of vorticity

Dω

Dt
− ω

ρ

Dρ

Dt
= ρ

D

Dt

(
ω

ρ

)
= ω ·∇v (3)

This equation is in general too complicated, however, for a start let us look at incompressible
fluid and liquids, where the third dimension is negligible - for 2D fluid flow, we get

Dω

Dt
=

(
∂ω

∂t
+ v ·∇ ω

)
= 0 (4)

Interpretation of this equation is that vorticity, when moving with liquid, is conserved - this
is rigorously true only in 2D, which tells Kelvin theorem. We define circulation

Γ :=

∮
C(t)

v · dr (5)

where C(t) represents loop moving together with liquid. Using parametrization with natural
parameter s, C(t) : r(s, t), s ∈ [0, 1], r(0, t) = r(1, t), than

Γ(t) =

∮
C(t)

v · dr =

∫
(∇× v) · dS =

∫
ω · dS = const. (6)

this means, if in the irrotational fluid, fluid did not had vorticity at the beginning ∇×v(r, t =
0) = 0 - this property conserved also at later time - this is known as potential flow 3. Kelvin
theorem is known as vorticity theorem conservation. Let us define another quantity e.i.
complex potential (2D)

w(z) = φ(z) + iψ(z), z = x+ iy (7)

2In the deriving the equations of motion we have taken no account of processes of energy dissipation,
which may occure in a moving fluid in consequence of internal friction (viscosity) in the fluid and heat
exchange between different parts of it - motions of fluids in which thermal conductivity and viscosity are
unimportant.

3potential flow beacause v = ∇φ, where φ is velocity potential.
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where φ velocity potential, ψ stream function. Stream function ψ, is defined by

vx :=
∂ψ

∂y

(
=
∂φ

∂x

)
andexplain vy := −∂ψ

∂x

(
=
∂φ

∂y

)
(8)

∇ · v =
∂vx
∂x

+
∂vy
∂y

=
∂2ψ

∂x∂y
− ∂2ψ

∂y∂x

Velocity of vortices in two dimensions (x, y) using Biot-Savart’s law (see [2],[10],[12]) in
cilindrical geometry

vθ =
Γ

2π
vr = 0

w(z) = −i Γ

2π
ln z =

Γ

2π
θ + i

−Γ

2π
ln r = φ+ iψ (9)

Let vortices be at z1 = (x1, y2), . . . , zn = (xn, yn), . . ., than 2D velocity field at this vortices
distribution has a form

w(z) = − i

2π

∑
i

Γiln (z − zi) =
∑
i

wi(z) (10)

Try to use same principle but now for N vortices, each has its own circulation Γi ≡ κi.
Velocity field distribution v(z) := dw(z)

z
= vx − ivy and let us this Hamiltonian function

H = − 1

2π

∑
i 6=j

κiκjln |zi − zj| (11)

and can be written as

κi
dxi
dt

=
∂H
∂yi

κi
dyi
dt

= −∂H
∂xi

dH
dt

=
∂H
∂xi

dxi
dt

+
∂H
∂yi

dyi
dt

= 0

For ν := η/ρ 6= 0,∇ · v 6= 0 (η dynamic viscosity, ρ fluid density) we get Navier-Stokes
equation

ρ
Dv

Dt
= ρf ex −∇p+ η∇2v + (ζ +

1

3
η)∇∇ · v (12)

ζ := λ + 2
3
η = const., λ Lamé coefficient and η dynamic viscosity. For the final, we define

enstrophy for incompressible fluid ∇ · v = 0 and f = −∇Φ

∂

∂t

∫
V

(
1

2
ρv2 + ρΦ

)
d3r = −η

∫
V

(∇× v)2 d3r ≥ 0 (13)

When f = 0 it can be seen that viscosity η ≥ 0. However, in incompressible fluid with
vortices there is alaways energy dissipation!
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Figure 1: The large, oval-shaped mark on the clouds is the Great Red Spot - believed to be an
intense atmospheric disturbance. An anticyclonic vortex in the upper atmosphere of Jupiter
has existed at least since it was observed in 1610 by Galileo with one of the first telescopes -
at its widest, it is about three times the diameter of the Earth. Similar large-scale, long-lived
vortices exist in the atmospheres of the other gas giant planets of our solar system e.i. “icy”
giant Neptune, Saturn etc (Voyager 2, NASA)

3 Onsager theory of turbulence

3.1 Onsager’s theory of point-vortex equilibria

In the published paper Onsager (see [7]) discussed a simple Hamiltonian particle model
of 2D ideal fluid flow, the point-vortex model of Helmholtz and Kirchhoff, describing this
motion for a system of N vortices in a plane, or of straight and paralel line vortices in three
dimensions (see [14]). If the planar coordinates of the ith vortex are ri = (xi, yi) and if that
vortex carries a net circulation κi, the equations of motion are

κi
dxi
dt

=
∂H

∂yi
κi
dyi
dt

= −∂H
∂xi

(14)

H = − 1

2π

∑
i<j

κiκj ln(rij/L) (15)

where H is the fluid kinetic energy, rij is the distance between the ith and j th vortex and
L is an arbitrary length scale. Where there are no bounderies, H has the form (15).

Modern source for the point-vortex model is Marchioro and Pulvirenti (1994) in which it
is provided that the model describes the motion of concentrated blobs of vorticity, evolving
according to the 2D incompressible Euler equations, as long as the distance between the
blobs is much greater than their diameters4. Another result in the opposite direction states

4In fact, these equations of motion have been formally derived from quatum many-body equations for
parellel line vortices in superfluids.
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Figure 2: Great Dark Spot of Neptune is thought to be a hole, similar to the hole in ozone
layer on Earth, however unlike Jupiter’s Great Red Spot, Dark Spot can dissapeare - this was
first noticed with disappearance in 1989, in 1994 was replaced by a similar “spot”. Neptune,
made up chiefly of hydrogen, helium, water and silicates - does not have a solid surface.
Neptune clouds consist mainly of frozen methane. Deep down inside Neptune, the planet
“might” have a solid surface (astronomers try to explain dissipative behavior of a Neptune
spot)(Voyager 2, NASA).

that a smooth solution of the 2D Euler equations ω(r, t) can be approximated as N → ∞,
over any finite time interval, by a sum ωN(r, t) =

∑N
i=1 κiδ(r− ri(t)), where κi = ±1/N and

ri(t), i = 1, . . . , N are the solutions (14).

Theoretical proposal for explanation for a commonly observed feature of nearly two-
dimensional flows was: the spontaneous appearance of large-scale, long-lived vortices. For
examples are the large, lingering storms in the atmospheres of the gas giants of the outer
solar system, such as the Great Red Spot of Jupiter (see [16],[17]). Large vortices are also
readly seen downstream of flow obstacles. Jupiter is heavier than any other planet. Its mass
is 318 times larger than that of Earth. Although Jupiter has a large mass, it has relatively
low density (∼ 1.33g/cm3) - about 1/4 of Earth density. Astronomers believe that the planet
consists primarly of hydrogen (∼ 86%) and helium (∼ 14%) (the lighest elements), and tiny
amounts of methane, ammonia, phosphine, water, acetylene, ethane, germanium, and car-
bon monoxide. Interesting is also that chemicals have formed colorful layers of clouds at
different heights (as can be seen from Figure 1 ). White clouds, which are the highest in the
zones, are made of crystals of frozen ammonia, darker (lower) clouds are of other chemicals
occur in the belts - the lowest level are blue clouds. As it can be seen, Great Red Spot
colour differ much from neighboring due to small amounts of sulfur and phosphorus in the
ammonia crystals.
Astronomers began to use telescopes to observe these features in the late 1600’s, the features
have, however, changed size and brightness but have kept the same patterns.
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Figure 3: CUDA simulation, using Jos Stam’s FFT algorithm, solving Navier-Stokes equation
in two-dimensional flow (Nvidia, Open GL Fluid).

Explanation of the phenomenon, Onsager proposed an application of Gibbsian equilibrium
statistical mechanics to the point-vortex model (see [5]). His theory assumed that the gen-
eration of the large-scale vortices was a consequence of the inviscid Euler equations, which
form a Hamiltonian system conserving total kinetic energy. This is rigorously true in 2D
due to conservation of enstrophy. In particular, no sustained forcing is required to maintain
the vortex in this theory as long as the dissipation by viscosity is weak 5 (see [15]). When we
compare our idealized model with reality, we have one profound difference: the distributions
of vorticity which occure in the actual flow of normal fluids are continuous. As a statistical
model in two-dimensions it is ambiguous: what set of discrete vortices will best approximate
a countinuous distribution of vorticity6?

Burgers in his articles attempts to applay statistical-mechanical maximum entropy ideas
to turbulent flow (for non-equilibrium conditions see [9]). The ingenious step in Onsager’s
theory was his realization that point vortices would yield states of negative absolute tempera-
ture, at sufficiently high energy, and that this result could explain the sponeaneous appearance
of large-scale vortices in two-dimensional flows (see [3], [4], [7]) 7.

5Onsager also assumed the validity of the point-vortex approximation, though with reservations.
6Onsager assumed: “...the point-vortex dynamics is ergodic in phase space over the surface of constant

energy, so that a microcanonical distribution is achieved at long times ... We inquire about the ergodic
motion of the system.

7Onsager, in his notes, doesn not explain physical concept of negative-absolute temperature
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Now how to explain negative-absolute temperature? The essential requirements for a
thermodynamical system to be capable of negative temperature

1. the elements of the thermodynamical system must be in thermodynamical equilibrium
among themselves in order for the system to be described by a temperature at all.

2. there must be an upper limit to the possible energy of the allowed states of the system
- negative temperatures are to be achieved with a finite energy.

3. the system must be thermally isolated from all systems which do not satisfy both
upper requirements - internal thermal equilibrium time among the elements of the
system must be short compared to the time during which appreciable energy is lost to
or gained from other systems.

Let us assume that we have a spin-system (most of the system do not satisfy condition(2.),
however spin-system can satisfy all three of the conditions)8 where, we add more and more
energy, temperature starts off positive, approaches positive infinity as maximum entropy is
approached, with half of all spins up. After that, the temperature becomes negative infinite,
coming down in magnitude toward zero, but always negative, as the energy increases toward
maximum. When the system has negative temperature, it is hotter than when it is has
positive temperature. If you take two copies of the system, one with positive and one with
negative temperature, and put them in thermal contact, heat will flow from the negative-
temperature system into the positive-temperature system. Some systems does not have a
property that entropy increases monotonically with energy, however are cases when energy
is added to the system configuration acctually decreases for some energies (in some energy
region).

How can be this realized in the real world or it is just theoretical science fiction? Best
to explain is using a spin system in a magnetic field. Atoms “must” have other degrees of
freedom in addition to spin, making (usually) total energy of the sistem unbounded upward
due to translation degree of freedom. Sometimes it is useful to define ”spin-temperature“
of a collection of atoms but only one condition is met, that is, the coupling between atomic
spins and the other degrees of freedom is sufficiently weak, and the coupling between atomic
spins sufficiently strong, that the timescale for energy to flow from the spins into other
degrees of freedom is very large compared to the timescale for thermalization of the spins
among themselves. Using this condition make sense to talk about temperature of spins
separately from the temperature of the atoms as a whole - in strong magnetic fields we can
met described condition. Interesting is also that only certain degrees of freedom of a particle
can have negative absolute temperature.

For the existence of negative absolute temperature is the same as that published by the
Onsager (1949d) some two years prior to their introduction by Purchell for nuclear-spin
system (see [1]). Electron (nuclear) spin can be promoted to negative absolute temperatures
by using suitable radio frequency tehniques9.

8there is no upper limit to the possible kinetic energy of a gas molecule
9Various experiments and applications (RF amplifier) in the calorimetry of negative temperatures can be

found (see [3],[4])
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The crucial feature of the point-vortex system which permits this conclusion is the fact
that the total phase-space volume is finite. Since x and y components of the vortices are
canonically conjugate variables, the total phase-space volume is Φ(∞) = AN , where A is the
area of the flow domain and

Φ(E) =

∫ N∏
i=1

d2ri θ(E −H(r1, . . . , rN)) (16)

where θ is the Heviside step function θ(x > 0) = 1 and θ(x < 0) = 0. Φ(E) is a non-negative
increasing function of energy E, with constant limits Φ(−∞) = 0 and Φ(∞) = AN

Ω(E) = Φ′(E) =

∫ N∏
i=1

d2ri δ(E −H(r1, . . . , rN)) (17)

is a non-negative function going to zero at both extremes, Ω(±∞) = 0 . Thus the function
must achieve a maximum value at some finite Em, where Ω′(Em) = 0 (I use this with
reservation!!). For E > Em, Ω′(Em) < 0. On the other hand, by Boltzmann’s principle,
the thermodynamic entropy is S(E) = kB lnΩ(E) 10 and the inverse temperature 1/Θ =
dS/dE < 0 for E > Em. Onsager further pointed out that negative temperatures will lead
to the formation of large-scale vortices by clustering of smaller ones. More precise: in the
former case when 1/Θ > 0, vortices of oposite sign will tend to approach each other. However,
if 1/Θ < 0, then vortices of the same sign will tend to cluster - preferably the strongest ones
- so as to use up energy at the least possible cost in terms of degree of freedom. It stands
to reason that the large compound vortices formed in this matter will remain as the only
conspicuous features of the motion; because the weaker vortices, free to roam practically at
random, will yield rather erratic and disorganized contribution to the flow.

The statistical tendency of vortices of the same sign to cluser in the negative-temperature
regime is clear from a description by a canonical distribution
∝ e−βH with β = 1/kBΘ. Negative β corresponds to reversing the sign of the interaction,
making like “charges” statisticaly attract and opposite “charges” repel.

3.2 Point-vortex model

Montgomery returned to Onsager’s theory and worked out a predictive equation for the
large-scale vortex solutions (see [8]) conjectured by Onsager11.
A brief review of the Joyce-Montgomery considerations, in the language of the 2D point-
vortex system. Consider a neutral system, which we describe as consisting of N vortices of
circulation +1/N and N vortices of circulation −1/N ; for this system, there are two vortex
densities,

ρ±(r) =
1

N

N∑
i=1

δ(r− r±i ) (18)

10the entropy of a system in which all states, of number Ω, are equally likely; such as system is one in
which the volume, number of molecules, and internal energy are fixed - the microcanonical ensemble.

11Onsager carried these considerations no further in his 1949 paper nor in any subsequent published work.
Von Neumann (1949) took note of the point-vortex model (see [18],[11]) and Onsager’s statistical-mechanical
theory; this led von N. to speculate about the limits of Kolmogorov’s reasoning in the 3D and to recognize
the profound consequances of enstrophy conservation in two dimensions.
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where r±i , i = 1, . . . , N , are the positions of the N vortices of circulation ±1/N , respectively.
Vorticity field is represented by ω(r) := ρ+(r)−ρ−(r). Joyce and Montgomery (1973) derived
formula for the entropy (per particle) of a given field of vortex densities

S = −
∫

d2rρ+(r) ln ρ+(r)−
∫

d2rρ−(r) ln ρ−(r) (19)

They next reasoned that the equilibrium distributions should be those which maximized the
entropy subject to the constraints of fixed energy

E =
1

2

∫
d2r′G(r, r′)ω(r)ω(r′),

∫
d2rρ±(r) ≡ 1 (20)

From here, we work out the variational equation

ρ±(r) = exp

[
∓β
∫

d2r′G(r, r′)ω(r′)− βµ±
]

(21)

where β and µ± are Langrange multipliers to enforce the constraints, having the interpre-
tation of inverse temperature and chemical potentials, respectively. A closed equation is
obtained by introducing the stream function

ψ(r) =

∫
d2r′G(r, r′)ω(r′)

−∆ψ(r) := ω(r) = exp [−β(ψ(r) + µ+)]− exp [β(ψ(r)− µ−)] (22)

This is the final equation derived by Joyce and Montgomery. Its maximum-entropy solutions
give exact, stable, stationary solutions of the 2D Euler equations and should describe the
macroscopic vortices proposed by Onsager when β < 0.

3.3 Advance and applications

One issue that Onsager never addressed was the appropriate thermodynamic limit for
validity of this statistical theory of large-scale 2D vortices. The Debye-Hückel theory12 is
valid in the standard thermodynamic limit in 2D, for which area A→∞ with the number
of vortices N → ∞ and energy E → ∞ in such a way that n = N/A, e = E/A tend to
a finite limit. Further, the circulation κi are held fixed, independent of N , e.g. κi = ±1.
The inverse temperature 1/T scales as13 A/N , since

∑
i κ

2
i ∼ O(N), and approaches a finite

limit in thermodynamic limit. As E/A varies over all real values the temperature T stays
positive, and even more, Campbell and O’Nell (1991) rigorously proved that the standard
thermodynamic limit exists for the point-vortex model, but yields only positive temperatures.
To obtain the negative temperature states proposed by Onsager, one must consider energies
that are considerably higher, greater than the critical energy.

Point-vortex approximation: we have already mentioned that there are rigorous results
which show that any smooth 2D Euler solution ω(r, t) may be approximated arbitrarily well
over a finite time interval 0 < t < T by a sum of point vortices

∑N
i=1 κiδ(r − ri(t)) with

12Onsager realize the connection with Debye-Hückel theory of electrolytes; that is enough to know for this
seminar.

13shown by Edwards and Taylor (1974).
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κi ∼ ci/N , where ci are constants as N → ∞ (Marchioro and Pulvirenti, 1994)14. Onsager
had own reservations about the point-vortex approximation - the restrictions imposed by the
incompressibility of the fluid. Onsager’s concerns can be cleary understood by considering
the initial condition of an ideal vortex patch, with a constant level of vorticity on a finite
area. Because that area is conserved by incompressibility under the 2D Euler dynamics, it is
not possible for the vorticity to concentrate or to intensify locally for this initial condition.
However, this is not true of one were to approximate the patch by a distribution of point
vortices at high energies. In that case, the mean-square distance between point vortices
could decrease over time and the effective area covered could similarly decrease, leading to
more intense, localized vortex structure. Thus one expects discrepancies here between the
continuum 2D Euler and the point-vortex model for long times.

A great step toward eliminating these defects was taken independently by Miller (1991)
and Robert (1990). They both elaborated an equilibrium statistical-mechanical theory di-
rectly for the continuum 2D Euler equations, without making the point-vortex approxima-
tion. The basic object of both of these theories was a local distribution function n(r, σ), the
probability density that the microscopic vorticity ω(r) lies between σ and σ+dσ at the space
r. The picture here is that the vorticity field in its evolution mixes to very fine scales so
that a small neighborhood of the point r will contain many values of the vorticity with levels
distributed according to n(r, σ), thus n satisfies

∫
dσn(r, σ) ≡ 1 at each point r in the flow

domain. Same as before, the stream function satisfies the generalized mean-field equation

−∆ψ(r) =
1

Z(r)

∫
dσ σexp

[
−β(σψ(r)− µ(σ))

]
(23)

where Z(r), µ(σ) and β are Langrange multipliers. This theory is is an application to 2D
Euler of the method worked out by Lynden-Bell (1967) to describe gravitional equilibrium
after “violent relaxation” in stellar systems. The Robert-Miller theory solves the problems
discussed by Onsager - point-vortex assumption. The new theory incorporates infinitly many
conservation laws of 2D Euler. In fact, the point-vortex model, in the generality considered
by Onsager, also has infinitely many conserved quantities, i.e. the total number of vortices of
a given circulation. Robert-Miller theory includes information about the area of the vorticity
level sets, which is lacking in the point-vortex model.
As rekarked by Miller et al., the Joyce-Montgomery mean-field equation is formally recovered
in a “dilute-vorticity limit” in which the area of the level sets shrinks to zero keeping the
net circulation fixed 15.

Lundgren and Pointin (1976) performed numerical simulations of the point-vortex model
(see [1]) with initial conditions corresponding to several local clusters of vortices at some
distance from each other. The equilibrium theory predicted their final coalescence into a
single large supervortex. Lundgren and Pointin argued theoretically that the vortices will
eventially reach the equilibrium, single-vortex state.

14this is not sufficient to justify equlibrium statistical mechanics at long times because the limits T →∞
and N →∞ need not commute.

15This corresponds well with conditions suggested by Onsager for validity of the point-vortex model that
“vorticity is mostly concentrated in small regions.”
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4 Conclusions

Onsager observed the spontaneous appearance of large-scale, long lived vortices is a fre-
quent occurence in two-dimensional flow, especially in planetary atmospheres. Onsager’s
theory, from mathematical point of view, is now largely explored and undestood and also
those of its genaralization by Miller and Robert (it has been mentioned at the end). As the
empirical confirmation of the equilibrium vortex theories is concerned, it must be addmited
that while reasonable agreement has been obtained with a few numberical simulations and
laboratory experiments (see [13]), we know of not really convincing verification for flows in
nature. Onsager’s theoretical view of an “ideal turbulence” described by the inviscid fluid
equations is a proper idealization for understanding high Reynolds number flows. All of
the mentioned processes are truly predictive devices especially cascade theory of dissipation.
However both theories (Onsager and Kolmogorov) are based on experimental observation,
where Kolmogorov’s theory(cascade theory) (see [19]) is based on important hypotheses
combined with dimensional arguments. Theory of hydrodynamic turbulence have many
unanswered questions: what are the scales where vorticity is dissipated, or in the other
words, what is the size of the smallest eddies that are responsible for dissipating the energy?
Some are explained by Kolmogorov, but some are still unanswered.
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