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1. INTRODUCTION 
 

The words virus comes from the Latin word virus which means toxin or poison. That's very telling, 

since a virus is a microscopic organism which is connected with various diseases that impact the lives 

and health of humans. Viruses also affect animals, plants and bacteria. It's easy to see why it's 

important to understand viruses and their formation processes - that knowledge would become a 

means of developing antivirus therapies that can block virus infections, or redesigning viruses as drug 

delivery vehicles that can assemble around their cargo and disassemble to deliver it without 

requiring explicit external control. 

An important characteristic of viruses is their inability to reproduce without a host cell. In that 

regard, viruses are considered parasites, because they contact a host cell with the design to insert 

their genetic material into the host and take over the host's functions. The infected cell continues to 

reproduce, but it reproduces more viral genetic material and protein instead of its usual products. 

In general, a virus consists of at least two components: the genome (DNA or RNA; single-stranded or 

double stranded) and a capsid - a protein shell that protects the genome from outer influences. 

There exists a wide array of viruses, which range from simple (such as the Tobacco mosaic virus 

(TMV), depicted in Fig. 1) to complex (every virus whose morphology consists of complex 

combinations of structures, for example the T4 bacteriophage, also depicted in Fig. 1).  

 

 

Figure 1 "Anatomies" of different viruses: a) TMV, b) Adenoviruses, c) Influenza viruses, d) T4 bacteriophage 
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This report shall explore the structure of viral capsids, the self assembly of viruses, with accent on the 

energies governing the process, and the mechanical properties of both an assembled capsid and a 

virus in general. 

 

2. THE GEOMETRY OF A VIRAL CAPSID 
 

Since the viral genome is supposed to be enclosed in a protective protein shell, that requirement 

constraines the length of the genome. The resulting consequence is the limited number of protein 

sequences it can encode. The notable scientists Watson and Crick (of the structure of DNA fame) first 

made the hypothesys that virus capsids are made of numerous copies of one or a few protein 

sequences, which are usually arranged with a high degree of symmetry in the assembled capsid. 

Most viruses can be classified as either rodlike or spherical. Rodlike viruses (for example the 

aforementioned TMV) have capsids arranged with helical symmetry around the nucleic acid. The 

number of protein copies comprising a helical capsid is arbitrary and therefore a helical capsid can 

accommodate a nucleic acid of any length. The other group, spherical viruses, have capsids arranged 

with icosahedral symmetry. Icosahedral capsids are limited by the geometric constraint that at most 

60 identical subunits can be arranged into a regular polyhedron. Thus the assembly of capsids in 

spherical viruses poses an interesting problem. 

Early structural experiments indicated that many spherical capsids contain multiples of 60 proteins. 

One of the propositions on how multiples of 60 proteins can be arranged with icosahedral symmetry 

was given by Caspar and Klug. They made geometrical arguments to support their hypothesys. They 

argued that protein subunits can be grouped into so called capsomeres - morphological units usually 

comprised as pentameres and hexameres. Icosahedral symmetry requires exactly 12 pentamers, 

located at the vertices of an icosahedron inscribed within the capsid. A complete capsid is comprised 

of 60T subunits, where T is the ‘triangulation number’, which is equal to the number of distinct 

subunit conformations. The Caspar Klug (C-K) classification system can be obtained starting from a 

hexagonal lattice (shown in Figure 2A). The  edge of the icosahedral facet is defined by starting at the 

origin and stepping distances h and k along each of the respective lattice vectors. There is an infinite 

series of such equilateral triangles corresponding to integer values of h and k. The area of such a 

triangle (for unit spacing between lattice points) is given by T/4, where T is the triangulation number 

defined as: 

          . 

A structure with icosahedral symmetry is made of 20 identical facets, which are equilateral triangles 

(shown in Figure 2B). The facets themselves comprise at least 3 identical asymmetric units (asu). The 

smallest possible triangle, with T = 1 is made of 3 asu, so the total number of asu in the facet is 3T, 

and the total number of asu in the icosahedron is 60T. It's already said that a CK icosahedral shell 

consists of 12 pentamers located at equidistant sites on the icosahedral vertices. But, it has a further 

10(T - 1) hexamers - with T = 1, 3, 4, 7; … - located in between the pentamers. The individual asu’s are 

not identical for T > 1 since they have different local environments. A good deal of icosahedral viral 

capsids with T > 1 are comprised of only a single protein copy. That means that the protein must 
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adopt different configurations depending on its local environment. Caspar and Klug also 

hypothesized that because the local environments ‘quasi-equivalent’, the proteins in different 

environments could interact through the same interfaces. Their hypothesis was proven to be true for 

mayn icosahedral viruses, with structural differences between proteins at different quasi-equivalent 

sites often limited to loops and N- and C-termini. However, there are exceptions to that rule. There 

can be proteins with extensive conformational changes or even different sequences at different sites.  

 

Figure 2 The geometry of icosahedral lattices. A) Triangulars facets and their construction on a hexagonal lattice. B) 
Construction of a T=3 lattice. C) Icosahedral capsids. They belong to:  satellite TMV (T=1), cowpea chlorotic mottle virus 

(T=3), human hepatitis B virus (T=4). 

 

It's interesting to note that there exist viruses with non-spherical capsids that display elements of 

icosahedral symmetry. One such is the mature HIV virus - the HIV capsid has a tubular or conical 

shape.  
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3. VIRAL ASSEMBLY 
 

Viral assembly is a process that includes: formation of the viral capsid, encapsulation of the nucleic 

acid in the capsid, acquistion of membrane coats (if the virus has any) and eventual maturation 

processes. Viral capsids can spontaneously form. That was proven by the experiment Fraenkel-Conrat 

and Williams had done in 1955.. They had demostrated that a functional TMV virus could be created 

out of purified RNA and a protein coat, in vitro. 

There is a big difference between the pathways of nucleic acid encapsulation between viruses with 

single-stranded or double-stranded genomes. Viruses with single-stranded genomes (the best 

studied of which have ssRNA genomes) usually assemble spontaneously around their nucleic acid in a 

single step. Such viruses are small spherical plant viruses, like satellite TMV, the bacteriophage MS2, 

and animal viruses such as nodavirus. Frequently, the RNA is required for assembly at physiological 

conditions, whereas the capsid proteins can assemble without RNA into empty shells in vitro under 

different or pH.  

Double-stranded genomes pose a greater challenge. Since a double-stranded genome is stiff (the 

persistence length of dsDNA is 50 nm) and has a high charge density, it requires a two-step process 

to encapsulate it within a capsid. Basically, an empty protein shell is assembled first, followed by 

packaging via ATP hydrolysis and/or complexation with nucleic acid folding proteins. In that category, 

the most studied viruses are dsDNA viruses, such as the tailed bacteriophages, herpes virus and 

adenovirus. These viruses assemble an empty capsid, without requiring a nucleic acid at physiological 

conditions, and a molecular motor which inserts into one vertex of the capsid. The molecular motor 

uses the hydrolysis of ATP to pump the DNA into the capsid. 

The assembly of virus capsids from the coat proteins is a thermodynamic process for a vast majority 

of viruses. Together with the aforementioned TMV, HBV, Human Papilloma virus (HPV), Cowpea 

Chlorotic Mottle virus, Brome Mosaic virus, Broad Bean Mottle virus and Sindbis virus are all 

examples of viruses where the coat proteins spontaneously form capsids in aqueous solution under 

the right conditions of concentration, salinity, pH, and temperature. But first, it's necessary to 

analyze not only the formation process of an empty capsid, but also the proteins that build a viral 

capsid, and the interactions between the subunits of a capsid. 

 

3.1 Capsid proteins 

 

Viral DNA or RNA molecules are typically negatively charged. In order to compactly and efficiently 

pack negatively charged genome in to a capsid, the capsid proteins in contact with the genome are 

oftentimes positively charged. The opposite charges of the genome and capsid proteins increase the 

electrostatic interaction of the complex and decrease its energy, which leads to easier assembly. That 

explains why viral genome codes for positively charged proteins.  

Virus capsid proteins seem to have a few characteristic structural motifs. Most small, non-enveloped 

viruses share common protein fold - an eight-strand antiparallel β-barrel (so called „jelly roll fold“). 

That motif can be found in RNA picornaviruses, DNA parvoviruses, unrelated families of non-
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eveloped RNA plant viruses, DNA polyomaviruses and papillomaviruses, and some DNA 

bacteriophages. But not all non-enveloped spherical viruses have in common this β-barrel subunit 

fold. The small RNA bacteriophage MS2 has a five-strand β-sheet flanked by two C-terminal alpha-

helices. (This fold is characteristic for other members of the Leviviridae family such as Qβ, R17, and 

PP7.) Many large multi-component phages share a common fold that was first discovered in 

bacteriophage HK97. In the Hepatitis B virus (HBV), an enveloped DNA virus, the capsid protein has a 

unique alpha-helical fold. 

 

Figure 3 Left - "jelly roll fold". Middle - structural motif of HK97 virus. Right - helix motif of HBV. 

Even though icosahedral geometry of a capsid offers stability and structure to a virus, not all viruses 

share that trait. Retroviruses are an interesting group in that sense, because they have irregular 

capsids, with a predominantly helical capsid protein. 

 

3.2 Subunit interactions 

 

For an icosahedron to be assembled, there has to be hexameric and pentameric contacts. Contact 

domains must be capable of sustaining interactions in the necessarily different local geometries. The 

assembly of virus capsids tends to be driven by the burial of hydrophobic surface area at the inter-

subunit contact points. That is consistent with the observation that viral assembly is driven by an 

increase in system entropy. Usually, a single capsid inter-subunit contact buries some 1750 Å2
 of 

surface area, which is a relatively small contact area (although bigger than a simple crystal contact).  

That implies that, while the intermediates in viral assembly are unstable, a network of otherwise 

relatively weak interactions stabilazes the whole formation. 

The HBV capsid formation may be used as an example, because many thermodynamic models of 

assembly were used for explaining the formation of that virus. HBV forms a T = 4 capsid based on 

hydrophobic contacts, with each asymmetric unit comprised of two copies of the homodimeric 

capsid protein (depicted in Fig. 4, the middle). The structure of this capsid has been solved to 3.3 Å. 
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The assembly of HBV is driven by increasing ionic strength, temperature, and capsid protein 

concentration. On average a single HBV subunit-subunit contact buries ~1500 Å2 (that estimate was 

obtained by comparing experimental results with the crystal structure). 

 

 

Figure 4 Left - HBV capsid monomer. Middle - HBV capsid dimer. Right - HBV capsid. 

 

3.3 Thermodynamic theory of capsid assembly 

 

Plainly speaking, to have a virus self-assemble, states with capsids must be energetically favorable, 

i.e. they have to have lower free energy than states with only free subunits. Since the disordered 

units (and RNA or other components in some cases) form an ordered capsid structure, that means 

that their translational and rotational entropy decreases. Such events, then, must be driven by 

extremely favorable interactions among subunits and any other components if they can overcome 

the decrease of entropy. 

Protein-protein interactions are very important for the whole assembly process. As discussed in the 

previous section, capsid proteins are usually highly charged and possess binding interfaces that bury 

large hydrophobic areas. Together with hydrophobic interaction, the assembly also depends on 

electrostatic, van der Waals, and hydrogen bonding interactions. (Covalent interactions do not 

participate in the assembly, but rather in the maturation processes of some viruses, liek the HK97 

bacteriophage.) All of the interactions mentioned above are short-ranged under assembly conditions. 

Van der Waals interactions and hydrogen bonds are measured in the scale of few angstroms. 

Electrostatic interactions are measured on the scale of the Debye length,    
   

     
   , where λD is 

measured in nanometers and the salt concentration Csalt measured in molar units. The hydrophobic 

interactions are similarly characterized by a length scale of approximately a 0,5 − 1 nm. 

In many cases, hydrophobic interactions primarily drive the assembly, weakened by electrostatic 

interactions with directional specificity imposed by van der Waals interactions and hydrogen bonding 

Å length scales. That was proven by copius experiments done on the HBV capsids, which showed that 

the thermodynamic stability of HBV capsids increases with both temperature and ionic strength. The 

former led to the conclusion that hydrophobic interactions are the dominant driving force, while the 
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latter suggests that the salt screens repulsive electrostatic interactions which oppose protein 

association. 

Taking into account the interactions between the subunits, it's possible to calculate the free energy 

for a system of identical protein subunits assembling to form empty T =1 capsids. Also, an 

assumption can be made: there is one dominant intermediate species for each number of subunits n. 

The total free energy FEC for a system of subunits, intermediates, and capsids in solution can be 

written as: 

(1) 
   

   
 ∑          (    )         

    
   ,  

where v0 is a standard state volume, ρn is the density of intermediates with n subunits, and   
   

 the 

interaction free energy of such an intermediate. A plausible model for the interaction free energy is: 

(2)   
   (  )  ∑ (  

   )     
      

   , 

where   
  is the number of new subunit-subunit contacts formed by the binding of subunit j to the 

intermediate, gb is the free energy for such a contact, and Sdegen
 accounts for degeneracy in the 

number of ways subunits can bind to or unbind from an intermediate. These terms are specifed by 

the geometry of the capsid. To obtain the equilibrium concentration of intermediates we minimize 

FEC subject to the constraint that the total subunit concentration ρT is conserved: 

(3) ∑       
 
   . 

This leads to the law of mass action (LMA) result for intermediate concentrations: 

            (  
   

   )  

(4)         (    ), 

 

with μ the chemical potential of free subunits and β = 1/kBT . Thanks to the constraint (3), (4) must 

be solved numerically. The result for a model dodecahedral capsid comprised of 12 pentagonal 

subunits is shown in Fig. 5 for several values of the binding energy gb. (In all cases, the capsid protein 

is in a state of either free subunits or complete capsids. This prediction, which is analogous to the 

result for spherical micelles with a preferred diameter is generic to any description of an assembling 

structure in which the interaction free energy Gcap
n is minimized by one intermediate size (n = N) and 

the total subunit concentration is conserved.) 

Since intermediate concentrations are negligible at equilibrium, the equations of capsid assembly 

thermodynamics can be simplified usinf the two-state approximation, the first state being free 

subunits and the second being complete capsids. In that case, the total subunit concentration is: 

(5)          . 

Defining the fraction of subunits in capsids as    
   

  
, and combining equations (5) and (4), it is 

obtained: 

(6) 
  

    
  (    )        

   

. 
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Figure 5 Assembly model of a dodecahedral capsid and the statistical weights associated with symmetries of the 
intermediates. 

If N 1, (6) yields: 

  
   

    
 

  

   

(7)         ( 
  

   

   
)    (   )     (   

   
  ), 

where ρ* is the pseudo-critical subunit concentration. In the asymptotic limits,equation (7) reduces 

to: 

   (
  

  )
 

             and 

(8)      
  

  
          . 

 

The solution for (8) is shown in Figure 6, for three values of capsid size N. By increasing the total 

subunit concentration ρT or decreasing ρ∗, the fraction of subunits in complete capsids fc at 

equilibrium is always increased. 

As for viruses with a higher T number, the equations described above can be extended to describe 

capsids with larger T numbers, since icosahedral capsids comprise T different subunit conformations. 
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In those cases, the capsid free energy, Gcap
n  must be extended to include conformation energies and 

contact free energies gb which depend on the subunit conformation or species. 

 

Figure 6 Fraction capsid fc as a function of 
 

  
, as predicted by Eq. 8, for three values of N. 

 

4. ELECTROSTATICS OF VIRUSES 

 

As discussed in the last chapter, proteins that build a viral capsid are usually positively charged. Thus, 

the simplest representation of the protein charge distribution would be a positive charge 

homogeneously distributed on a protein. A homogeneous distribution of positive charge would have 

to keep proteins apart, and therefore inhibit viral self-assembly. But since it's proven that viruses can 

self-assemble, it's safe to say that some sort of attractive interaction between the proteins must 

exist. The source of that interaction is a combination of hydrophobic and van der Waals interactions, 

although the hydrophobic component dominates. 

A virus capsid is represented by a uniformly, positively charged (with surface charge density s), 

permeable, infinitely thin sphere of radius R. The main goal, in order to understand the cohesive 

energy of a capsid, is to calculate the electrostatic self-energy. That can be done by using the 

Poisson-Boltzmann approach, i.e. using the Poisson-Boltzmann (PB) equation, a a nonlinear partial 

differential equation that incorporates detailed information about the biomolecular shape and 

charge distribution. It can be derived by minimizing the appropriate free energy: 

(9)    [ ( )   ( )   ( )]  ∫    ( ( )   ( )   ( ))   .  

Here, the ions as ideal gas, which adjust to the external potential and contribute to it via their charge 

density. The quantity fPB is free energy density:  

(10)    ( ( )   ( )   ( ))  

 
 

 
     ( )  ∑    

 ( ) ( )  ∑    [  ( )    ( )    ( )  (  
     

        

  
 )]      ( ) ( ). 
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The value e0ρp(r) is the charge density of the capsid, kB is the Boltzmann constant, T is temperature, ci 

are the concentrations of salt ions, ci
0 their bulk concentrations, ε0ε the permitivity of water, and e0 

the electron charge. Minimizing the free energy yields the PB equation: 

(11)      
  ( )  ∑     

       ( )      ( )   , 

where β-1 = kBT and ei is the charge of the ions (ei = ±e0 ). When the electrostatic potentials in the 

solutions are small, and if the system is symmetrical, the PB equation can be linearized, which leads 

to the Debye-Huckel (DH) equation for potential: 

(12)     ( )  
 

   
(∑   

   
 

   ) ( )  
    ( )

   
  . 

Since the DH equation is linear, it's possible to solve it multiple ways. One can get the self-energy of a 

uniformly charged sphere by summing the par DH interactions over the sphere surface (It's 

postulated that the interaction between the charges Q1 and Q2, separated by r1 - r2 in the solution of 

monovalent ions (with concentration c0) of (relative) dielectric constant e is given by the DH potential 

of the screened exponential form U(r1 - r2).): 

(13)     
 

 
∫   ∫    (  ⃗⃗⃗     ⃗⃗  ⃗)  

 

 

  

     
∫   ∫    

    (  |  ⃗⃗⃗⃗    ⃗⃗⃗⃗ |)

|  ⃗⃗⃗⃗    ⃗⃗⃗⃗ |
, 

where dS1 and dS2 are infinitesimal elements of the sphere surface centered around vectors r1 and r2. 

The factor of ½ is to eliminate double counting of the pair interactions. It has to be taken into 

account that the radii of viruses are usually of the order of 20 nm, while the DH screening length in 

the physiological conditions is κ-1 1 nm. If κR 1, that means that the range of integration can be cut 

off on the scale of κ-1. When κR 1, instead of defining a spherical cap, the integral defines a disk, and 

makes the two integrations independant: 

(14)            
  

     

 

 
∫    ∫    ∫        (    )

  

 

 

 
. 

The self-energy of the capsid is: 

(15)            
     

    
. 

So, the self-energy F is the energy required to bring infinitesimal charges from infinite separations in 

the solution to the capsid. The quantity can be loosely thought of as the electrostatic contribution to 

the assembly free energy. For a capsid of about σ   1 e0/nm2, and c0 = 100 mM, the free energy 

would be FDH   104 kBT. It's interesting to note the hydrophobic energy of the area of proteins in a 

capsid of R   20 nm. A capsid of about 20 nm is typically built of 180 protein subunits, which renders 

the length of protein contacts in such a capsid about 3000 nm. If the capsid happens to be 2 nm 

thick, the total area exposed to protein contacts is about 6000 nm2. Taking into account that the 

energy of attractive protein interactions per unit area of the exposed protein surface is typically of 

the order of 10 mJ/ m2, the final tally for attractive hydrophobic interaction (begotten by 

multiplication of the estimated exposed area and energy of attractive interactions) is FHP   104 kBT. 

The number is in the same range as the estimated number of free energy above, which can be 
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explained  by the fact that viruses, in addition to being able to assemble, need also to disassemble 

and deliver their genome molecule to the cell. 

However, there are more sophisticated models of viruses. To improve the simplest model, one can 

examine the whole range of κR values, valid in particular for lower ionic concentrations when κ< R. 

One can even derive a general formula that describes the capsid electrostatic free energy for any κ 

within the range of validity of the DH approximation: 

(16)     
      

           (  ) 
. 

To further refine the model, one has to assume that the electrostatic potential βε0φ is not so small to 

be discarded, and to solve Eq. (9) with that in mind. Moreover, the capsid has to have a finite 

thickness,  . The distribution of charge across the thickness of the capsid is specific: the positive 

charges are often concentrated on the capsid interior surface, while, typically negative charges are 

concentrated on the capsid exterior surface. The capsid was treated as a dielectric shell with relative 

permittivity ε0, with interior and exterior surfaces which are uniformly charged with surface charge 

densities σ1 and σ2 (as depicted in Fig. 7). 

 

Figure 7 The electrostatic model of a viral capsid, with the thickness δ. The brown spheres are salt ions. 

 

In the limit κR 1, the capsid free energy scales with the second power of capsid radius, both in the 

DH and PB cases. If we take κR 1,      and    , it renders the following equation: 

(17)    (       )        (     )   (  
    

 )  

    (       )
, 

which can be simplified further by immersing a virus into physiological conditions(     and κδ 1): 

(18)     
  (  

    
 )  

    
. 

 

 



14 
 

4.1 Electrostatics of ssRNA viruses 

 

As established previously, viruses with ssRNA often self-assemble. A simple model of an ssRNA virus 

includes an ssRNA molecule that can be defined as a generic flexible polyelectrolyte. The flexibility of 

the molecule is characterized by its effective persistence length (the length on which the ssRNA 

refuses to bend). The Edwards -de Gennes flexible chain model can explain flexible polyelectrolytes. 

In this case, the effective length is of the order of nucleotide separation (a   0.5 nm). The monomers 

behave differently than free particles in solutions due to the connectivity of the chain, which also 

alters the long range interactions between monomers, such as Coulomb interactions in the case of 

ssRNA. The connectivity is responsible for properties such as adsorption to charged surfaces and the 

consequent bridging interactions present between two opposed charged surfaces. That's relevant in 

the case of ssRNA viruses, which encapsulates the ssRNA molecule in a thin shell closely distanced 

from the interior capsid radius. The set-up of the problem is complex; because one has to deal with 

interaction energies and chain entropy (the ssRNA chain is flexible, and the elasticity of the chain is 

purely entropic) to grasp the formation of the adsorbed ssRNA polyelectrolyte layer which forms a 

shell. 

The total free energy in the case of a ssRNA virus has to contain electrostatic interactions due to ions 

and charges on the polyelectrolyte, and the entropy of the polyelectrolyte chain. The electrostatic 

part of the free energy, Fes, contains the PB functional given in (10), augmented by the presence of 

the charges on the polyelectrolyte chain expressed in terms of the polyelectrolyte monomer 

concentration  ρ(r):  

(19)      ( )   ( )  ( )  ∫   ( ( )   ( )  ( ))     (∫    ( )   ), 

where μ is the Lagrange multiplier enforcing the condition of fixed numbers of monomers, N, of the 

polyelectrolyte chain, with  

(20)    ( ( )   ( )  ( ))     ( ( )   ( ))      ( ) ( ). 

In (17), fPB(r) was defined in (10); pe0 is the charge per monomer, e0 is the electron charge and 0<p<1. 

The contribution of entropy of the flexible polyelectrolyte in the free energy expression can be 

defined with „ground state dominance“ approximation: 

(21)       ( )   ( )     
  

 
∫    

   ( )  

 ( )
. 

By minimizing the sum of the electrostatic and entropic contributions, one can get to a 

polyelectrolyte PB equation that can be solved numerically in the spherical geometry of the capsid. 

However, numerical solutions of the polyelectrolyte PB theory are complicated and won't be touched 

upon here. The main conclusion one can draw is that an adsorption layer next to the internal 

positively charged wall of the capsid really does exist. That, in turn, leads to the conclusion that 

ssRNA should be non-uniformly distributed within the capsid, with a relatively dense surface layer 

and a depleted core. The existence of the adsorbed layer along the periphery of the capsid actually 

stabilized the protein shell, because the attractive polyelectrolyte bridging interactions act between 

different parts of the spherical hypotope. 
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The question of ssRNA packing inside a capsid is particularly interesting. It has been found that the 

optimal virus configuration in the physiological regime is such that the total charge on the 

encapsulated ssRNA is comparable to the charge on the capsid, being equal as the salt concentration 

decreases. It's a quite logical argument, since the ssRNA can completely screens the protein charges 

if the charges on the capsid and on the ssRNA molecule are equal. So in that case, the salt ions 

almost need not to redistribute at all, especially when the ssRNA and the capsid can be brought in 

close contact. But that's a quite singular case, because in all other cases, there is an effective charge, 

that the salt ions must screen by rearranging, increasing the total electrostatic energy of the system 

in this way. The fact that ssRNA is a polyelectrolyte molecule makes things worse, for each nucleotide 

is supposed to carry a fixed charge, and the charges are connected, which affects the total charge of 

the ssRNA molecule. The ssRNA configuration inside the capsid can be obtained from the full 

polyelectrolyte PB theory, that contain also the polyelectrolyte entropy, by using the approximation 

of two concentric, spherical shells with opposite charge,         , separated by  a. 

But the easiest way to obtain an estimate of the electrostatic complexation free energy (ΔFC) of a 

ssRNA virus in the DH approximation can be obtained from (17), using      and κδ 1 and 

subtracting the electrostatic self-energy of the capsid, (15), which results in: 

(22)        (      )     (     )  
     

   
(      ), 

where f is a numerical factor depending on κ and δ (between 4/3 and 2). The result might not be very 

accurate in high salt conecentrations, but it works in general. Using the parameters a = 0.5 nm, 

        , the value for ΔFC is about   . Even a more detailed calculation gives a negative    , 

which leads to the conclusion that spontaneous encapsidation of ssRNA is a delicate process that 

may even be suppressed in thermodynamical equilibrium, so that only empty capsids form. In 

physiological conditions, it was observed that the complexation free energy is negative so that ss-

RNA encapsidation happens.  

 

5. MECHANICAL PROPERTIES OF VIRUSES 
 

After assembling, the viral capsid proteins are often modified in a process called maturation. It was 

observed that the capsids of certain bacteriophages undergo a whole sequence of conformational 

changes and chemical reactions that strengthen the capsid. The shell-maturation steps resemble 

structural phase transitions in crystals.  

It's interesting to look into the resiliency of a virus, or an empty capsid after the assembly, in 

situations when external force is applied to it. After all, capsids need to be both stable and unstable; 

stable enough to protect their genome in the extracellular environment, but also unstable enough to 

release their genome molecules into host cells. Various experiments have been conducted on viruses 

to determine their mechanical properties, and a very interesting one is using atomic force 

microscopy (AFM) to probe the virus and check for deformations afterwards.  
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The relation between the applied force and the resulting change in shell diameter is called the force 

deformation curve (FDC). Depending on whether or not the capsid returns to its original state after 

the probe force is removed, it's called a reversible or irreversible deformation. The force measured 

by a nanoindentation probe results  from the fact that the probe forces the viral shell away from a 

state of minimum free energy. For an interpretation of measured FDCs, it's necessary to make an 

analogy with the „thin-shell theory“ (TST). TST is used to predict the effects of external forces on 

thin-walled, hollow macroscopic structures, but it can also be applied to a virus, if the capsid is 

modelled as a thin, spherical shell of uniform thickness and radius R. If a full virus is dicussed, then it 

must be takne into acount that it encloses genome molecules, therefore an internal osmotic pressure 

Π must be included, which can be as large as  50 atm.  

If the force probe has left an indentation profile ζ (r) (defined as the radial inward displacement of 

the surface of the sphere expressed in terms of a two-dimensional coordinate system that covers the 

shell), which happens to be very small, the TST deformation free energy ΔF is a simple functional of ζ 

(r) in the form of an integral over the shell surface:    

(23)    ∫   {
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where the first term describes the bending-energy cost of the indentation, the second term 

represents the work by the probe against the genome osmotic pressure Π with   
  

 
, an effective 

surface tension. The third term measures the stretching of the layer induced by the force with the 

two-dimensional Young modulus Y of the layer. To obtain the FDC,  the functional derivative of the 

deformation free energy ( 
   

  (  )
), which results in the differential equation: 

(24) 
   

  (  )
  (  ),  

where f(r) is the radial force per unit area, exerted by the probe. (24) can be solved analytically in the 

case of a point force, i.e.  (  )    (  ), which creates a linear FDC and a dimple with the radius of 

order √    (lb being the length scale,    √  ). That is consistent with experiments. For weak 

applied forces, the shell behaves like a harmonic spring and the measured FDC is indeed linear in 

many cases. 

Larger indentations are more tricky, for calculating the FDC of TST in the nonlinear regime requires 

the solution of a pair of nonlinear differential equations (so called Föppl - von Kármán (FvK) 

equations), which is a time-consuming process, and instead of that, finite-element modelling (FEM) is 

used. The conclusions drawn from FEM are that the elastic response of the non-uniform icosahedral 

shells might differ from that of uniform spherical shells. 

But, mechanical properties of full viruses, with genome enclosed in the protein shell, are much more 

interesting than the mechanical properties of empty shells. The density of the close-packed genome 

material inside the water-permeable shells can be so high that it generates significant osmotic 

pressures Π, in the range of tens of atmospheres. This pressure generates a non-specific tension τ 

along the shell according to Laplace's law,   
  

 
  (for a spherical shell), which increases the shell's 

spring constant. The impact of osmotic pressure on the non-specific shell stiffening was investigated 

for phage λ. Comparing the mechanical properties of empty and full particles with mutant particles 
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that had a shorter genome (78 and 94% of the wildtype genome), a conclusion was reached - the 

presence of the dsDNA in λ was noticeable only at very high genome densities. The same 

experiments that had HSV1 as the subject (a dsDNA virus with structural similarities to tailed dsDNA 

phages), had odd observations - namely, that full and empty HSV1 capsids showed no mechanical 

difference in the stiffness measurement. That was probably because the increased stiffness due to 

the DNA-induced osmotic pressure was  too small when compared with the intrinsic stiffness of the 

capsid shell. However, there are viruses for which the genome-induced shell stiffening effects are 

very pronounced. 
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