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Abstract  

Complex networks describe a variety of systems found in nature and society. Traditionally 
these systems have been modelled as random graphs, a relatively primitive and brutal 
approach. These traditional models do not produce topological and structural properties 
featured in real network examples. In recent years many new models have been developed, to 
correctly describe the scale – free structure of real networks. In this papers the real world 
networks (WWW, Internet, ecological, cellular, etc.) are presented along with various 
theoretical models, that explain the emergence of the most important structural properties as 
average path length, clustering coefficient and power – tail degree distributions. In the end of 
the paper the basics of network evolution process is explained. 
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1 Introduction 
The phenomena of self-organisation found in nature is a constant source of fascination and 
inspiration to both physics and biological sciences.  Physics has found the basics principles of 
the world and is therefore capable to explain and model different phenomena both 
deterministically and statistically. Many phenomena are understood and modelled merely as a 
statistical formations of  smaller units for which some very basic rules apply: properties of 
condensed matter are determined by underlying properties of atoms, magnetism emerges from 
the collective behaviour of millions of spins, etc. 
Physical models explain phenomena by connecting basic units or elements in accordance to 
their interdependence and interaction. The success lies in the simplicity of the interactions 
among the elements. Because physics studies phenomena in physical space, in most cases the 
strength of the interaction is uniquely defined only by physical distance. (Forces among 
objects are defined by their distances and relative velocities as well, which are only time 
derives of the distance ) 
On the other hand we are at loss in describing systems where physical distance is irrelevant, 
systems where interaction and its strength is determined by factors beyond the distance in 
physical space or there is ambiguity whether two components interact. For many complex 
systems with nontrivial network topology such ambiguity is present and many of these 
systems are described as complex networks. In recent years it has been found that tools of 
statistical mechanics offer ideal framework to describe these interwoven systems as well. 
The few examples briefly described above represent only o fraction of cases found in real 
world. Recently a lot of methods and models for determination of network topologies have 
been developed. Statistical mechanics proved itself to be an ideal tool for describing specific 
properties of complex networks, through which network topologies are determined. 

2 History of Network Modelling 
Traditionally the study of complex networks has been the territory of mathematics, especially 
the graph theory. Initially the graph theory focused on regular graphs, with no apparent design 
principles were described as random graphs, proposed as the simplest and most 
straightforward realisation of a complex network.  
The pioneer of the theory was Leonhard Euler, who studied first regular graphs in 18th 

century. In the 20th century the theory became much more statistically and algorithmically 
oriented. 
Later in 1950’s graph theory was used to describe large networks, with no particular 
distributions of nodes and link, whose organisation principles were not easily definable. These 
networks were first studied by Paul Erdos and Alfred Reyni and were called “random 
graphs”, due to their generating method: we start with N nodes and connect every pair of 
them with probability p. Obtained graph has on average ( ( 1)) 2p N N

 

edges distributed 

randomly.  The degree distribution of such graph is Poisson with  peak at ( )P k .  This model 

has guided our thinking for decades after it has been presented.  
The topology of real large networks (i.e. Internet, WWW, telephone networks, ecological 
networks) substantially differs from the topology of random graphs produced by the simple 
Erdos-Reyni (ER) model, therefore new methods, tools and models needed to be developed. 
In past years we witnessed dramatic advances in this direction. The computerisation of data 
acquisition has led to the emergence of large databases on the topology of various real 
networks. Wide availability of computer power allows to investigate networks containing 
millions of nodes, exploring questions that could not be answered before as well as the slow 
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but noticeable breakdown between different science disciplines allows scientists to access 
different databases, allowing to uncover the generic properties of large networks. 
Networks found in nature show degree distribution that greatly differs from the Poisson 
degree distribution of random graphs.  Because of existence of  a few vertices with high 
degree, the distribution of real networks has a power-law tail ( )P k k , which indicates 
scale free properties. 

3 General Concepts of Network Modelling 
In the recent years 3 different concepts for defining the network topologies have been 
proposed: 

 

Small - world : large network, but still small diameter or average path length  

 

Clustering: large clustering coefficient 

 

Degree distribution: power-tail  

3.1 Small world 
Despite the large network size, it commonly happens that there is relatively short distance 
among any pair of nodes. Path length is defined by minimum number of edges needed to pass 
from first point to the other (in case of weighted edges, the path length is defined by minimal 
sum of weights). This phenomena is called the small world effect and can be observed in 
society and nature: all chemicals inside a living cell are at average 3 reactions away from each 
other, there is a path of acquaintances between most pairs of people in USA with typical 
length of about six and the actors in Hollywood are on average within three costars from each 
other. 
Despite the information shown above, the small world concept is not an indication of a special 
organising principle. The random graphs presented by Erdos and Reyni are the simplest 
network models to feature small world properties, since the typical distance among any two 
points in a random graph scales as ln( )N , where N is a number of nodes in a network.  

3.2 Clustering 
In many real examples of networks or graphs fully connected subgraphs emerge. Such 
structures are called cliques. A typical example of such feature are circles of friends or 
acquaintances in social networks where every member of a clique knows every other member. 
This inherent tendency of clustering is quantified by the clustering coefficient (Watts and 
Strogatz 1998) an is defined for a single node in the network:   
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iE  is the number of all edges that actually exist among all first neighbour of selected node. If 

all the neighbours were connected, there would be ( 1) / 2i ik k  edges among them. The ratio 

between the actual number of edges iE  and maximum number of edges is the clustering 

coefficient of a node (0.1).  

The clustering coefficient of all the network is the average of all individual Ci’s: 
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For random graphs the clustering coefficient is equal to graph generating connection 
probability (C p ), since the probability of first neighbours being connected is constant for 
all nodes. 
In real networks the clustering coefficient is much larger than in case of random graphs of 
equal size (equal number of nodes and edges).   

3.3 Degree distribution 
The number of edges a node has is called node degree. The spread of node degrees is 
characterised by a distribution function P(k), which gives the probability that randomly 
selected node has exactly k edges. Since in the random graph the edges are placed randomly, 
the majority of nodes have approximately the same degree, close to the average k  of the 

network. The degree distribution of a random graph is a Poisson distribution 
!

k ke
P k

k

 

with a peak at P k . On the other hand the empirical results for most large networks show 

distribution that significantly deviates from Poisson distribution. This degree distribution has 
a power-law tail:    

( )P k k

 

(0.3)  

Such network are called scale free. While some real networks still display an exponential tail, 
often the functional form of P(k) still deviates from Poisson distribution expected for a 
random graph. 
In equation (0.3) scaling exponent is introduced. is an important parameter in defining the 
topology of a given network. In case of a directed network, two different parameters are 
introduced ( in , out  ), for characterising the incoming and outgoing links distribution. 

4 Real Networks: Empirical results 
The study of most complex networks has been initiated by a desire to understand various real 
systems.  
Complex systems that have been studied are:  

1. World Wide Web (WWW): Nodes are web pages and link are hyperlinks. The network 
is directed, but in some researches is made undirected Some of the researches are made on 
site level: All the pages in a site are merged into a supernode.  

2. Internet: topology is studied at two different levels: at the router level the nodes are 
routers and edges are physical connections between them; at the interdomain level each 
domain, containing hundreds of routers, is represented as a single node. This is an 
undirected network. 

3. Cellular networks: metabolisms of different species from  all three domains of life are 
studied and organised into networks in which the substrates (ATP, ADP, H2O) are nodes 
and edges represent the predominaly directed chemical reactions in which these substrates 
can participate. 
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4. Ecological networks or  food webs: the nodes are species and the edges represent 
predator-prey relationships among them. Food webs are directed networks. 

5. Protein folding: Different states of single protein are represented by different nodes. 
Conformations are linked if they can be obtained from each other by an elementary move. 
This is an undirected network. 

6. Citation networks: Published articles are represented by nodes and a directed edge 
represents a reference to a previously published article. This is an undirected network. 

7. Co authorship networks: Collaboration network exists of scientists represented by nodes 
and two nodes are connected if two scientists have written an article together. 

8. Movie actor collaboration networks: In this network the nodes are actors and two nodes 
have a common edge if two actors have acted in a movie together. This is an undirected 
network. 

9. The web of human sexual contacts: Many sexually transmitted diseases spread on a 
network of sexual relationships. This is an undirected network. 

10. Phone-call networks: A large directed graph can be constructed using telephone numbers 
as nodes and completed phone calls as edges, directed from caller to receiver. 

11. Networks in linguistics:  The complexity of human language offers several possibilities 
to define and study complex networks.  One way of building a network is to describe 
words as nodes and connect them with edges if they appear  one word form each other 
inside sentences of the literature of certain language. This is an undirected network. The 
other way to construct a network is to link words bases on their meaning: words are 
represented as nodes and are linked by an edge id they are known to be synonyms. This is 
an undirected network as well.  

12. Power networks: Power grid is described as an undirected network where nodes are 
generators,  transformers and substations and the edges are high-voltage transmission 
lines. 

13. Neural networks: Nerve systems of different animal species are studied. An undirected 
network nodes are neurons joined together by an edge if connected by either synapse or 
gap-junction.   

Studies of  complex systems stated above were performed by different scientists on different 
datasets of different network sizes, ranging from small networks with only few hundred nodes 
(ecological networks) to large networks with as many as 109 nodes like WWW.  Studied 
networks are of both directed and undirected type. In researches the average path length 
among the nodes of a graph, clustering coefficient and degree distribution  were measured and 
compared to the same properties of random graphs. For a estimation of clustering coefficient 
the directed networks need to be turned into undirected, since coefficient can only be 
calculated for undirected webs.  
All the real networks mentioned in this section feature short average path lengths, large 
clustering coefficients and many of them have power-tail degree distribution and are scale 
free (WWW, cellular networks, Internet, some social networks and the citation networks). 
However, others like the power grid or the neural network appear to feature exponential or a 
coherent mixture of scale-free and exponential degree distributions. As it is shown in the 
paper below these networks are far from being random like ER random graphs, these systems 
are best described by evolving networks and can therefore develop both power ­ law and 
exponential degree distributions or a mixture of them. While the power ­ law regime appears 
to be robust, sublinear preferential attachment, aging effects, growth constraints lead to 
crossovers to exponential decay.   
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5  Theoretical models 
Network is in mathematical terms represented by a graph, which is a pair of two sets G = 
{P,E}, where P is a set of N nodes and E is a set of edges (links, lines) that connect two 
elements of P. In this section different models will be presented. This models will help us 
understand complex systems found in nature, how they emerge and their development in time.  

5.1 Random Graphs 
Random graphs were first presented by P. Erdos and E. Reyni. They defined random graph as 
N nodes connected with n edges which are chosen randomly from N(N-1) 2  possible edges. 

In total there are precisely 
( 1)

2

N N

n
C  different graphs with N nodes and n edges possible, from 

which any graph is equiprobale. 
An alternative definition is the binomial model: We start with N nodes and connect each pair 
of the nodes with probability p. Consequently the total number of edges is  a random variable 

with the expectation value 
( 1)

( )
2

N N
E n p . If G0 is a graph with N nodes and n edges, the 

probability of obtaining it by this graph construction process is binomial 
( 1)

2
0( ) (1 )

N N
nnP G p p . 

The construction of a graph is often called the evolution process. Starting with a set of N 
isolated vertices, the graph develops by the successive addition of random edges. The graphs 
obtained at different stages of this process correspond to larger and larger connection 
probabilities p, eventually obtaining a fully connected graph 1 ( 1) / 2p n N N ) .  

5.1.1 Degree distribution 
In a random graph with connection probability p the degree ki of a node i follows a binomial 
distribution with parameters p and N-1 :   

1
1( ) (1 )k k N k

i NP k k C p p

 

(1.1)  

This probability represents the number of ways in which k edges can be drawn from a certain 
node: the probability of  k edges is pk , the probability of the absence of additional edges is (1-
p)N-1-k, and there are 1

k
NC equivalent ways of selecting  k  endpoints to these edges. If i and j 

are different nodes P(ki=k) in P(kj=k) are close to be independent random variables.  

Expected number of nodes with degree k is:   

1
1( ) ( ) (1 )k k N k

k i N kE X NP k k NC p p

 

(1.2)   

If estimated that degrees of different nodes are indipendent, we use the theorem from the 
Bollobas’ probability theory used on graphs, which states that if expected values of moments 
of a random variable form a power series then the probability distribution of random variable 
limits to Poisson distibution (see B. Bollobas, 2001, Random Graphs (second Edition)).  
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with expected value k .  Poisson distribution falls very quickly, expected deviation 

is k k .  With a bit of simplification we could say that (1.3) implies that kX doesn’t 

diverge much from the approximate result ( )k iX NP k k , valid only if the nodes are 

independent. Thus with a good approximation the degree distribution of random graph is a 
binomial distribution which for large N limits to Poisson distribution:   

( )
( )

! !
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P k e e
k k

 

(1.4)  

 

Figure: the degree distribution that results from numerical simulation of random graph. A graph with 10,000 

nodes and connection probability p=0.0015 was created. The plot compares the experimental values ( /kX N ) 

with the expectation value of Poisson distribution (1.3). The deviation is very small.  

5.1.2 Connectedness and Diameter 
The diameter of a graph is the maximal distance between any pair of its nodes. The diameter 
of a disconnected graph, which is made up of several isolated chunks, is infinite. Sometimes 
diameter is defined as the largest diameter of graph’s components, but there are cases in 
which this definition can be misleading. 
Random graphs tend to have small diameters if connection probability p is not too small. This 
is due to the fact that random graph is likely to be spreading: with a large probability the 

number of nodes at distance l from a given node is not much smaller than 
l

k

 

- in this case 

the graph would need to be a tree. Equating 
l

k with N it is obvious that diameter is 

proportional with 
ln( )

ln( )

N

k
, thus it depends logarithmically on the number of nodes. 

Diameter of random graphs has been studied by many authors. A general conclusion is that 
for most values of the connection probability p, almost all graphs have precisely the same 
diameter. This means when we consider all graphs with N nodes and connection probability p, 
the range in which the diameter values vary is very small, concentrated around:  
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N N
d
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(1.5) 

The summarisation of important results:  

 
If 1k pN : Graph is composed of isolated trees. Diameter of a graph equals the 

largest diameter of its subtrees. 

 
If 1k pN : A giant cluster appears. The diameter of a graph equals the diameter 

of a giant cluster. 

 

If ln( )k pN N : the graph is fully connected. Its diameter is concentrated on a 

few values around 
ln( )

ln( )

N

k
.  

Another way to characterise the spread of a random graph is to calculate the average distance 
among all the pairs of nodes. The average path length is expected to scale with N the same 
way the diameter does:   

( , )

ln( )

ln( )G N p

N
l

k

 

(1.6)  

  

Figure: Comparison between the average path length of real networks from chapter 2 (Real Networks: Empirical 
Results) and the prediction (1.6) of a random graph theory (dashed line). 

5.1.3 Clustering coefficient 
Complex networks exhibit a large degree of clustering. If we consider a node in a random 
graph and its first neighbours, the probability that two of these neighbours are connected is 
equal with the probability that two randomly selected nodes are connected. Consequently the 
clustering coefficient of a random graph is    

( , )G N p

k
C p

N

 

(1.7)  
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If the ratio /randC k  is plotted as a function of N for random graphs of different sizes on a 

log­log scale plot they will align along a straight line of slope -1. When the ratios of the 
clustering coefficient of real networks is plotted against the prediction of clustering 
coefficient of random graphs, it is obvious that real networks do not follow the prediction of 
random graphs. The fraction /C k does not decrease as -1N , instead, it appears to be 

independent of N .  

 

Figure. Comparison between the clustering coefficient of real networks and random graphs. All networks from 
Table 1 are included in the figure  

5.2 Scale free model 
Many large networks are scale ­ free: their degree distribution follows a power ­ law for large 
k. Even for those real networks for which P(k) has an exponential tail, the degree distribution 
significantly deviates from a Poisson. Random graph theory and the WS model are unable to 
reproduce this feature.  
What is the mechanism responsible for the emergence of scale ­ free networks?  
A shift from modelling network topology to modelling the network assembly and evolution is 
required to get insight into mechanisms responsible to create scale – free networks.  
While the goal of the other models (random graphs and small - world models) is to construct a 
graph with correct topological features, modelling scale ­ free networks puts the emphasis on 
capturing the network dynamics. The assumption behind evolving or dynamic networks is 
that if we capture correctly the processes that assembled the networks that we see today, then 
we will obtain their topology correctly as well. Dynamics takes the driving role, topology 
being only a by product of this modelling philosophy.  

5.2.1 Evolving Networks: Common generic mechanisms 
The former network models (random networks and small worlds) assume that we start with a 
fixed number N of nodes that are then randomly connected or rewired, without modifying N, 
the actual number of nodes. In contrast, most real world networks describe open systems, 
which grow by the continuous addition of new nodes. Starting from a small number of nodes, 
the number of nodes increases through the lifetime of the network by the subsequent addition 
of new nodes.  
Second, network models discussed so far, do not assume any dependence of connecting or 
rewiring probability on the node degree, or  assume random placement or rewiring of edges. 
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Most real networks, however, exhibit preferential attachment, such that the likelihood of 
connecting to a node depends on the node's degree. (For example, a webpage will more likely 
include hyperlinks to popular documents with already high degree, because such highly 
connected documents are easy to find, etc).  
These two ingredients, growth and preferential attachment, inspired the introduction of the 
scale ­ free (SF) model that has a power ­ law degree distribution. The algorithm of the SF 
model is the following:   

1. Growth: Starting with a small number ( 0m ) of nodes, at every timestep we add a new 

node with 0m m  edges that link the new node to m different nodes already present 

in the system.  
2. Preferential attachment: When choosing the nodes to which the new node connects, 

we assume that the probability  that a new node will be connected to node i 
depends on the degree ik  of node i, such that  

i
i

ij

k
k

k

 

(2.1) 

After t timesteps this algorithm results in a network with 0N t m nodes and mt 

edges. Numerical simulations indicated that this network evolves into a scale ­ free 
state with the probability that a node has k edges following a power ­ law with an 
exponent 3SF , where the scaling exponent is independent of m, the only parameter 

in the model.  

5.2.2 Average path length  

 

Figure shows the average path length of a network with average degree 4k  generated by 

the SF model as a function of the network size, N , compared with the average path length of 
a random graph with the same size and average degree. The figure indicates that the average 
path length is smaller in the SF network than in a random graph for any N, indicating that the 
heterogeneous scale - free topology is more efficient in bringing the nodes close than the 
homogeneous topology of random graphs. Average path length of the SF network increases 
approximately logarithmically with N . Dashed line follows an empirical generalised 
logarithmic fit:   

log( )l A N B C

 

(2.2) 
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The solid lines represent the average path length calculated from generalised scale-free forced 
graphs estimation   

1

2 1

ln
1

ln
N z

l
z z

 
(2.3)   

where z1 and z2 is the number of first and second neighbours. While this fit is good for a 
random graph it underestimates the average path length of the SF network, as it does with the 
real networks.   

Apart from the empirical fit there is no theoretical expression that would give a good 
approximation for the path length in the scale ­ free model. The failure of (2.3) is due to the 
fact that the topology of the network generated by the SF model is different from the topology 
of a random network with power ­ law degree distribution. The dynamical process that 
generates the network introduces nontrivial correlations that affect all topological properties. 

5.2.3 Clustering coefficient 
There is no analytical prediction for the SF model.   

  

Figure shows the clustering coeffcient of the SF network with average degree 4k and different sizes, 

compared with the clustering coefficient /randC k N of a random graph. The clustering coefficient of the 

scale ­ free network is about 5 times higher than that of the random graph, and this factor slowly increases with 
the number of nodes. The clustering coefficient of the SF model decreases with the network size following 

approximately a power ­ law 0.75C N , random graphs exhibit faster decay 1C k N , but small worlds 

show no dependence of C on N . 

6 Application: Bose – Einstein condensation 
Bianconi and Barabasi show the existence of a close link between evolving networks and an 
equilibrium Bose gas. Starting with the fitness – gets - richer model (FGR), where the 
connection probability of a node i is proportional to the degree and the fitness i of node i, the 

mapping to a Bose gas can be done by assigning an energy i  to each node. i  is determined 

by its fitness through the relation 
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1
logi i

 
(2.4) 

where 1/T plays the role of inverse temperature. An edge between two nodes i and j, 

having energies i  and j  , corresponds to two non­interacting particles, one on each energy 

level  Adding a new node to the network corresponds to adding a new energy level l  and 2m 

new particles to the system. Half of these particles are deposited on the level l  (since all new 

edges start from the new node), while the other half are distributed between the energy levels 
of the endpoints of the new edges, the probability that a particle lands on level i is given by:   

i

i

i
i

i

e k

e k

 

(2.5)  

In the t limit the occupation number, giving the number of particles with energy l , 

follows the familiar Bose statistics:   

( )

1
( )

1
n

e

 

(2.6)  

Maping to Bose gas predicts 2 distinct phases as a function of energy distribution. In the FGR 
phase the fittest node has the most of the edges, but it is not the absolute winner, since the 
ratio of its edges and the absolute number of edges in the network decays to 0 as the system 
size increases.  
For BET T the condensation phase occures. The fittest node acquires a finite fraction of edges 
and maintaines the share over time.  

  

Figure: (a) Mapping between the network model and the Bose gas. (b) In the FGR phase we have a continuous 
degree distribution, the several high degree nodes linking the low degree nodes together. In the energy diagram 
this corresponds to a decreasing occupation number with increasing energy. (c) In the Bose­Einstein condensate 
the fittest node attracts a finite fraction of all edges, corresponding to a highly populated ground level, and 
sparsely populated higher energies.   
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7 Conclusion 
In the paper above, it has been explained that many complex systems can be described by 
networks. It has been shown that  few network properties exist by which the network topology 
can be determined. Most important properties are clustering coefficient, average path length 
and degree distribution. The user was presented real world examples that have been studied in 
recent few years and theoretical models that produce different network topologies as well. 
The high interest in scale ­ free networks might give the impression that all complex networks 
in nature have power ­ law degree distributions. It is true that several complex networks of 
high interest for the scientific community, such as the WWW, cellular networks, Internet, 
some social networks and the citation network are scale ­ free. However, others like the power 
grid or the neural network appear to be exponential, which doesn’t mean that they are 
random. These systems are also best described by evolving networks and can therefore 
develop both power ­ law and exponential degree distributions or a mixture of them. While 
the power ­ law regime appears to be robust, sublinear preferential attachment, aging effects, 
growth constraints lead to crossovers to exponential decay. Thus, while evolving networks are 
rather successful at describing a wide range of networks, the functional form of P (k) cannot 
be guessed until the microscopic details of the network evolution are fully understood.   
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