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1 Abstract

In this seminar the physical mechanisms governing the formation of
snow crystals are examined. The main focus is on the dynamics of
crystal growth from the vapour phase. The basic physical processes
are reviewed, especially the interplay of particle diffusion, heat diffu-
sion and surface attachment kinetics during crystal growth, as well
as growth instabilities that have important effects on snow crystal
development.

2 Introduction

Snow crystals, also called snowflakes, are single crystals of ice that
grow from water vapour. They form in copious numbers in the at-
mosphere and are well known for their elaborate, symmetrical pat-
terns. Because of this symmetry and the rich variety of different
patterns that can be observed in natural snowfalls, snowflakes have
provided scientists a source of curiosity and scientific study for cen-
turies. Among the great minds who have pondered over the subject
we have Johannes Kepler, who in 1611 wrote a short treatise in
which he described the possible origins of snow crystal symmetry
and René Descartes who in 1637, as a part of his famous treatise on
weather phenomena, Les Météores, gave a detailed account of the
many different forms of natural snow crystals.

Left: Johannes Kepler
Centre and Right: René Descartes and the front page of his work

Discours de la Methode which includes Les Météores
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With the development of photography in the late 19th century,
Wilson Bentley catalogued several thousand snow crystal images
that he had acquired over several decades. Bentleys images popu-
larised the snow crystal as a winter icon and were largely responsible
for the widespread notion that no two snowflakes are alike. Some
particularly well-formed symmetrical specimens are shown in the
bottom figures.

4



Top six figures: photographs of particularly well-formed snowflakes
taken by Wilson Bentley himself
Bottom: Wilson Bentley at work

Most natural snow crystals, however, are smaller and are gen-
erally blockier in appearance, usually without the high degree of
symmetry present in well-formed specimens. Polycrystalline forms
are also exceedingly common. For an unbiased sample the reader is
invited to go outside with a magnifying glass or microscope during
a light snowfall.
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3 The morphology diagram

Wilson Bentley’s images prompted the Japanese physicist Ukichiro
Nakaya to perform the first snow crystal formation experiments un-
der controlled conditions in the 1930s. He studied the morphology
of snow crystals grown at different temperatures and supersatura-
tions at atmospheric pressure and categorized natural snow crystals
that appeared in various meteorological conditions. The morphol-
ogy diagram shown below is the combined result of his observations.
Subsequent studies have confirmed its validity [2] [3] [4].

The morphology diagram shows different types of snow crystals
that grow in air at atmospheric pressure, as a function of

temperature and water vapour supersaturation. The morphology
switches from plates at T ≈ −2◦C to columns at T ≈ −5◦C, then

back to plates at T ≈ −15◦C and then back to columns at
T < −30◦C. Higher supersaturations produce more complex

structures.
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4 The formation of a snow crystal

Snow crystal formation begins in a cloud made of liquid water
droplets nucleated on minute dust particles. Pure water droplets of
microscopic dimensions can be supercooled to temperatures of about
−40◦C before they freeze, which means that the water vapour of a
cloud is supersaturated. As the cloud temperature drops to around
−10◦C the water droplets begin to freeze, but not all of them freeze
simultaneously. A frozen droplet will begin to accumulate water
molecules from its surroundings. The vapour that makes up the
cloud will stay supersaturated by virtue of the remaining unfrozen
droplets. As the crystal grows facets will form. The resulting shape
of a nascent crystal is often a hexagonal prism. Because of reasons,
which will be explained later, as the prisms become larger branches
start to form. Since the snow crystals fall through the cloud, they ex-
perience different temperatures and humidities along their descent,
and thus their growth behaviour changes with time. Because all
six arms experience the same conditions as they grow, the result is
a rather complex growth pattern for each arm of the crystal, with
all six arms developing roughly the same pattern. If there are no
collisions with other ice or water particles, a snow crystal can grow
into a rather elaborate, six-fold symmetric shape. This is how the
bulk of the liquid water that makes up a cloud is transformed into
ice.

5 The physics behind snow crystal formation

The normal form of ice has a hexagonal crystal structure, so the
basic ice crystal shape is a hexagonal prism. Other forms of ice,
like for instance cubic ice, have different crystal structures and are
responsible for the formation of twinned and polycrystalline snow
crystals. We will concentrate on hexagonal crystals, so we will ignore
the other forms.

For an ice crystal growing from water vapour the Hertz-Knudsen
formula [5] gives us the growth velocity normal to the surface:

vn = α
csat

csolid

√
kBT

2πm
σsurf = αvkinσsurf (1)

In the above formula m is the mass of a water molecule, csolid =
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ρice/m is the molecule number density of ice, csat(T ) is the equi-
librium number density of water molecules above a flat ice surface
and σsurf = (csurf − csat)/csat is the supersaturation just above the
growing ice crystal surface.

The parameter α is the condensation coefficient into which
all the physical processes, which determine how water molecules are
incorporated into the ice crystal lattice - the attachment kinetics
- are lumped. The condensation coefficient will therefore depend
on a whole range of parameters and properties like temperature,
supersaturation, the surface structure and geometry and the surface
chemistry, to name a few. If water molecules striking the surface are
instantly incorporated into the lattice, then α = 1, otherwise α < 1.
For a molecularly rough or a liquid surface we expect α ≈ 1 [6].
The general assumption, which may not always be valid, is that the
incorporation of water molecules into an ice crystal lattice is a local
process. Nonlocal effects, like transport between facets, could make
the above assumption invalid. For example: in a plate-like crystal
transport from the basal facets to the prism facets would enhance
the growth of the prism facets, which implies αprismfacet > 1. If this
happens one should include the transport effects directly into the
problem.

6 Three main processes in snow crystal growth

The growth of a snow crystal depends mainly on attachment kinet-
ics and two transport effects: particle diffusion, which carries water
molecules to the growing crystal and heat diffusion, which removes
the latent heat generated by solidification. It is the combined effect
of these processes, which is responsible for the vast diversity of snow
crystal morphologies, so for us to have a grasp on growing snow crys-
tals we must understand these three main processes, and their effect
on snow crystal growth. The two transport effects are understood
at a fundamental level, the attachment kinetics, however, are not
yet understood in detail, so much experimental work has been de-
voted to exploring the molecular dynamics that occur on a growing
ice surface. In order to be able to do so, one must disentangle the
different mechanisms that determine crystal growth.
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7 Particle transport

Particle transport is described by the diffusion equation:

dc

dt
= D∇2c, (2)

where c = c(x) is the water molecule number density surrounding
the crystal and D is the diffusion constant. The characteristic time
in which a significant change in c occurs is τdiffusion = R2/D, where
R is the characteristic crystal size. The growth time in terms of
R is 2R/vn, where vn is the growth velocity normal to the surface
discussed earlier. We define the Peclet number as the ratio of
these two times:

p =
τdiffusion

τgrowth

=
Rvn

2D
(3)

For typical growth rates of snow crystals the Peclet number is
of the order of 10−5, which means that diffusion adjusts the water
molecule density around the crystal much faster than its shape can
change. This is the reason why the diffusion equation can be reduced
to Laplace’s equation:

∇2c = 0, (4)

which must be solved with appropriate boundary conditions. The
continuity equation at the interface gives:

vn =
D

csolid

(~n · ∇)surf = D
csat

csolid

(~n · ∇σ) , (5)

where σ(x) = (c(x)−csat)/csat and csat is independent of position
because to begin with the isothermal case is assumed.

8 Spherical crystal growth

Consider the growth of a spherical crystal. The diffusion equation
reduces to one dimension and can be solved analytically. We assume
the attachment kinetics are the same as those on a flat surface, with
an arbitrary α, which is constant around the sphere. We consider
this problem in three cases of increasing difficulty [7].
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8.1 Case One: α < 1, no heating

Without heating the temperature remains constant and independent
of position. The solution of the diffusion equation is:

vn =
ααdiff

α + αdiff

vkinσ∞ =
α

ααdiff

csat

csolid

Dσ∞
R

, (6)

where σ∞ is the supersaturation far away from the growing crys-
tal and R is the sphere radius. If αdiff � α, the growth velocity
becomes independent of α:

vn =
csat

csolid

Dσ∞
R

. (7)

This is purely diffusion-limited growth so attachment kinetics
can be neglected. If on the other hand α� αdiff , then the growth
velocity reduces to:

vn = αvkinσ∞. (8)

8.2 Case two: αdiff � α, with heating

This case is more complicated than case one since it involves solving
a double diffusion problem, it can however be solved analytically.
The solution is:

vn =
D

R

csat

csolid

σ∞
1 + χ0

, (9)

where

χ0 =
ηDλρice

κ

csat

csolid

, (10)

and where λ is the latent heat for the vapour / solid transition,
κ is the thermal conductivity of the solvent gas, and η is defined as
d(log csat)/dT . The main effect of heating on the growth is scaling
the growth velocity by a factor of (1 + χ0)

−1. In near vacuum con-
ditions we have χ0 � 1 because the diffusion constant is large, and
the growth velocity is limited mainly by heating. The expression is:

vn ≈
κ

λρη

σ∞
R
. (11)
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8.3 Case three: α < 1, with heating

This is the most general case. The final result is:

vn ≈
α

α(1 + χ0) + αdiff

csat

csolid

Dσ∞
R

, (12)

which can be rewritten as:

vn ≈
α∗

α∗ + αdiff

csat

csolid

Dσ∗∞
R

, (13)

where α∗ = α(1 + χ0) and σ∗infty = σinfty/(1 + χ0). The above
expression is remarkably similar to the solution of case one.

The above results are very useful for determining the relative im-
portance of diffusion and attachment kinetics and especially useful
when designing or interpreting experiments aimed at measuring α.
Indeed ice growth experiments are beginning to produce data of suf-
ficient accuracy to shed light on the microphysics that underlies the
snow crystal morphology diagram.

9 Prism crystal growth - numerical solutions

Real ice crystals are almost certainly nonspherical. That is why
in case of a hexagonal prism crystal, a more realistic scenario alto-
gether, we use computer simulations to obtain numerical solutions
of the diffusion equation. Much is to be gained, however, by approx-
imating the hexagonal prism crystal with a cylindrical one. Instead
of the six prism facets we have one curved surface and instead of
the two basal facets we have two circles. In this approximation the
double diffusion problem is simpler to solve and easier to visualize.
An example of a numerical solution of the diffusion equation for a
growing crystal is shown below [8].
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Diffusion calculations around two growing ice prisms. The
contours represent lines of constant supersaturation in the air

around the crystal.
Left: cross-section of a growing (cylindrical) plate with a diameter
/ thickness ratio of 2 and vprism/vbasal = 2. The supersaturation is

highest at the corners, which implies that all facets are concave.
Centre: same as above, only with a diameter / thickness ratio of

20, and vprism/vbasal = 40. This time the supersaturation is highest
at the centres of the basal facets, which indicates they are convex.

Right: thin plates grown in air (scale bar = 50µm)

Because the prism morphology does not change appreciably dur-
ing growth, velocity boundary conditions were used. In the first
case we have roughly isometric crystals, or crystals for which the
growth rates of the basal and prism facets are comparable. As we
can see from the simulation (leftmost picture), σsurf varies consider-
ably across the growing surface and is maximal at the edges. Since
the growth velocity is constant, then the Hertz - Knudsen formula
requires ασsurf to be constant as well, which implies that α is largest
at the centre of the facet.

The fact that σsurf is largest at the edges also implies that at
a molecular level, rather than being flat, the facets are concave to
some degree. The crystal surface grows in a step-like fashion. Steps
are generated at the facet edges and propagate inwards as the crystal
grows. The step density is highest at the centre, which results in
α being maximal at the centre. For larger crystals we have larger
variations of σsurf across a facet. This, as we shall see later, is what
causes the formation of branches.

In the second case (centre picture) we have a thin, plate-like
crystal. The result of the simulation is exactly the opposite of the
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first case. The supersaturation (σsurf ) is largest at the centre of the
basal facet, so α is smallest there. Steps are generated near the facet
centre and propagate outward, so at a molecular level the basal facet
is convex. The dividing line between the concave and the convex
cases for prism crystals is seen to occur at diameter / thickness ratios
of about 10. There is a third case, which is not shown in the above
figure: thin columnar growth, with diameter / thickness ratios much
smaller than 1. The solution of the diffusion equation in this case
implies convex prism facet. This type of crystals does not readily
appear naturally because branching tends to happen before convex
prism facets develop

10 Attachment kinetics in brief

Since attachment kinetics are too broad a field to be presented in
detail in this seminar, we will focus merely on the basics and mention
what likely applies to snow crystal growth. As mentioned earlier, for
a molecularly rough surface, for which the density of kink sites (kinks
= imperfections like bumps, steps, etc.) is the largest possible, we
assume that α ≈ 1 [5].

10.1 Nucleation limited growth

While the molecules that attach to a molecularly rough surface are
indistinguishable from those forming the surface itself, in case of
a molecularly flat surface, the admolecules, in absence of suitable
attachment sites tend to evaporate before becoming part of the sur-
face. Growth then only occurs when the admolecule density is high
enough for two-dimensional islands to form on the surface: once such
an island is formed, its edges provide steps and kinks for the attach-
ment of other molecules. The growth of the crystal then depends on
the nucleation rate (the rate of formation of islands) and the island
growth rate. If the nucleation rate is low, then each island grows out
completely, resulting in layer-by-layer growth; this regime however,
is of little relevance for snow crystals. If the nucleation rate is high,
there can be islands growing on top of other islands. Various models
[5] typically yield the condensation coefficient as:
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α(T, σsurf ) ≈ A(T, σsurf ) exp

(
− σcrit

σsurf

)
, (14)

where

σcrit =
πβ2Ω2

3(kBT )2
, (15)

β is the free energy for a growth island that is one molecule thick
and Ω2 is the area taken by one molecule on the surface.

10.2 Growth mediated by step sources

Anything that provides imperfections at a molecular level can influ-
ence the growth of faceted crystals. Examples include impurities,
intersections of surfaces with other objects, crystal imperfections,
etc. This growth mechanism is important in the case of ice prisms
at low supersaturations.

10.3 Surface structure

Since attachment kinetics derive from the molecular dynamics at a
crystal surface, they are strongly linked to the molecular structure
of the surface. The surface of an ice crystal is a very lively place: it
is quite complex and exhibits strong temperature dependence near
the melting point. That is why it is generally accepted that changes
in surface structure must be responsible for the dramatic changes in
growth behaviour with temperature. On the surface various forms of
reconstitution take place to lower the surface energy, so the crystal
structure there is not the same as inside. To make matters worse,
near the melting point the kinetic velocity (vkin) of water molecules
on the surface is large, so imaging techniques like scanning probe
microscopy are of no help to us at all for determining the surface
structure. This is why we do not yet understand the crystal surface
and thus cannot explain the morphology diagram. We can, however,
mention two temperature dependent effects, which occur on a crystal
surface:
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10.3.1 Surface roughening

The surface free energy is given by: F = E − TS, where E is
the binding energy, which favours a smooth surface, and S is the
surface entropy, which favours a rough surface. The equilibrium
surface structure is determined by the temperature: the lower it is,
the closer the structure is to being molecularly flat and the higher it
is, the rougher it becomes [5]. If there is a roughening temperature,
TR, above which the surface is completely rough, then we have a
roughening transition. In case of a crystal for which the surface
cannot be directly determined we exploit two likely indicators of
surface roughening:

1. above TR the condensation coefficient α is ≈ 1 and

2. crystal growth is not faceted even at low supersaturations.

There is experimental evidence to support a roughening transi-
tion in ice at a temperature of about −2◦C, and only for the prism
facets [9]. Snow crystals in these conditions sometimes occur as very
thin plates with almost no prism facets at all, which supports this
conclusion.

10.3.2 Surface melting

Surface melting is essentially a more developed form of surface rough-
ening. Since the molecules near the surface of a crystal are not so
strongly bound as the molecules in the interior, a thin quasi-liquid
layer forms on the surface slightly below the melting point. There is
ample evidence to support surface melting in ice crystals at temper-
atures above −15◦C [10] [11]. Surface melting has a profound effect
on the surface structure of ice, and thus on attachment kinetics and
it may very well be, that much of the temperature variation seen in
the morphology diagram is just down to this phenomenon. What
supports this conclusion is that surface melting is known to depend
strongly on temperature exactly over the range where snow crystal
growth exhibits large variations. Unfortunately the effect of surface
melting on crystal growth in general is not yet known. Models of
ice crystal growth in presence of surface melting have not yet given
results in agreement with experiments.
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11 Dendritic growth

Hexagonal prism ice crystals appear when the growth is not so
strongly limited by particle diffusion, or, in other words, when the
supersaturation is low, the crystal size is small, or the background
gas pressure is low. Crystal growth is then largely dependent on
attachment kinetics. If the above parameters increase sufficiently,
diffusion becomes the dominant force in crystal growth dynamics.
In this case branches and side branches grow from the surface of
the crystals and the growth is known as dendritic (which literally
means tree-like). As indicated in the morphology diagram the over-
all complexity of the dendritic pattern increases with increasing su-
persaturation as well as with increasing crystal size and background
gas density. The dendritic structure often exhibits some self-similar,
fractal characteristics. For ice dendrites the smallest structures typ-
ically occur on scales of about 1− 10µm.

Left: ice dendrite growing at T = −5◦C, showing the
charachteristic ”fishbone” pattern.

Right: a ”fern-like” dendrite growing at T = −15◦C.
Both structures are planar, both scale bars are 100µm long and the

inserts are 4X magnified views of the growing tips.
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11.1 Branching

Whenever crystal growth is limited by diffusion, the growth of smooth
facets is unstable. If we start with a flat crystal surface and add a
small bump, the bump will effectively stick out further into the su-
persaturated medium above the surface. Particle diffusion will bring
material to the top of the bump at a faster rate then to the surface.
With a greater supply of material, the bump grows larger, which in-
creases the supply even more. Much of the structure in snow crystals
derives from this positive feedback effect, which is often called the
Mullins-Sekerka instability. When we couple the above with at-
tachment kinetics, the picture becomes more complex. We find that
faceted crystals can grow stably, but only for so long. The figure
below shows the growth of a faceted plate-like crystal.

Series of photographs showing the transition from faceted growth
to branched growth. The final crystal size is approximately 1mm.
Note the small water droplet in the third picture from the left and

how it gives birth to a secondary structure seen in the fourth
picture.

If a facet is to grow stably, then v(x), the perpendicular growth
velocity along the surface, must remain constant. Recall that v =
αvkinσsurf (Equation 1) and that the diffusion equation solutions
yield a varying σsurf with its minimum value at the facet centres.
Thus, as long as the prism structure persists, α must also vary
along the surface, reaching its maximum value at the facet centres.
Since the diffusion lengths are small compared to the crystal size, the
prism facets are slightly concave and their curvature increases as the
crystal grows. With time the step density reaches its maximum value
at the facet centres, which means that the surface at the centres
becomes rough on a molecular level. This, in turn means, that at
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the facet centres α ≈ 1, while σsurf continues to decline. The growth
velocity is now no longer constant along the surface, which means
we have branching. Near temperatures of −15◦C this instability
leads to the familiar six-fold symmetric branching and near −5◦C to
clusters of needle crystals. Convex facets do not exhibit branching,
so the growth at temperatures near −15◦C still remains plate-like.
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