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Introduction

Viruses are small replicating particles. They are parasites by nature (most of the viruses cause 
diseases), they don't have their own metabolism and cannot reproduce without the machinery of a 
host cell. They can survive outside of a cell but only as inactive spores.

Genetic material of viruses can be either DNA or RNA, encapsulated in protein container. Besides 
protein shell, some viruses also have lipid coating – for example, modified form of the host cell 
outer membrane or internal membranes such as nuclear membrane or endoplasmic reticulum. The 
lipid membrane itself and any carbohydrates present originate entirely from the host while some 
proteins are coded for by the host and some by the viral genome. Most viruses that have this kind of 
coating are dependent on this envelope for their infectivity.
After the initial assembly of a virus, the capsid proteins are often modified, a process known as 
maturation. 

Capsid T-number

One of the remarkable properties of capsids is that they self-assemble in a regular and well-defined 
structure. The capsids need to be able to effectively protect the packaged genome, but they also 
need to be able to open at the right place and time to release the genome. Therefore, the demands on 
the capsids mechanics and function are highly specific.

Viral capsids are composed of one or several types of proteins. When capsid is composed of several 
different proteins they are organized in dimers or trimers which tile the surface forming a regular 
pattern. There are two basic shapes of viruses – icosahedral and helical. There is also prolate shape, 
which can be consider as a subclass of icosahedral, prolonged in the direction of its five-fold axis. 
In icosahedral capsids the proteins form pentagons and hexagons, and these capsids can be 
described by assigning to them a triangulation number (in further text T-number), which can be 
defined as follows:

On a surface tiled with hexagons we can establish a coordinate system such that one hexagon is the 
centre, and the axes are perpendicular to four of its six sides. Then we can assign two numbers for a 
hexagon at any arbitrary position by counting its distance on the axes from the first one. 
Viruses can be visualized as covered in hexagonal grip, with the exception of having exactly 12 
pentagons at equal distance from each other. If we measure the distance between two nearest 
pentagons, with h being the number of steps on one axis, and k on the other, and with h greater then 
or equal to k, then we can get the T number through following formula:

T =h2+hk+k 2=(h+k )2−hk (1)

Simply put, the larger the T-number is, the more there are hexagons in respect to pentagons. T-
number adopts certain integer values - 1, 3, 4, 7, 9, 12, and so on. The number of proteins 
constituting icosahedral shells, q, is 60 times the T number and this is called a structural index of 
viral capsids.
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Figure 1: Illustration of an assembly of subunits into a complete capsid. Beads are colored as follows: blue=globular 
portions of proteins, yellow=positive arginine rich motive beads, red=polyelectrolyte. 

Mechanical properties of capsids

The mechanical properties of viral capsids are crucial for their proper functioning, because rupture 
of the capsid due to defects occurring during maturation or as a result of external influences outside 
the host will, in general, result in a loss of infective capability [1].

Bulk experiments have provided knowledge about the averaged properties of viruses, and by 
making use of single-particle techniques such as atomic force microscopy (AFM) it was possible to 
take measurements of and manipulate with individual viruses. AFM was used to focus point forces 
on a single particles [2], making it possible to measure the strength of the protein-protein 
interactions in the capsid. Furthermore, AFM is perfectly suited for studying mechanical properties 
of small biological entities such as viruses due to its high sensitivity in applying and measuring 
forces combined with the possibility to work under physiological conditions. AFM has been used to 
image a range of viruses [3], but here the focus is on those experiments measuring the mechanical 
properties of viral capsids.

After a virus or an empty viral shell has assembled, we can inquire how resilient it is in terms of its 
response to external force and other perturbations. Capsids need to meet conflicting demands: they 
should be sufficiently stable to protect their genome in the extra-cellular environment, but 
sufficiently unstable that they can release their genome molecules into host cells [4]. Various bulk 
and single-particle assays have been developed to measure the mechanical properties of viruses, the 
growing field of mechanical virology. 

Experiments with osmotic-shock were used to observe the  stability of bacteriophage viruses under 
pressure against rupture and the mechanical properties of crystals and films composed of viruses 
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were analyzed by Brillouin light scattering. A disadvantage of these multiparticle techniques is that 
they represent an average over large numbers of viruses and also, they represent a rotational 
average, so any directionality of the mechanical properties with respect to the shell orientation is 
lost. The mechanics of single particles and their directionality can however be probed with the 
atomic force microscopy (AFM) based nanoindentation techniques [5]. The relation between the 
applied force and the resulting change in shell diameter is called the force–deformation curve 
(FDC). Depending on whether or not the capsid returns to its original state after the probe force is 
removed (‘unloading’), we call this a reversible, respectively irreversible, deformation. The force 
measured by a nanoindentation probe results, at a fundamental level, from the fact that the probe 
forces the viral shell away from a state of minimum free energy.

To interpret measured FDCs, including irreversibility effects, we can compare them with the 
deformation free energy obtained from the continuum elasticity theory of thin elastic shells (‘thin-
shell theory’ or TST) that we have already mentioned. TST is used extensively by engineers to 
predict the effects of external forces on thin-walled, hollow macroscopic structures, such as 
airplanes or oil tanks. In the simplest application of TST we model a viral shell as a thin spherical 
shell of uniform thickness and radius R. If the viral shell encloses genome molecules, then an 
internal osmotic pressure Π must be included, which can be as large as ∼50 atm. Let ζ (r) be the 
indentation profile of the shell generated, for example, by a force probe. Specifically, ζ (r) is defined 
as the radial inward displacement of the surface of the sphere expressed in terms of a two-
dimensional coordinate system that covers the shell. In the limit of small ζ (r), the TST deformation 
free energy 1F is a simple functional of ζ (r) in the form of an integral over the shell surface:
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The first term of equation (2) describes the bending-energy cost of the indentation — note that
Δ ζ is the shell curvature — where the bending modulus κ has units of energy. The second term 

represents the work by the probe against the genome osmotic pressure Π with τ = Π R/2 an effective 
surface tension. The third term measures the stretching of the layer induced by the force with the 
two-dimensional Young modulus Y of the layer. A dimensionless number γ=YR2 /κ - the Föppl–
von Kármán number - and a characteristic length scale lB = buckling radius — can be constructed 
from the stretching and bending moduli, which will play an important role.

Alternatively, we can also apply three-dimensional elasticity theory to compute the elastic response 
of an elastic shell with a finite thickness h. We recover the TST result in the limit h < R with a 
spring constant 

κ ∝E3D h2/ R (3)

where E3D is the three-dimensional Young modulus. For larger indentation forces equations (2) and 
(3) should not be used. The calculation of the FDC of TST in the nonlinear regime requires the 
solution of a pair of somewhat challenging nonlinear differential equations, known as the Föppl–
von Kármán (FvK) equations (they resemble Einstein’s equations of general relativity). Instead of 
trying to solve the FvK equations analytically or numerically, it is more practical to numerically 
minimize the elastic energy directly using finite-element modeling (FEM). If a shell is indented by a 
hemispherical tip, the deformation of the sphere does not deviate much from the linear harmonic 
spring for deformation ratios ζ (0)/R up to 0.6. Then, for slightly larger values of ζ (0)/R, a 
discontinuous drop takes place in the FDC. This is due to the fact that for larger deformations the 
elastic energies of two different shapes of the deformed shell cross each other. In the engineering 
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literature, singularities in the FDC of this type are known as ‘buckling’ transitions. They are 
identified with the well-known catastrophic failures of hollow structures subject to external loads, 
that is, failures without any visible precursor ‘warning’ in the FDC. Comparison with the FDC 
suggests a relation between the buckling instabilities of TST and the irreversible nonlinearities of 
the FDCs of viral shells [6]. However, mathematically, the buckling discontinuities of TST are quite 
similar to first-order phase transitions and, like first-order phase transitions, they could be nucleated 
by local structural defects. This indicates that the elastic response of the non-uniform icosahedral 
shells might differ from that of uniform spherical shells, which must be discussed before we can 
compare with experiment. The FDC of icosahedral shells was obtained by starting from a perfect 
icosahedron as the initial trial state. The sharp folds linking the 12 vertices of a perfect icosahedron 
are not compatible with the bending-energy term in equation (2).

However, as long as the FvK parameter γ=YR2 /κ  threshold value of the order of 102 still 
remains icosahedrally facetted. For FvK numbers less than this threshold, however, the shell adopts 
a nearly spherical shape (confusingly, this also is known as a buckling transition, but we shall not 
use this terminology). The FvK number of a viral shell can be estimated by comparing computed 
shapes of undeformed shells with those measured, for example, by cryo-transmission electron 
microscopy. For lower values of γ , the FDC remains quite close to the harmonic spring prediction. 
For larger values of γ , the relation is increasingly nonlinear, and then develops the buckling 
discontinuity. The size of the discontinuity increases with increasing γ and the critical value of the 
indentation for the buckling discontinuity decreases. 

In the buckled state, the shell is detached from the tip at the centre, which is not the case in the 
small-force regime. The five-fold-symmetry sites thus indeed seem to act as structural defects that 
trigger buckling. The discontinuity of the FDC of a spherical shell with the same elastic moduli 
takes place at a much larger indentation. How do the predictions of TST compare with the AFM 
nanoindentation experiments? For small applied forces, the measured FDC is indeed linear in many 
cases [7]. Comparing the three-dimensional Young moduli (equation (3)) of various particles shows 
that sphere-like viruses that package their genome into preformed capsids, such as phage Φ29, 
phage λ, HSV1 (herpes simplex virus type 1) and MVM (minute virus of mice) have a Young 
modulus that is at least double that of sphere-like viruses that self-assemble around their genome 
such as CCMV and HBV [8]. The FvK numbers were, incidentally, not obtained by comparing with 
measured shell shapes but, instead, were estimated assuming the TST relation

γ=12 (1−v2)( R
h

)
2

(4)

with ν Poisson’s ratio. An interesting application is the use of TST to explain measured differences 
in spring constants of ‘nuclear’ and ‘viral’ HSV1 capsids. The latter are stiffer than the former
because they possess an extra protein layer, the inner tegument. Using equation (3), and assuming 
that the E3D values for the capsid and inner tegument are similar, it follows that this extra protein 
layer should have a thickness of ∼0.8 nm, a prediction that is verifiable by electron microscopy. For 
smaller viral particles, when the shell thickness h is not negligible compared with the radius R, TST 
is no longer expected to apply. The simplest extension is to use FEM to compute the FDC of a 
homogeneous elastic shell with a finite thickness. The elastic energy of a solid elastic sphere that is 
indented scales as ζ5/2 , which is known as a ‘Hertzian’ response. The FDC of a thick-walled shell is 
expected to show, as a function of h, scaling crossover from the TST result for larger applied forces 
to a nonlinear Hertzian-type FDC for smaller applied forces. FEM studies of the indentation of 
elastic shells by point forces realistically shaped models for the AFM tip, were carried out. It was 
indeed observed that Hertzian nonlinearities occur at the onset of deformation of thick-shelled 
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particles. The next step is to use information on the heterogeneous geometry of the viral particles 
available from X-ray diffraction and cryo-electron microscopy studies, while still maintaining a 
uniform elastic modulus. Such an approach was also followed to investigate CCMV and HBV. By 
comparison with the measured FDC, a Young modulus of 0.22 GPa was found for CCMV, which 
happens to lie between the estimates obtained by the previous two methods. A comparable Young 
modulus, namely 0.26 GPa, was determined for HBV, which is a little lower than that obtained by 
using a TST approximation. Determining the Young modulus thus depends to some extent on the 
model that is used to analyse the FDC. Another example was a detailed FEM study of MVM that 
predicted stabilizing interactions between the encapsulated DNA and specific sites at the capsid 
interior, which was later experimentally confirmed. Furthermore, the orientation-dependent 
indentation, as well as by behaviour of HBV was determined by comparing experiments with 
detailed FEM simulations.

Figure 2: orientation dependence of MVM. a–c, From top to bottom: particles as seen along the five-, three- and two-
fold symmetry axes. From left to right: schematic images of icosahedrons, reconstructions of MVM capsids, AFM 
images of MVM capsids. d, FEM analysis along the five-fold (red), three-fold (green) and two-fold (blue) symmetry 
axes as a function of shell thickness t. The experiments yield similar spring constants along all three axes of the empty 
particles (data not shown). These results match best with simulations for t ∼ 2 nm. e, Reinforced shell models with 
patches of extra thickness tc at various sites. Only Models 3–5 predict the correct anisotropic reinforcement of DNA-
filled MVM capsids as observed experimentally. Importantly, the patches in these three models coincide roughly with 
the locations where ordered DNA is bound to the shell, whereas this does not coincide in Models 1 and 2. f, FEM 
analysis result for Model 4 in e. [9]
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VLP formation

Formation of virus-like particles (VLPs) and packaging of  poly(styrene sulfonate) (PSS) by the 
protein of cowpea chlorotic mottle virus (CCMV)

In figure 3, a and b, we can see transmission electron microscopy (TEM) images from two 
packaging reactions, along with images of the empty CCMV capsid (c) and wt CCMV (d) for 
comparison. We can see that VLPs with spherical morphology are readily formed. The different 
preparations are clearly distinguishable. Prominent dark centers in all the empty capsids arise from 
penetration of the stain into the largely vacant interior. Similarly, the smaller dark centers in the 
images of wt CCMV capsids are consistent with the small central void that is known to exist in the 
packaged RNA in Bromoviruses. In contrast, there is markedly less stain penetration into the cores 
of the VLPs or, at most, a small apparently void region, which suggests that the PSS occupies the 
interior.

Figure 3: TEM images of capsids formed in self-assembly reactions. Samples were stained with 2% uranyl acetate. (a) 
VLPs formed with 700-kDa PSS. The mean capsid size for VLPs is 22 nm. (b) VLPs formed with 3.4-MDa PSS. The 
mean capsid size is 27 nm. (c) Empty CCMV capsids formed by dialysis of CP in buffer with high salt and low pH. The 
dark core in the center indicates the penetration of stain into ‘‘void’’ (aqueous solution) space, which is notably absent 
in the interiors of VLPs filled with PSS. (d) wt CCMV capsids in virus suspension buffer. Scale bars are 50 nm. [10]
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Additional evidence of PSS encapsidation by CP was provided by UV absorbance measurements of 
VLP 2M that was fractionated on a sucrose gradient. Transition of the absorbances at 270 nm, 
where the absorbance of PSS is stronger, and at 290 nm, where only the CP has significant 
absorption, demonstrates that the protein and polymer (CP and PSS) are found in the same fractions. 
Further, the strongest absorbances are located mainly in fractions 7–13. In contrast, on the same 
gradient, the wild-type (wt) CCMV formed a band between fractions 11 and 16 and peaked at 
fraction 13. The width of the VLP 2M band was comparable to that of the wt CCMV, suggesting 
that the VLP population was relatively homogeneous, which is confirmed by direct measurements 
of the size distributions with EM.

The encapsidation of PSS by CCMV CPs has also been reported for a much lower-molecular-mass 
(9.9 kDa) polymer that was labeled with dansyl chloride. In those experiments, fast performance 
liquid chromatography was used to separate the products and it was showed that the CP and labeled 
PSS comigrated, consistent with the PSS being packaged inside the VLPs. Studies of the packaging 
of fluorescent (rhodamine-labeled) PSS under the same assembly conditions show that when the 
assembly products are fractionated on a sucrose gradient, the fluorescent PSS and CP comigrate, as 
in the case of the unlabeled PSS shown in figure 4. Moreover, the rhodamine fluorescence is not 
markedly diminished in the presence of the quencher methyl viologen, demonstrating that the 
labeled PSS was protected from the quencher by the capsid. In contrast, the fluorescence of a 
control sample containing only free fluorescent PSS was significantly diminished at the same 
quencher concentration. Similarly, fluorescence is quenched when free labeled PSS is added to a 
solution of wt CCMV, indicating that it is not sufficient for the PSS to adsorb on the outside of 
capsids but rather that it must be packaged inside to be protected against quenching. These results 
suggest that the PSS in the assembly reactions reported in this work is indeed packaged inside the 
capsids and not adsorbed outside.

Figure 4: Separation of the products of the 2-MDa PSS plus CP assembly reaction on a 10–40% sucrose gradient. 
Comigration of species absorbing strongly at both 270 and 290 nm was found for fractions 7–13. The absorbances 
peaked at fraction 10. [10]
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VLP size distributions

The normalized VLP capsid size distributions are shown in figure 5 (each is based on measurements 
of more than 100 particles). Figure 5 f shows the bimodal distribution obtained by combining the 
data from Reactions 1–5. The widths of the VLP size distributions, as measured by the standard 
deviations of the Gaussian fits, are essentially identical for all five packaging reactions, and they are 
comparable to the width we measure for wt CCMV, 1.70 nm. Although some of the dispersion in 
capsid sizes is related to variations in experimental conditions such as drying, a dispersion in size 
even in the absence of such artifacts is expected because capsids in solution are dynamic objects 
that have breathing modes.

The fact that the sizes of hundreds of VLP capsids from five independent packaging reactions 
converge to the two discrete values of 22 and 27 nm strongly implies that they are determined by 
the inherent icosahedral symmetry of the protein shells. Indeed, it has been established that the 
CCMV CP forms icosahedral structures with triangulation numbers T=1, 3, 4, and 7. Without an 
image reconstruction analysis based on cryo-EM or x-ray diffraction, the assignment of a T number 
to a particular species is difficult. Absolute measurements of capsid diameters by TEM have 
sometimes been employed but are questionable because it is well established that the drying of the 
sample results in shrinkage that cannot easily be quantified. If we assume, however, that the 
staining and sample drying on the TEM grid affects all the VLPs to the same degree, we can deduce 
the T numbers from the ratios of the capsid diameters associated with the peaks in figure 4. The 
number of CPs in a capsid is 60T. If the unit area per CP is constant, the total capsid surface area, 
which is proportional to the square of the capsid diameter, scales linearly with T:

Rij=
DTi

DTj

=√ T i

T j

(5)

Here DTi is the diameter of capsid with T=i. Experimental support for the validity of equation 5 can 
be found in the literature. For example, the hepatitis B virus can assemble into particles of two 
sizes, known from cryo-EM to be T = 3 and T = 4 structures; the ratio R3,4 of their diameters is 300 
A ̊ :260 A ̊ = 1.15, which is in excellent agreement with √4/3 = 1.155 . Similarly, the assembly of
empty capsids of CCMV can produce T = 2 and T = 3 particles, with diameters of 280 and 230 A ̊ ; 
these R3,2 = 1.22, in good agreement with √3/2 = 1:225. Furthermore, T = 4 and T = 7 capsids 
have been identified in cryo-EM studies of P22 procapsids; the ratio R7,4 of their average 
diameters, 1.33, can be compared with √7/4 = 1:323.
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Figure 5: Normalized VLP capsid size distribution histograms for Reactions 1–5. For each reaction, one dominant 
capsid size was found: (a) VLP 400 kDa, (b) VLP 700 kDa, (c) VLP 1 MDa, (d) VLP 2 MDa, (e) VLP 3.4 MDa; and (f) 
a combined histogram of capsids from all five reactions. A fit of the histogram to two Gaussians indicates that the 
capsid sizes converge to two values: 22 nm and 27 nm. These values agree well with the sizes of T 1⁄4 2 and T 1⁄4 3 
capsids formed by CCMV CPs. [10]

Finally, CCMV capsids of three sizes, established by cryo-EM to be T=1, 2, and 3, were shown to 
be assembled in vitro from a CP that lacked most of the N-terminal domain; their diameters of 290, 
250, and 180 A ̊ give R3,2=1.2, R3,1=1.6, and R2,1=1.4, in good agreement with values of 1.2, 1.7 and 
1.4, calculated from Eq. 1. These data lend confidence to the use of Eq. 5 to identify the T numbers 
of the two capsid types for the VLPs that we have studied. The values of 21.5 and 27.3 nm for the 
two diameters give R=1.27, corresponding to the expected ratio for T=2 and 3, i.e., R= √3/2 = 
1:225, and differing significantly from the ratios that would be obtained for other reasonable 
choices of T numbers.

A jump in T number from T=2 to T=3 occurs between molecular masses of 1 MDa and 2 Mda. This 
switch of the capsid size to a larger T number strongly suggests that for each type of capsid there 
exists a maximum capacity for efficient packaging. As the packaged cargo size increases, the size of 
the capsid increases correspondingly. The discreteness of this capsid-size transition results from the 
inherent icosahedral symmetry property of the CPs. This preference of the CP for discrete sizes is 
mirrored in the widths of the size distributions. It is significant that the VLPs have essentially 
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identical widths despite the variations in the polydispersities of the different PSS polymers. It is 
notable, as well, that the widths are quite similar to that of wt CCMV (figure 5 f). The compressible 
PSS is able to accommodate to the capsid diameters preferred by the protein, but only to a limited 
degree, which is why larger VLPs are found for higher molecular masses of polymer.

Genome packaging

The capsid of double-stranded (ds) DNA phages easily self-assembles - sometimes in the presence 
of scaffolding proteins but in the absence of nucleic acids. Subsequently, a packaging motor 
internalizes its genome [11, 12], as is also the case for dsRNA bacteriophages [13]. The self-
assembly and packaging process can be reproduced in vitro using extracts from infected hosts as 
shown for instance for phage λ [14] and phage Φ29 [15]. Infectious Φ29 virions can also be 
constructed from cloned gene products and synthetic nucleic acids and infectious phage λ virions 
have been successfully produced from purified components. During the packaging process, the 
genome, which can be many microns long, needs to be compressed to fit inside a capsid whose 
diameter is hundreds of times smaller. Electrostatic repulsion between the nucleic acid strands will 
hinder the compaction of the genome significantly. Moreover, extensive bending energies need to 
be overcome as the persistence length of dsDNA and dsRNA is comparable to the diameter of the 
capsid. In general, however, electrostatic repulsion dominates over bending energy and will give the 
primary contribution to the internal force built-up. A third factor influencing the packaging is the 
reduction of entropy of the system. As a result of these energetically and entropically unfavourable 
changes, it is likely that high forces are involved in the packaging of dsDNA or dsRNA inside phage 
capsids. The energy needed for this force generation comes from ATP consumption and 
approximately one ATP molecule is hydrolyzed for every two base-pairs that are packaged.

Conclusions

Influence of RNA length

It was shown that there exist a correlation between length of  the encapsidated genome and the 
optimal radius of a capsid which encloses it. In general, if the coat proteins do not exhibit a 
preference for a particular radius of curvature, the longer genomes require larger capsids. But, if it 
is allowed by the radius of gyration (measurement of the compactness of protein structures – radius 
of gyration of an branched polymer is smaller than that of an linear chain of equal degree of 
polymerization) of genome, which is dependent on the secondary and tertiary structures of RNA 
and its charge density, long genomes can be encapsulated by a small capsid. The experiments also 
show that this correlation can be changed by the ratio of protein to genome concentrations - this is 
caused by entropy effect which are not yet analyzed in the literature. If, however, capsid proteins 
have a preference to come together at such an angle as to achieve certain curvature or size, 
deviation from this curvature cannot be at a cost of preventing the capsids from forming other T 
numbers in addition to their native ones. 
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Figure 6: Fraction of trajectories leading to a complete capsid as a function of polymer length (top axis) or charge ratio 
(bottom axis). The dashed line indicates the thermodynamic optimum charge ratio or length. Snapshots of typical 
outcomes above and below the optimal length are shown. On the right we can see a comparison between a typical 
assembly outcome for polymer length 1200 and an EM image of CCMV proteins assembled around an RNA which is 
twice the CCMV genome length. Beads are colored as in figure 1. [16]

Simulation show that the presence of a polymer is essential for capsid assembly under the simulated 
conditions, since the subunit-subunit interactions are too weak for formation of empty capsids, 
which is consistent with most known ssRNA virus proteins. It was also shown in the simulations 
that the length of a polymer is restricted by the type of capsid it enters. If too long, the polymer will 
not be incorporated whole when the assembly of capsid  is near completion. Instead, part of it will 
be outside the capsid, or if it will be long enough, multiple capsids will assemble around the same 
polymer (figure 6). For polymers whose length is well below the thermodynamic optimum length, 
encapsulation occurs before the assembly of the capsid is complete which substantially slows down 
the addition of remaining subunits.

One of the important results shown by simulations is that, when looking at the single stranded 
RNA, increasing the fraction of nucleotides that are base-paired in relation to the unpaired ones (up 
to the biological fraction of 50%) increases the thermodynamic optimum length. That increase can 
be as large as 200-250 nucleotides for a small capsid such as T =1, which indicates that base-pairing 
can contribute significantly to the amount of polymer that can be packaged. Simple models have 
shown that spontaneous overcharging takes place during the assembly of viral shells, and that the 
optimal thermodynamic polyelectrolyte length is closely related with the length for which the 
highest yield of complete viral particles can be obtained by the process of dynamical assembly.

Despite the fact that, for example, for the T=7 capsid the interactions between the coat proteins 
were expected to be stronger than those in a T=4 structure, the interactions between proteins and 
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genome can easily bring down the energy of a T=4 structure significantly below that of a T=7 
structure. The example of this can be seen in figure 7, for the case of the shorter genome. This is 
one example of how the genome size can have an effect on regulating the size of a capsid, if coat 
proteins are flexible enough to form different T structures, such as CCMV.

Figure 7: Free energy per protein subunit fn scaled to its minimum value f*n versus the capsid radius R in nanometers. 
The values of the combination of parameters (nMn/gb) for the corresponding optimal radius, were chosen such as to 
obtain the radii corresponding to typical T 1⁄4 4 and T 1⁄4 7 viruses. We set the molecular weight corresponding to the 
dashed curve for the T 1⁄4 4 structure 1.6 times higher than that of the solid curve for the T 1⁄4 7 structure, while 
keeping all the other parameters constant. [17]

Influence of RNA Branching

It is clear, however, that capsid size or even capsid shape are not determined by the genome length 
alone. Because of the secondary and tertiary structures of the nucleic acids, what is also important 
for the successful capsid assembly is the three-dimensional shape and size of the RNA. Recently, 
some studies have indicated that the secondary structure of viral single stranded RNAs has to be 
different from the structure of random or ribosomal RNAs – in viral RNAs, the widest distance 
between two points on a chain is still smaller by as much as one third than in the random or 
ribosomal ones. The reason for this may be evolutionary pressure which forced the viral RNAs to 
be more compact in order to prevent accidental encapsulation of non-viral RNAs – and this 
provides a possible answer as to why virus capsid "favors" its own RNA more than the other ones 
present in the host cell. 

When the capsid size is largely determined by the properties of the coat proteins, the level of 
branching in the genome doesn't have a big effect on the optimal number of monomers that are 
encapsulated. Despite of that, the level of branching of the genome does seem to have a significant 
effect on the free energy of encapsulation and consequently on the critical concentration necessary 
for the encapsulation. This is the reason that a simple change in the order of genes can have large 
effect on the encapsulation of RNA – it changes the critical concentration, as it is exponentially 
dependent on the free energy. 

Inherent propensity to form branch points can be quantified by the fugacity, fb - the chain is linear if 
fb = 0, and becomes more branched as fb increases. Some RNAs are encapsulated more efficiently 
than others. With larger inherent propensity to form branch points, the larger is the optimal chain 
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length that can be accommodated in the capsid. Free energies associated with branched polymers 
have deeper minima than those for linear polymers for a set of salt concentrations. This effect 
explains why some RNAs are encapsulated more efficiently than other RNAs or other linear 
polyelectrolytes. In the process of assembly of viroidal particles inside the cell, viral RNA is in 
competition with cellular RNA to fill the virus capsids. Inherently branched secondary structure of 
viral RNA allows it to maximize the amount of encapsulated genome and make assembly more 
efficient, and in that was it can out-compete cellular RNA. 

Experiments in witch RNA was modeled as a simple polyelectrolyte chain showed that branching is 
also important for efficiency of polymer adsorption on the inner surface of viral shell - the branched 
polymer is adsorbed more densely onto the surface than the linear chain. Viral RNAs posses 
inherent branching in secondary structure, which allows viruses to maximize the amount of genetic 
information stored in them. It also makes assembly of the capsid more efficient, which is why viral 
RNAs have an advantage over cellular nucleic acids during the replication of virus in its host's cell. 
Hydrogen bonding between mutually complementary nucleotides along the backbone promotes 
intra-chain base paring, which leads to a structure of the RNA molecule that is highly branched and 
that furthermore promotes its compaction in free solution. 

Influence of capsid protein concentration

The question is, do genome concentrations and stoichiometry or ratio of the proteins have any 
impact on the size of the spherical viral shells that form in the solution? The concentration of coat 
proteins in respect to genome concentration is, in addition to genome size, important for 
determining the size of the capsid, as shown by the experiments. For a fixed concentration of 
protein and at low concentrations of RNA the dominant structures are T=7 structures. If we, 
however, increase the concentration of RNAs, the T=4 will increasingly prevail over others. This 
tells us that even if for a certain RNA length T=7 structures are energetically more favorable than 
the structures of T=4, the concentration of free coat proteins in a solution can be low enough that T 
=4 structures become entropically more favorable compared to T=7 structures. From the mass 
action equations we can also see that in the opposite case, when the RNA is of such length as to 
prefer T=4 structure, T=7 structures will nevertheless be formed if the protein concentration is high 
and the RNA concentration low. 

Also important for the virus assembly, and related to the RNA three-dimensional structure, is the 
gene order in RNA. For example, changing the order of genes in viral RNA can be enough to 
suppress encapsidation. This can be explained by the fact that the effect of changing the sequence of 
nucleic acids is modification of it's level of branching – usually, the viruses tend to increase it. This 
in turn effects free energy and with that the critical concentration needed for encapsulation.

Energy-depended packaging 

Virus capsid simultaneously need to be both sufficiently stable in order to provide protection for the 
genetic material inside them in the extra-cellular environment, and unstable enough to release 
nucleotides when in the host cell. Assembly around RNAs is predominately driven by electrostatic 
interactions between RNA phosphate groups and basic amino acids, often located in flexible tails 
known as arginine rich motifs. There is a correlation between the net charge of these protein motifs 
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and the genome length for many ssRNA viruses, with a charge ratio of negative charge on NAs to 
positive charge on proteins typically of order 2:1 (i.e., viruses are ‘overcharged’). 

Packing of genomes into viral capsids can be done in two ways – with and without the use of 
energy. When it is energy-depended, electrostatic forces play a vital role – viral particles are formed 
due to interactions between negatively charged viral RNA and positively charged viral capsid 
protein residues. 

Experiments have shown that the protein subunits of many simple RNA viruses can, in certain 
solution conditions, form a capsid not only around their own RNAs but also around heterologous 
and non-viral RNAs and artificial linear polyanions. It is thus experimentally confirmed that the 
interactions between the capsid protein subunits, which are positively charged, and negatively 
charged genome are largely nonspecific, electrostatic in origin and provide the main driving force 
for the assembly of viruses. Because the PSS is able to compress, it can adjust to the diameters of 
capsids that are preferred by the capsid proteins. However, because this only applies to a limited 
degree, for higher molecular masses of polymer, there are larger VLPs.

Viral capsid optimal thickness is set in such a way that the free energy loss by the elastic 
compression is exactly compensated by the overall free energy gain from encapsulation. If CPs had 
a sufficiently strong preference to form capsids with a particular radius of curvature, there would 
only be one VLP size independent of the overall and relative concentrations of CP and PSS and of 
the PSS molecular mass. Experiments performed on an anionic polymer poly(styrene sulfonate) 
(PSS) show that two basic criteria can be set for the formation of a stable capsid. First, for a certain 
PSS size, the capsid needs to be large enough that any changes in polymer energy and entropy 
which are related to confinement are not too costly. Second, the capsid needs to be small enough 
that the PSS is able to neutralize the effects of amino acid residues, which are positively charged, on 
the inside of the capsid surface without the amino acid being absorption onto that surface (which 
would lead to a loss of configurational entropy).

For some viruses, for example CCMV, empty capsids can not form in physiological conditions 
without the PSS or ssRNA. Reason for this is that for T=2 and T=3 empty capsids the energy 
minima that would correspond to them are higher then chemical potential of unaggregated capsid 
protein subunits in solution. It's also important to notice that the free energies which are associated 
with branched polymers have deeper minima than those associated with linear polymers, given the 
same conditions (same salt concentrations). This provides explanation as to why some RNAs have a 
higher efficiency of encapsulation compared to other RNAs or other linear polyelectrolytes.
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