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1 INTRODUCTION 

The abbreviation CFD stands for computational fluid dynamics. It represents a vast 

area of numerical analysis in the field of fluid’s flow phenomena.  Headway in the 

field of CFD simulations is strongly dependent on the development of computer-

related technologies and on the advancement of our understanding and solving 

ordinary and partial differential equations (ODE and PDE). However CFD is much 

more than “just” computer and numerical science. Since direct numerical solving of 

complex flows in real-like conditions requires an overwhelming amount of 

computational power success in solving such problems is very much dependent on the 

physical models applied. These can only be derived by having a comprehensive 

understanding of physical phenomena that are dominant in certain conditions. [1],  [8]

Why turbulence?  

Whenever turbulence is present in a certain flow it appears to be the dominant over all 

other flow phenomena. That is why successful modeling of turbulence greatly 

increases the quality of numerical simulations. 

All analytical and semi-analytical solutions to simple flow cases were already known 

by the end of 1940s. On the other hand there are still many open questions on 

modeling turbulence and properties of turbulence it-self. No universal turbulence 

model exists yet. 

Further more the price tag for our ignorance is immense. That makes the area of CFD 

modeling also extremely economically attractive. 

2 GENERAL REMARKS 

2.1 Ideal turbulence model 

Solving CFD problem usually consists of four main components: geometry and grid 

generation, setting-up a physical model, solving it and post-processing the computed 

data. The way geometry and grid are generated, the set problem is computed and the 

way acquired data is presented is very well known. Precise theory is available. 

Unfortunately, that is not true for setting-up a physical model for turbulence flows. 
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The problem is that one tries to model very complex phenomena with a model as 

simple as possible. 

Therefore an ideal model should introduce the minimum amount of complexity into 

the modeling equations, while capturing the essence of the relevant physics. 

2.2  Complexity of the turbulence model 

Complexity of different turbulence models may vary strongly depends on the details 

one wants to observe and investigate by carrying out such numerical simulations. 

Complexity is due to the nature of Navier-Stokes equation (N-S equation). N-S 

equation is inherently nonlinear, time-dependent, three-dimensional PDE.  

Turbulence could be thought of as instability of laminar flow that occurs at high 

Reynolds numbers ( Re ). Such instabilities origin form interactions between non-

linear inertial terms and viscous terms in N-S equation. These interactions are 

rotational, fully time-dependent and fully three-dimensional. Rotational and three-

dimensional interactions are mutually connected via vortex stretching. Vortex 

stretching is not possible in two dimensional space. That is also why no satisfactory 

two-dimensional approximations for turbulent phenomena are available. 

Furthermore turbulence is thought of as random process in time. Therefore no 

deterministic approach is possible. Certain properties could be learned about 

turbulence using statistical methods. These introduce certain correlation functions 

among flow variables. However it is impossible to determine these correlations in 

advance.  

Another important feature of a turbulent flow is that vortex structures move along the 

flow. Their lifetime is usually very long. Hence certain turbulent quantities can not be 

specified as local. This simply means that upstream history of the flow is also 

important of great importance.  

2.3 Classification of turbulent models 

Nowadays turbulent flows may be computed using several different approaches.  

Either by solving the Reynolds-averaged Navier-Stokes equations with suitable 

models for turbulent quantities or by computing them directly. The main approaches 

are summarized below. 
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Reynolds-Averaged Navier-Stokes (RANS) Models 

• Eddy-viscosity models (EVM) 

One assumes that the turbulent stress is proportional to the mean rate of 

strain. Further more eddy viscosity is derived from turbulent transport 

equations (usually k + one other quantity). 

• Non-linear eddy-viscosity models (NLEVM) 

Turbulent stress is modelled as a non-linear function of mean velocity 

gradients. Turbulent scales are determined by solving transport 

equations (usually k + one other quantity). Model is set to mimic 

response of turbulence to certain important types of strain. 

• Differential stress models (DSM) 

This category consists of Reynolds-stress transport models (RSTM) or 

second-order closure models (SOC). One is required to solve transport 

equations for all turbulent stresses. 

Computation of fluctuating quantities 

• Large-eddy simulation (LES) 

One computes time-varying flow, but models sub-grid-scale motions. 

• Direct numerical simulation (DNS) 

No modelling what so ever is applied. One is required to resolve the 

smallest scales of the flow as well. 

Extend of modelling for certain CFD approach is illustrated in the following figure 

Figure  2.1. It is clearly seen, that models computing fluctuation quantities resolve 

shorter length scales than models solving RANS equations. Hence they have the 

ability to provide better results. However they have a demand of much greater 

computer power than those models applying RANS methods.  [2],  [7]
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Figure  2.1 Extend of modelling for certain types of turbulent models 

3   REYNOLDS-AVERAGED NAVIER-STOKES MODELS 

The following chapter deals with the concept of Reynolds’s decomposition or 

Reynolds’s averaging. The term Reynolds’s stress is introduced and explained briefly. 

Further on methods how to include these ideas into certain numerical models are 

presented.  [1],  [5],  [8]

3.1 Reynolds’s decomposition 

3.1.1 Equations describing instantaneous fluid motion 

For easier understanding of certain mathematical ideas it is convenient to briefly 

revise N-S equations describing instantaneous fluid motion at the beginning. All 

variables describing instantaneous flow are marked with a tilde. These variables are 

fluid’s density ( ρ ), velocity components ( ), pressure (iu p ) and components of 

viscous stress tensor ( ( )v
ijT ). At this point it is also suitable to point out that these 

variables are al time and space dependent. 

General N-S equations for both turbulent and non-turbulent flow run: 

 
( )v

iji i
j

j i

Tu u pu
t x x x

ρ
⎛ ⎞ ∂∂ ∂ ∂

+ = − +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ j

 and (3.1) 
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The firs equation (3.1) is called momentum equation (second Newtonian law for 

fluids). The second equation (3.2) is known as continuity equation. At this point I 

would also like to define viscous stress tensor ( )v
ijT  as follows: 

 ( ) 12
3

v
ij ij kk ijT s sμ δ⎛= −⎜

⎝ ⎠
⎞
⎟ , (3.3) 

where means: ijs

 1
2

ji
ij

j i

uus
x x

⎛ ⎞∂∂
= +⎜⎜ ∂ ∂⎝ ⎠

⎟⎟  (3.4) 

Should one assume incompressible flow the previous equations simplify immensely. 

The continuity equation (3.2) is reduced to 0i iu x∂ = . Having this result in mind the 

momentum equation (3.1) can be rewritten as: 

 
2

2

1i i
j

j i

u u pu
t x x

μ
ρ ρ

⎛ ⎞∂ ∂ ∂∂
+ = − +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

i

j

u
x

 (3.5) 

The factor μ ρ  is often regarded to as kinematic viscosityν .  Viscous stress tensor 

simplifies as well: 

 ( ) 2v
ij ijT sμ=  (3.6) 

3.1.2 Reynolds averaging 

The concept of Reynolds averaging was introduced by Reynolds in 1895. One may 

consider Reynolds averaging in many different ways. There are three most common 

perceptions of this term: time averaging, space averaging or ensemble averaging.  

Time averaging is appropriate when considering a stationary turbulence. That is when 

the flow does not vary on the average in time. In such cases time average is defined 

by: 

 ( ) ( )1lim ,
t T

T
t

F r f r t dt
T

+

→∞

⎛ ⎞
= ⎜

⎝ ⎠
∫ ⎟  (3.7) 
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Space average is appropriate for homogenous turbulence. That is a turbulent flow that 

on the average does not vary in any direction. Space average is defined by: 

 ( ) ( )1lim ,
V

F t f r t dV
V→∞

⎛= ⎜
⎝ ⎠∫∫∫ ⎞

⎟  (3.8) 

Ensemble average is the most general aspect of Reynolds average. It should be 

understood as an average of N identical experiments. Ensemble average is both time- 

and space-dependent. It is defined by: 

 ( ) (
1

1, lim ,
N

nN n

F r t f r t
N→∞

=

= ∑ )  (3.9) 

The main idea of Reynolds averaging is to decompose the flow to averaged and 

fluctuating component: 

 
( ) ( ) ( )

i i i

v v
ij ij ij

u U u
p P p

T T vτ

= +

= +

= +

 (3.10) 

This process is called Reynolds decomposition. The upper case letters represent the 

mean values; the lower case letters represent the fluctuating values on the right hand 

side in expressions (3.10). By inserting relations (3.10) into N-S equation (3.1) one 

obtains the following expression: 

 ( ) ( ) ( ) ( ) ( ) ( )( )v v
ij iji i i i

j j
j i

TU u U u P p
U u

t x x

τ
ρ

∂ +⎛ ⎞∂ + ∂ + ∂ +
+ + = − +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ jx∂

 (3.11) 

This equation can now be averaged to yield an equation expressing momentum 

conservation for the averaged motion. At this point it is important to stress that the 

operations of averaging and differentiation commute. It is also assumed that the 

average of fluctuating quantities is zero. Therefore the averaged momentum equation 

reduces to:  

 
( )v

iji i
j

j i j

TU U uPU
t x x x x

ρ
⎛ ⎞ ∂∂ ∂ ∂∂

+ = − + −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

i
j

j

uρ  (3.12) 

In similar manner continuity equation for incompressible flow can be decomposed. 

Such a continuity equation is linear therefore the original form for the instantaneous 

motion is preserved: 
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Using the second relation in equation (3.13) one can rework the last term on the right 

hand side of the equation(3.12). The result runs: 

 
( )

(
v

iji i
j

j i j j

TU U PU
t x x x x

ρ ρ
⎛ ⎞ ∂∂ ∂ ∂ ∂

+ = − + −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
)i ju u  (3.14) 

Term ( i ju uρ )  has the same structure and dimension as the viscous stress tensor.  

However this term is not a stress at all. It is just a re-worked contribution of the 

fluctuating velocities to the change of the averaged ones. On the other hand as far as 

the motion of the fluid is concerned it acts as a stress. Hence its name, Reynolds 

stress. 

3.2 The closure problem 

The problem with the above concept of Reynolds decomposition and averaging is that 

it introduces additional variables ( 2
1,2,3iu = , 1 2u u , 1 2u u , 2 3u u ), for which there 

are no available relations. Not in a general sense at least.   [1],  [8]

One could pretend that Reynolds stress is indeed a stress and try to write constitutive 

relations similar to those for viscous stress. However there is an important difference 

among these two stresses. Viscous stress is a property of a fluid. That is why separate 

experiments can be carried out in order to determine corresponding constitutive 

relations. These relations are valid then whenever a flow in that particular fluid is 

observed. On the other hand Reynolds stress is a property of the flow. Hence it is 

dependent on the flow variables them-selves. That is the reason why it changes from 

flow to flow and no general constitutive relations are available. 

3.2.1 Laminar flow, infinitesimal fluctuations and superposition 

One solution to the closure problem is to treat the flow as a laminar flow with 

fluctuations superimposed. One subtracts the averaged momentum equation from 

equation describing instantaneous motion. The result for fluctuating motion reads: 
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( )v
iji i i i i

j j j
j i j j j j

u u U u upU u u
t x x x x x x

τ
ρ ρ ρ

⎛ ⎞⎛ ⎞ ⎡ ⎤∂∂ ∂ ∂ ∂ ∂∂
+ = − + − − −⎜ ⎟⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎣ ⎦ ⎝ ⎠

ju  (3.15) 

The equation (3.15) has a similar structure than the averaged N-S equation(3.14). The 

only difference is the last to terms on the right hand side. The first of them represents 

the production term. It describes the way fluctuating motion extracts momentum from 

the averaged motion. The second one is similar to Reynolds stress term in equation 

(3.14) except that its mean is zero. Should equation(3.15) be averaged its average is 

zero. 

This approach requires fluctuations to be small. In the limit of infinitesimal 

fluctuations Reynolds stress terms are negligible. Therefore averaged N-S equation 

(3.14) yields a laminar flow. Furthermore the equation (3.15) reduces to linear PDE. 

As a result of this process one obtains a well-defined – closed, set of equations 

describing the observed flow. 

3.3 Reynolds stress models 

There were many different concepts and attempts to solve the turbulence closure 

problem in a general form in the past. Nowadays there are two concepts that underlie 

most of the Reynolds stress models. 

One and the most obvious attempt was to describe Reynolds stress in a similar way 

viscous stress is described: the fluid is simply prescribed another property – turbulent 

viscosity. This model had been introduced by Boussinesq back in 1877 even earlier 

then Reynolds proposed his decomposition and averaging approach in 1895. There are 

many difficulties regarding this model. Probably the major problem is how to obtain 

this property without carrying out an actual experiment involving that particular flow. 

Major breakthrough was done by Prandtl in 1925. He introduced the mixing length 

concept analogous to mean free path of the molecules in gas. He also prescribed an 

algebraic expression relating turbulent viscosity to the mixing length. That is why 

Prandtl is known as the founder of so called algebraic or zero-equation models. Zero-

equation refers to the fact, that no additional transport equations besides to energy, 

mass and momentum equations are needed. 
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Another important breakthrough was done by Prandtl in 1945, by introducing a 

concept of turbulent viscosity as a function of turbulent kinetic energy. Major 

advantage of this concept over the previous one is that it already takes into account 

flows history. Hence it is a physically more realistic model. Prandtl used one 

additional transport equation to model turbulent kinetic energy.  Models based on this 

concept are usually called one-equation models. 

Still there is a need to specify a turbulence length scale, which is also a flow 

dependent property. Hence one still needs to have certain knowledge about the 

studied flow in advance. Therefore such models are called incomplete. Both zero- and 

one-equation models are incomplete. 

On the other hand complete model would be characterized by the fact that no 

knowledge of the flow except the initial and boundary conditions is needed in 

advance.  

First complete model was introduced by Kolmogorov in 1942. The basic idea of his 

model was to model turbulent kinetic energy ( ) and the rate of energy dissipation 

(

k

ω ) and then relate the missing information of length and time scales to these 

quantities.  Since two additional equations are used to model  and k ω  these kind of 

models are called two-equation models. They are also referred to as k ω−  models. 

Variations of this concept are so called k ε−  models ( n mkε ω= ). Instead of ω  ε  is 

modelled.  

Another conceptually different attempt was to model Reynolds stress tensor directly. 

At first one tried to derive actual Reynolds stress equations. The idea was to re-work 

fluctuating momentum equation (3.15) in such a manner that it would describe 

Reynolds stress. Major problem with this attempt is that it introduces even more new 

unknown variables for which no constitutive relations are known 

In 1951 Rotta managed to successfully model Reynolds stress tensor by using PDE. 

This model is concept is more realistic than the Boussinesq’s turbulent viscosity 

model. However it introduces six additional equations describing Reynolds stress and 

one additional equation describing turbulence length scale. 

In the field of RANS models no major conceptual break through was done ever since. 

There were many improvements mainly in a sense of adjusting certain models to 

particular flow cases. 
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4 COMPUTATION OF FLUCTUATING QUANTITIES 

In the following section basic properties regarding direct numerical simulation (DNS) 

and large-eddy simulation (LES) are briefly summarized.  [1]

4.1 Direct numerical simulation 

DNS simply means numerical solving of N-S and continuity equation. When dealing 

with turbulent flow one tries to resolve all turbulent phenomena at all length and time 

scales simply by numerical solving of N-S and continuity equation. For a successful 

simulation one typically needs to know what the smallest length, time and velocity 

scales are. This information is crucial in order to set space grid and time steps of 

adequate scales. This data can easily be acquired by applying Kolmogorov turbulence 

theory in advance. What ones want to extract form these data typically is the number 

of grid point and time steps necessary.  

Number of uniformly distributed grid points reads:  

 ( )9 4110 Re , Re T
uni T T

u LN
ν

≈ =  (4.1) 

ReT  represents turbulent Reynolds number,  represents frictional velocity, L is 

typical length scale, 

Tu

ε μ ρ=  is  kinematic viscosity of the fluid. All quantities are 

defined at the integral turbulence scale. All can be derived solely by applying 

Kolmogorov turbulence theory. 

Number of time steps is defined by: 

 0.003,
Re

total
time

TT

t LN t
t u

Δ
= Δ ≈

Δ
 (4.2) 

The following table 4.1 lists numerical parameters for a certain flow.  Figures handed 

under  represents the number of time steps required in order to reach statistically 

steady flow. The figure handed under CP  is the amount of time (in hours) required 

to obtain the solution using a standard Intel Core 2 Duo E6700 (12.53 gigaflops). 

Time step required to finish one time step is approximately 3.2s. 

timeN

U

 [10] [11]
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As one can see the biggest problem regarding DNS is their overwhelming requirement 

for computer power in a sense of both processor’s speed and a size of the memory for 

storing intermediate results.  

Table  4.1: Numerical requirements solving turbulent flow characterized by ReL and ReT 

Re L Re T N DNS N time CPU [h]
12300 360 6.7*106 32000 28
30800 800 4.0*107 47000 42
61600 1450 1.5*108 63000 56
230000 4650 2.1*109 114000 101  

DNS is of great importance. As computers develop one gains the capability to 

simulate flows at ever higher and higher Reynolds number. Nowadays results 

acquired by DNS are so good that one may consider them equivalent to data gained 

experimentally. 

4.2  Large-Eddy simulation 

LES is a computation where large vortexes (eddies) are computed directly, while 

small scale eddies are modeled. That is why space grid and time steps may be much 

longer than in DNS.  Hence LES is much more economical in term of computational 

power required than DNS: 

 1 4

¨0.4
ReLES DNS

T

N
⎛ ⎞

≈ ⎜ ⎟
⎝ ⎠

N  (4.3) 

The following table 4.2 list numerical parameters regarding LES for the same flow 

that is discussed in paragraph  4.1. It seems that LES takes roughly 10% of the DNS 

CPU time to compute the solution.  [10],  [11]

Table  4.2: Numerical requirements solving turbulent flow characterized by ReL and ReT 

Re L Re T N DNS N LES N time CPU [h]
12300 360 6.7*106 6.1*105 2913 2.5
30800 800 4.0*107 3.0*106 3525 3.15
61600 1450 1.5*108 1.0*107 4200 3.73
230000 4650 2.1*109 1.0*108 54285 4.87  
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The idea underlying LES is so called convergent evolution. Behavior of the large-

scale eddies depends strongly on the forces acting on the flow and on initial and 

boundary conditions. They are flow-dependent On the other hand small-scale eddies 

are generally independent from what is happening on the larger scales. They are flow-

independent. Hence large eddies are directly resolved while small eddies are modeled. 

One tries to find a universal model for small eddies. 

Another important concept regarding LES is filtering. One applies filtering functions 

in order to remove sub-grid fluctuations from resolving. Sub-grid fluctuations are 

modeled. This is achieved by averaging. One of the simplest filtering functions is 

central-difference approximation it-self: 

 ( ) ( ) ( )1
2 2

x h

x h

u x h u x h d u d
h dx h

ξ ξ
+

−

⎛ ⎞+ − −
= ⎜

⎝ ⎠
∫ ⎟  (4.4) 

Length scales of order  are still resolved, while length scales smaller than are 

modeled. They are called sub-grid scales (SGS).   

h h

5 RANS versus LES 

Turbulent flow may be composed of many different features. Therefore it is very 

important for a CFD model to be able to predict as many of them as possible. 

Turbulent models are usually tested by simulating a flow past a bluff-body. In 

particular example flow past a square block is analyzed.   [9]

An example of such a flow is shown in Figure  5.1. 

 

Figure  5.1: Flow past a square block in 2D 
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Streamlines predicted LES, EASM (a sophisticated RANS model) and RANS are 

shown in Figure  5.2. One can clearly see a strong influence of the model used in the 

RANS calculation. The EASM reveals the similar topological features as the LES, but 

differs in the extent of the recirculation zones. RANS predicts considerably larger 

recirculation zone and the wake region is much more stretched.  

 

Figure  5.2: Streamlines predicted by LES, EASM and RANS 

More quantitative difference among observed models is observed when comparing 

predicted information to experimental data. The comparison is shown in the following 

set of pictures shown in Figure  5.3 and Figure  5.4. One clearly sees that the simple 

RANS model of Wilcox fails terribly at predicting turbulent kinetic energy in the 

wake region. However more sophisticated RANS model of EASM is much more 

successful. Its results are of comparable quality to the results of LES model. 

 15



 

Figure  5.3: Turbulent kinetic energy in the wake region 

 

Figure  5.4: velocity in the wake region 

There are certain examples when even simple RANS models outperform the 

sophisticated LES model. One example is shown in Figure  5.5, where flow past an 

airfoil (NACA 4412, alpha = 12°, Re = 1.6*106) is observed.  

 

Figure  5.5: Pressure distribution 
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6 CONCLUSION 

In the last decade CFD has become a major tool in engineering. Due to the progress in 

computer technology CFD seems now able to deal with industrial applications at 

moderate costs and turnaround times. The future relevance of CFD will therefore 

depend on how accurate complex flows can be calculated. Since many flows of 

engineering interest are turbulent, the appropriate treatment of turbulence will be 

crucial to the success of CFD. 

The flow field of a Newtonian fluid is fully described by the Navier-Stokes equation. 

However, turbulent flows contain small fluctuations. The resolution of such small 

motions requires fine grids and time steps, such that a direct simulation becomes 

unfeasible for high Reynolds numbers. 

Using RANS, the computational costs can be reduced by solving the statistically 

averaged equation system, which requires closure assumptions for the higher 

moments.  

LES aims to reduce the dependence on the turbulence model. Hence the major portion 

of the flow is simulated without any models, and must be resolved by the grid. Only 

scales smaller than the resolution of the grid need a model. Consequently LES 

approach is computationally more demanding than RANS. RANS models have a 

computing time of only about 5% of the LES. 

Sophisticated RANS models like EASM are able to capture important flow features 

correctly. At low computational costs that makes them already a useful tool in 

industrial design. 
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