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I will present an overview of Peterlin’s work on the determination of DNA persistence length by
analysing the Bunce - Doty light scattering experiments in terms of the Kratky - Porod wormlike
chain model. I will describe the theory he used, the general ramifications of the experimental method
and the unavoidable limitations of his result, as well as their impact on the development of DNA
science.

PACS numbers:

A. Historic context

1953 was a veritable annus mirabilis for DNA science in more respects then one. First of all,
of course, in the April 24 issue of the premier science publication Nature, the structure of DNA
in dense fibers was elucidated in three fundamental and epoch-making papers: the first one by
Watson and Crick [1], the second one by Franklin and Gosling [2], and the third one by Wilkins,
Stokes and Wilson [3]. Their work on molecular structure of DNA launched the era of the double-
helix. This scientific breakthrough was based on one side on the detailed X-ray scattering studies
of DNA fibers, prepared from calf thymus DNA by the Swiss scientist Rudolf Signer, started by
William Astbury in 1937, picked up by Maurice Wilkins in 1951 and culminating in 1952 with the
iconic Photo 51 obtained by Rosalind Franklin and Raymond Gosling. The interpretation and the
reading of these diffractograms was based heavily on the theory of the scattering intensity of helical
molecules devised in 1951 by W. G. Cochran, F. Crick and V. Vand [4] (the CCV theory). Though
the original aim of the CCV theory was to provide a theoretical foundation for the elucidation
of the structure of helical proteins, such as the alpha helix discovered in 1952 by L. Pauling, it
turned out that it could be profitably applied also to the X-ray scattering of DNA. In particular it
helped to associate the broad features of the DNA diffractograms with the physical parameters of
the helix, as well as to elucidate the fingerprint of the double helical, assymetrical nature of this
helix, in the diffraction intensity.

The rest is history one would be inclined to say, were it not for the other discovery published in
the same journal in the very same year, about two - actually in the February 7 issue - months before
the papers on the double-helical nature of DNA. The paper I am referring to was submitted on June
5 the previous year and is entitled Light Scattering by very Stiff Chain Molecules [5], authored by
Anton Peterlin, then the director of the ”Josef Stefan” Institute of Physics in Ljubljana [6]. Peterlin
was analysing the experimental data on light scattering of dilute DNA aqueous solutions and was
applying the theory of light scattering to the DNA solution case, in the same way that Watson and
Crick were applying the theory of X-ray scattering of helical molecules to the case of DNA fibers.
The light scattering experiments on solution of DNA, or thymonucleic acid as it was refferred to
at that time, were performed by Barbara H. Bunce [7], who in 1950-1951 worked as a National
Institutes of Health Predoctoral Fellow in the lab of Paul Doty [8], the founder of the Department of
Biochemistry and Molecular Biology at Harvard. P. Doty, together wit Bruno Zimm and Herman
Mark, co-authored the seminal paper on determining absolute molecular weights of polymers by
light scattering [9] and was interested in the physico-chemical characterisation of macromolecules
in general [10]. Thus his Ph.D. student B. H. Bunce [11] used in particular the light scattering
methods to determine molecular weight of DNA in aqueous solutions. They published their work
in 1952 in two papers, one in Journal of the American Chemical Society and the other one in the
Journal of Polymer Science [12].

In order to learn anything from the light scattering experiment on DNA aqueous solutions, of the
type performed by Bunce and Doty, one has to evaluate the corresponding scattering function and
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compare it to what is seen in experiments. In particular Peter J. W. Debye, when at Cornell but
also after his retirement in 1952, was using his early work on X-ray scattering and applying it to the
determination of molecular weight of polymer molecules in solution. In his evaluation of the scat-
tering function or the form factor of a polymer chain in a solution, he used the random walk or the
free-filght chain model to describe the thermal statistics of a completely flexible polymer molecule
[13]. A few years later, in 1949, O. Kratky and G. Porod presented their worm-like chain model
of a polymer [14] which was supposed to describe semi-flexible polymers that show persistence in
the direction of the chemical bonds. Otto Kratky is among the towering figures in the theory and
design of X-ray scattering experiments. In 1940 he became the director of the X-ray department of
the Kaiser-Wilhelm institute in Berlin and in 1943 he was appointed as professor at the Institute
of physical chemistry in Prague, moving three years later to Graz as a professor of theoretical
and physical chemistry. His most acknowledged research efforts were in the development of X-ray
small-angle scattering methods, especially measurements of thermodynamic properties of polymers
and biopolymers. From 1972 he was the head of the Institut für Röntgenfeinstrukturforschung der
Akad. d. Wiss. und des Forschungszentrums Graz. Günther Porod studied physics and chemistry
under Kratky. He was Kratky’s most important coworker in X-ray small angle scattering. In 1965
he was appointed as professor of experimental physics at the University of Graz.

Around 1952 Peterlin had the idea that DNA should be much closer to the Kratky-Porod semi-
flexible chain model then to the Gaussian chain model, appropriate for other, less locally stiff
polymers. He thus used the Kratky-Porod model to evaluate the form factor of a long polymer
chain. As we know today, this problem has a complicated analytical solution, but at that time
Peterlin had to use an approximate approach in order to calculate it.

I will not say more about the particular circumstances of Peterlin’s life at that time, since they
will be covered by other contributors to this volume.

In what follows I will first present a modern view of the Kratky-Porod model, and evaluate the
two limiting forms of the polymer form factor that follow from this model. Then I will discuss the
way Peterlin approached this problem and how he analysed DNA light scattering data of Bunce
and Doty in 1953. I will conclude with an outlook on the DNA work of Peterlin and its historical
impact [15].

B. The Kratky-Porod model

Here I will derive the Kratky-Porod model in its modern form and calculate the ensuing form
factor of a polymer chain in a solution. Let us consider a polymer as a torsionally relaxed elastic
filament, whose elastic energy does not depend on the torsional deformation. For a filament with a
circular cross section one can write the elastic deformation energy in the form of an Euler-Kirchhoff
elastic filament deformation energy as [16]

F = 1
2Kc

∫ L

0

ṫ2d` = 1
2Kc

∫ L

0

(
dt
d`

)2

d`, where t = ṙ(`) (1)

is the unit tangent vector of the polymer described with a parametric curve r = r(`), with ` the
natural parameter, i.e. the arc-length. The expression for the deformation energy looks similar to
kinetic energy of a particle with ”position” t and ”time” `, which is the essence of the Kirchhoff
kinematic analogy [17]. In addition this partcle would have to move on a unit sphere since t2 = 1.
For an elastic filament that is at a constant non-zero temperature one should study its free energy
as opposed to its energy. It can be obtained from the partition function that is defined as

Z =
∫
D[t(`)] e−

1
2βKc

R L
0 ( dt

d` )2
d` with t2(`) = 1. (2)

where β is the inverse thermal energy, 1/β = kBT and the integral has to be performed over all
unit vector configurations. The partition function is thus analogous to the probability amplitude
of a quantum mechanical particle living on a unit sphere, if one identifies the length of the filament
with ”imaginary time” [18]. The formal relationship can be written as

Z =
∫
dt1

∫
dt2Z(t2(L), t1(0)). (3)
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One can thus derive an equation for the ”probability amplitude” Z(t2(L), t1(0)) analogous to the
Schrödinger equation in the form

∂Z(t2(L), t1(0))
∂L

=
1

2Lp
L2Z(t2(L), t1(0)), (4)

where Lp = βKc is introduced as the persistence length and L2 is the angular part of the Laplace
operator, given by

L2 =
1

sin θ
∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin θ2

∂2

∂φ2
. (5)

Since the filament looks statistically the same along all of its contour one can write

<t(`2) · t(`1)> = <t(`2 − `1) · t(0)> = <cos θ(`2 − `1)>. (6)

If we now take note of the statistical definition of <cos θ(`2 − `1)> [19] we can derive straightfor-
wardly that

∂<cos θ(`2 − `1)>
∂L

=
1

2Lp
<L2 cos θ(`2 − `1)> = − 1

Lp
cos θ(`2 − `1). (7)

The last equality follows from the fact that L2 is the angular part of the Laplace operator and
thus that L2 cos θ(`2 − `1) = −2 cos θ(`2 − `1). Therefore one obtains that

<cos θ(`2 − `1)> = e−(`2−`1)/Lp . (8)

The directional correlations along an elastic filament decay exponentially, where the decay length
is equal to the persistence length. The persistence length is thus the correlation length for elastic
correlations along the filament. This can be seen straightforwardly from the length of the chain
directed along the direction of the beginning of the chain i.e.

<t(0) · (R(L)−R(0))> = <t(0) ·

(∫ L

0

t(`′)d`′
)
> =

∫ L

0

e−`/Lp d`′ = Lp
(

1− e−L/Lp

)
. (9)

Here we have taken into account that R(L) −R(0) =
∫ L
0

dr(`)
d` d` =

∫ L
0

t(`)d`. For long filaments
the length of the chain directed along the direction of the beginning of the chain thus saturates at
the value of the persistence length.

We are now in a position to calculate what is the statistical shape of an elastic filament in a
brownian thermal bath. Let us just remind ourselves that the average square of the end to end
separation of the filament is given by

<(R(L)−R(0))2> =
∫ L

0

∫ L

0

d`d`′<
dr(`)
d`

dr(`′)
d`′

> =

=
∫ L

0

∫ L

0

d`d`′<t(`)t(`′)> =

=
∫ L

0

∫ L

0

d`d`′<cos θ(`− `′)>. (10)

Using now Eq. 8 for the angular average we remain with

<(R(L)−R(0))2> = 2Lp
(
L− Lp + Lpe−L/Lp

)
. (11)

This general result was first derived by Kratky and Porod in 1949, be it in a completely different
fashion, and thus the model of an elastic filament based on their calculation is usually referred
to as the Kratky-Porod model or the wormlike chain model or the semiflexible chain model, the
nomenclature really varies with the author.

The essence of the model is that there are persistent orientational correlations along the chain
that die out exponentially along the contour length of the chain, see Eq. 8, with a characteristic
length equal to the persistence length of the chain. Equivalently one could claim that within this
model the orientation of the first link in the chain is preserved along the length of the chain again
equal to its persistence length, see Eq. 9. The closed form expressions that we derived above have
some very intuitive limiting forms that we discuss next.
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C. The limiting forms of the Kratky-Porod model

The Kratky-Porod model has two important limits dependnig on the ratio L/Lp that we shall
analyse in what follows. They are imbedded in the Kratky-Porod model but can be derived even
without invoking it. First of all we have the Gaussian chain limit, that can be derived as

lim
L/Lp−→∞

<(R(L)−R(0))2> = 2LpL, (12)

The length 2Lp is usually referred to sa the Kuhn length and describes the independent unit of
the polymer chain. Obviously in this limit the thermal bath completely destroys the correlations
between far away segments along the filament.

FIG. 1: Statistical shape (exaggerated) of an elas-
tic filament in the Kratky-Porod model. Short fil-
aments really look like stiff rods. The longer they
are, the more convoluted they become, eventually
becoming completely disordered Gaussian chains.

This result can be obtained also from a simpli-
fied consideration along the following lines. As-
sume the chain is composed of segments of length
b directed along the local tangent t(`), so that
the end-to-end vector is defined as

R(L)−R(0) =
∫ L

0

t(`) d`.

The segments are assumed to be orientationally
completely uncorrelated so that

<t(`) · t(`′)> = b δ(`− `′). (13)

This definition of the orientational correlation
function gives for the length of the chain directed
along the direction of the beginning of the chain
i.e.

<t(0)·(R(L)−R(0))> = <t(0)·

(∫ L

0

t(`′)d`′
)
> = b

exactly the length of the segment b. It follows
straightforwardly in this case that the average

size of the chain squared is

<(R(L)−R(0))2> = b

∫ L

0

∫ L

0

δ(`− `′) d`d`′ = b L. (14)

Clearly by comparing Eqs. 12 and 14 we can identify the Kuhn length with the length of the
statistically independent unit of the polymer chain, thus b = 2Lp.

The other limit of the general Kratky-Porod result can be derived for a very stiff or a very short
chain in the form

lim
L/Lp−→0

<(R(L)−R(0))2> = L2, (15)

Obviously the thermal bath does not play any role at all in this case. Let us derive this result again
by a different route. For a very stiff chain the only configuration surviving the thermal average
over all configurations Eq. 2 is the one that minimizes the elastic energy

F = 1
2Kc

∫ L

0

(
dt
d`

)2

d`. (16)

The minimization leads to the Euler - Lagrange equation of the form

d2t
d`2

= 0, with solution t(`) = n, (17)
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where n is a unit vector, n · n = 1, specifying the direction of the rod in space and thus t(`) = n
obviously describes a straight line in space. The corresponding square of the end-to-end separation
si given by

<(R(L)−R(0))2> =
∫ L

0

∫ L

0

d`d`′ t(`)t(`′) =
∫ L

0

∫ L

0

d`d`′ = L2. (18)

Here we have ignored the thermal average since as we noted for a very stiff chain the only possible
configuration is the one corresponding to the solution of the Euler-Lagrange equation Eq. 17. The
statistical average thus reduces to a single value. In this limit the elastic properties of the chain
obviously do not figure any more in its statistical description.

D. Light scattering from a Kratki-Porod filament in solution

We now move to the most important consequence of the Kratky-Porod model, that was inves-
tigated and used by Peterlin in his analysis of X-ray scattering data on DNA solutions. Let us
start from a definition of the total scattering intensity as the average of the square of the structure
factor of a polymer filament in solution which is given by

I(Q) = <|F(Q)|2> (19)

since we have to avaluate the statistical average <. . .> over all the conformations of the filament
in solution. Assuming that the filament is infinitely thin, and thus does not posses any transverze
dimension, this leads to

I(Q) = <|F(Q)|2> = <

∫
(V )

ρ(r) eiQ·r d3r
∫

(V )

ρ(r′) e−iQ·r
′
d3r′>

=
1
L2

∫ L

0

∫ L

0

<eiQ·(r(`)−r(`′))> d`d`′. (20)

Here we have conventionally normalized the result by dividing it with L2. It is very difficult
to calculate this quantity exactly for the Kratky-Porod chain, though there is no shortage of
approximate results that interpolate between two obvious limiting cases given by Eqs. 14 and 18.
Let us evaluate these limits explicitly.

For a Gaussian chain the probability distribution of segments with length r(`)−r(`′) is Gaussian
due to the central limit theorem that follows from statistical independence of the segments. For a
Gaussian distribution one can furthermore derive [20]

<eiQ·(r(`)−r(`′))> = e−
1
2<(Q·(r(`)−r(`′)))2

>. (21)

We already know that the statistics of a Gaussian chain is isotropic, which means that for each
Cartesian component xi one can write

<(xi(`)− xi(`′))2> = 1
3b|`− `

′|.

where of course we took account of the fact that <(r(`)− r(`′))2> = b|`− `′|. Therefore we finally
remain with

I(Q) =
1
L2

∫ L

0

∫ L

0

e−
b
6Q

2|`− `′| d`d`′ =
2(e−(QRg)2 − 1 + (QRg)2)

(QRg)4
= f((QRg)2),

where f(x) is the Debye scattering function and the radius of gyration Rg is given by R2
g = 1

6 bL.
The Debye scattering function can be often conveniently approximated by

I(Q) =
1

1 + 1
2Q

2R2
g

with about 15 % accuracy for the whole range of Q values. Debye derived this scattering function
within the random walk model of a polymer chain, that accurately describes the thermal statistics
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FIG. 2: Exact scattering intensity for a Kratki-Porod chain calculated by Spakowicz and Wang (Adapted
from A.J. Spakowicz and Z-G. Wang, J. Chem.Phys. 37 (2004) 5814-5823). The l.h.s. graph shows
(kL)I(k) as a function of the dimensionless wave vector k = 2LpQ for different values of the dimensionless
length of the chain N = L/(2Lp). (in this work the symbol S(Q) is used instead of I(Q)). N = 0.1 (solid
line), N = 0.5 (dashed line) and N = 1 (dashed-dotted line). For comparison the figure also includes the
rigid rod result Eq. 23 (dotted line). The r.h.s. graph shows (kL)I(k) for N = 100 for the exact form
of the Kratky-Porod scattering function (solid line) and the Gaussian chain (dashed curve). The Kratky
- Porod model closely agrees with the Gaussian chain model for small k; however, as k increases, these
two models diverge. Since a wormlike chain is rigid at sufficiently small length scales, the structure factor
for the wormlike chain model approaches the rigid rod limit for large k regardless of the stiffness of the
chain. Such behavior is not captured by the Gaussian chain model since it has no (bending) stiffness at
any length scales.

of a completely flexible polymer molecule, with only short range orientational correlations along
the chain. The opposite limit within the Kratky-Porod model is again obtained by treating the
filament to the lowest order as a rigid rod. In this case r(`) − r(`′) = n(` − `′). where n is the
constant unit direction tengential vector of the rod. For the rod the statistical average is translated
directly into the integral over all the orientations of the rod with respect to Q. Thus we remain
with

I(Q) =
1
L2

∫ L

0

∫ L

0

<eiQ·(r(`)−r(`′))> d`d`′

=
1
L2

∫ L

0

∫ L

0

eiQ|`−`
′| cos θd(cos θ) d`d`′ =

2
L2

∫ L

0

∫ L

0

sinQ|`− `′|
Q|`− `′|

d`d`′.

(22)

One can now introduce an auxiliary variable u = ` − `′. The domain of integration decomposes
into a stripe from u to L for the variable ` and from 0 to L for u. We can thus finally derive for
the total scattering factor of an orientationally averaged thin rod

I(Q) =
2
L2

∫ L

0

(L− u)
sinQu
Qu

du =
2

(QL)

(∫ QL

0

sin z
z

dz − 1− cosQL
(QL)

)
. (23)

The two forms of the scattering function Eqs. 22 and 23 also present two asymptotic limits for the
scattering from a semi-flexible Kratki-Porod filament. For small values of L/Lp we have the rigid
rod result and for large values of L/Lp we have the Debye Gaussian chain result. The limiting
values of the two scattering intensities for large Q are π/2 for the rigid rod and 2 for the Gaussian
chain.

Exact calculations of the scattering function for the Kratki-Porod model, i.e. its form between
the limits of Eqs. 22 and 23, are extremely difficult to calculate and there have been various
attempts at its explicit evaluation. In the Kratki-Porod model the scattering function can be
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obtained exactly from

I(Q) =
1
L2

∫ L

0

∫ L

0

<eiQ·(r(`)−r(`′))> d`d`′ =

=
1
L2

∫ L

0

∫ L

0

G (Q; `− `′) d`d`′.

(24)

FIG. 3: Two limiting shapes - schematically - used
to calculate the light scattering off a flexible poly-
mer chain in solution. A Gaussian, completely
disordered, coil and a stiff rod. They represent
two extremes of the Kratky-Porod statistics of a
filament in solution. The exact scattering form
factor of a Kratky-Porod chain can interpolate be-
tween these two limits.

Here G (Q; `− `′) is the Fourier transform of
the Green function of the Kratki-Porod chain de-
fined as

G (r− r′; `− `′) =

=
∫
D(t) δ3(r− r′ −

∫ `

`′
t(s)ds) e−

1
2βKc

R L
0 ( dt

d` )2
d`.

(25)

where the summation is over all the configura-
tions of the chain with t2(`) = 1 as in Eq. 2.
This average is difficult to evaluate explicitly.

There are two ways to proceed from here. Har-
ris and Hearst [21] consider an exact series ex-
pansion of the scattering function in terms of
the weighting function method. An alternative
approach was prosecuted vigorously by Spakow-
icz and Wang [22]. In a veritable mathematical
tour de force they again obtained an exact result
for the scattering function in the form of infinite
continued fractions, which are obtained by ex-
ploiting the hierarchical structure of a moment-
based expansion of the partition function. In
both cases the final dependence of the scattering
function I(Q) on the magnitude of the wave-
vector Q can only be evaluated numerically. On
Fig. I D we compare the results of the exact cal-

culation by Spakowicz and Wang and the limiting forms of the scattering form factor for a rigid
rod and for a Gaussian chain calculated above.

E. Peterlin’s analysis of DNA light scattering data

Peterlin published his investigations on the light scattering of semi-flexible polymers in five other
publications, apart from his Nature paper [23]. They are all based on his approximate treatment
of the scattering integral Eq. 20 that he was not able to evaluate exactly. The explicit and exact
evaluation of the scattering function within the Kratky - Porod model was evaluated later by Harris
and Hearst as well as Spakowitz and Wang (see above). Peterlin writes Eq. 20 in the form

I(Q) =
1
L2

∫ L

0

∫ L

0

<eiQ·(r(`)−r(`′))> d`d`′ =
1
L2

∫ L

0

∫ L

0

e−
1
2<(Q · (r(`)− r(`′)))2> d`d`′ =

=
1
L2

∫ L

0

∫ L

0

e−
Q2

6 <(r(`)−r(`′))2> d`d`′. (26)

by implementing the Gaussian ansatz Eq. 21 and the fact that the statistical distribution of the
polymer chain is isotropic. The magnitude of the scattering wave vector Q in the above formula
is given by

Q2 =
(

2π
λ

2 sin
θ

2

)2

,
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with λ the wavelength of light and θ the scattering angle. The difficult part in the above integration
is to get the appropriate form of <(r(`) − r(`′))2> in the Kratky-Porod model. One can either
evaluate it explicitly and remain with a complicated integration, or one can come up with some
suitable approximation and hopefully evaluate the integral analytically. It was the latter path that
was pursued by Peterlin.

The approximation embraced by Peterlin on purely intuitive grounds was to take

<(r(`)− r(`′))2> = 2Lp2
(
u− 1 + e−u

)
, (27)

with x the ratio of the separation between the segments r(`), r(`′) along the chain and its persistence
length, i.e. u = |`−`′|/Lp. The essence of the Peterlin approximation was to use the Kratky-Porod
form of the end-to-end separation of the chain also for the local segment-to-segment separation
among any two segments along the chain. Though this is not valid exactly, it is certainly plausible.
Peterlin never explored systematically the range of validity of this approximation, he does however
state [24] that the statistical deviation from this result, expected for a Kratky - Porod chain, should
have little consequences on his final conclusions. In his opinion the local approximate relation Eq.
27 should be the more accurate the larger the ratio L/Lp.

Taking this closed form expression for <(r(`)− r(`′))2> the two integrals in Eq. 26 can now be
evaluated analytically, yielding the following closed form expansion for the scattering intensity

I(Q) = P (p, x) = e−u
[
F (p, x)− p

1!
F (p+ 1, x) +

p2

2!
F (p+ 2, x) + . . .

]
(28)

Here we used the following abbreviations

p = 1
3

(
4π
λ
Lp
)2

sin2 θ

2
and F (p, x) =

2
(px)2

(
px− 1 + e−px

)
,

where x = L/Lp. As shown by Peterlin the above scattering intensity reduces directly to the Debye
result valid for a Gaussian chain and corresponding to the limit x −→∞ as

lim
x−→∞

P (p, x) =
2
w2

(
w − 1 + e−w

)
with w = 1

6

(
4π
λ
R

)2

sin2 θ

2
,

which is the Debye result with R2 the average square end-to-end distance for a Gaussian chain.
Since experimentalists usually plot the scattering data in terms of the s.c. Zimm plots, where

one plots not the scattering intensity but rather its inverse as a function of sin2 θ
2 . Peterlin thus

rewrote his results in an alternative form that would be in accord with this convention. He thus
evaluated the expansion of the inverse scattering intensity, noticing that the Zimm plot should show
a convex curvature close to the origin for a Gaussian chain and should show a concave curvature
for a stiff rod. His results should fall right somewhere in between these two limits. He derived the
following form for the inverse scattering intensity

1
P (p, x)

= 1 +
p

3 1!
[x+ 3(F (1, x)− 1)] + . . . . (29)

This form is obviously linear in p = 1
3

(
4π
λ Lp

)2 sin2 θ
2 and its L dependent coefficient, i.e.

[x+ 3(F (1, x)− 1)], should be easily extractable from the Zimm plot. Peterlin also checked the
limiting forms of this expression. First of all he writes down again the Debye limit of a Gaussian
chain which now has the form of

lim
x−→∞

1
P (p, x)

= 1 +
w

3
+ . . . again with w = 1

6

(
4π
λ
R

)2

sin2 θ

2
. (30)

Here again R is simply the mean square end-to-end separation of a Gaussian chain. Then he
derives also the form of the Zimm plot for a stiff rod. This limit corresponds to the general case of
small length of the chain in comparison with its persistence length. Formally this limit is obtained
by taking x −→ 0 in the general formula Eq. 28 yielding the following expression

lim
x−→0

1
P (p, x)

=
(QL)

2

(∫ QL

0

sin z
z

dz − 1− cosQL
(QL)

)−1

= 1 +
y

9
+. . . with y =

(
4π
λ
L

)2

sin2 θ

2
,

(31)
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which is completely in accord with Eq. 23. He notes that in the Zimm plot for
all x his scattering curves remain concave. After obtaining the scattering intensity for
a semi-flexible chain, which incidentally were calculated numerically by Mrs. Bibijana
Čujec - Dobovǐsek of the J. Stefan Institute, Peterlin started comparing them to ex-
periments by Bunce and Doty, which were the only ones at that time involving DNA.

FIG. 4: Comparison between theory and experiment for
a set of DNA data. Taken from A. Peterlin, Lichtzer-
streuung an ziemlich gestreckten Fadenmolekulen, Die
Makromoleküläre Chemie 9 244-268 (1953). Instead of
plotting v ∼ sin2 θ

2
on the abscissa, he chose to plot log v.

Other five papers by Peterlin on the same topic contain
partial versions of this figure, showing only some, not all,
sets of data presented above.

He took the data from Bunce’s the-
sis and obtained a graph showing the
comparison between theory and exper-
iment, see Fig. I E. Different vari-
ants of this graph appear in several of
Peterlin’s papers dedicated to the scat-
tering of light in dilute DNA solutions.
They vary only in regard to which data
sets Peterlin chose to include in the
graph. The graph presented in the
Nature paper [25] contains only data
sets by Singer, Bunce-Geiduschek, Bunce-
Geiduschek I and Gulland. The paper
in Die Makromoleküläre Chemie [26] con-
tains the data sets by Singer, Bunce-
Geiduschek, Bunce-Geiduschek I and
Gulland, Bunce-Geiduschek II, Bunce-
Geiduschek III, Varin I, Varin II (pH =
2.6) and Varin III. The last three data
sets were not obtained by Bunce [27].
The paper in the Annals of the New
York Academy of Science [28] contains
data sets by Singer, Bunce-Geiduschek,
Bunce-Geiduschek I and Gulland, Bunce-
Geiduschek II, and Bunce-Geiduschek III.
The paper in the Journal of Polymer Sci-
ence [29] contains only theoretical calcula-
tions. The paper in Die Makromoleküläre
Chemie thus represents the most thorough
set of experimental data and their com-
parison with Peterlin’s theoretical calcu-
lations.

Obviously all the experimental data on Fig. I E fall between the Debye Gaussian result and the
stiff rod result, indicated by the values of x =∞ and x = 0.

Peterlin now used his expression Eq. 29 and fitted the length of the chain L as well as the
persistence length Lp to the data. One should note here that the experimental data were not
obtained for monodisperse DNA solutions and thus the length estimate should be considered as a
polydispersity average. He assembled all his results in a table. There are different variants of this
table in the various papers referred to above, the most thorough one again exhibited in the Die
Makromoleküläre Chemie paper. In these tables he presents the molecular mass of the DNA used
in the data set, the fitted persistence length, the fitted length, the average end-to-end separation
obtained from the fitted values of the persistence length and the total length of DNA, and the
linear mass of the DNA molecule obtained as the ratio between the molecular mass and fitted
DNA length. The average persistence length of DNA obtained by Peterlin is thus given by

Lp = 40.6 (1± 0.28)[nm] or approximately 120 base pairs, (32)

where the contour length of the base pair is taken standardly as 0.34 nm. This makes DNA a
moderately stiff molecule. The Peterlin value is indeed very close, but somewhat smaller, then the
modern accepted value [30] of 46−50 nm or 140−150 base pairs, thus very close to the length of the
nucleosomal DNA fragment. However, as it has been realized for a while [31], it depends crucially
on the ionic solution conditions and can vary significantly with these conditions [32]. The most
accurate values for DNA persistence length are obtained from atomic force spectroscopy (AFM)
[33] which is the modern method of choice for measuring elastic properties of single macromolecules.
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Data set DNA preparation M × 10−6 Lp[nm] L[nm] R[nm] M/L[M/0.1 nm]

1 Signer 6.7 28.5 4300 490 156

2 Bunce-Geiduschek 4 26 2600 370 154

3 Gülland 4 40 1000 280 400

4 Bunce-Geiduschek I 2.64 40 1000 280 264

5 Bunce-Geiduschek II 2.1 37 1100 280 190

6 Bunce-Geiduschek III 2.7 54 1080 340 250

7 Varin I 7.7 60.6 2100 500 370

8 Varin II (pH=2.6) 7.7 ∞ 2800 280 2750

9 Varin III 7.7 39 2820 470 270

TABLE I: Fitted persistence length, length, coil size (obtained from the Kratky-Porod formula Eq. 11)
and linear mass of the various sets of DNA data in light scattering experiments. This table is taken from
A. Peterlin, Lichtzerstreuung an ziemlich gestreckten Fadenmolekulen, Die Makromoleküläre Chemie 9
244-268 (1953). Other papers by Peterlin analysing the DNA light scattering data contain partial versions
of this table. The polydispersity of DNA samples is not indicated. Data set 8 has a very short range and
can only be fitted as a stiff rod, indicated by the value ∞ for Lp. This data set is thus not counted in the
statistics for the values of Lp. The anomalously high linear density of the data set 8 is probably due to the
self-association of DNA molecules in very acid (pH=2.6) ionic solutions. The chemical value of the linear
mass density is around 100 [M/0.1 nm].

F. Historic impact

The number of citations of Peterlin’s six papers on the persistence length determination of DNA
amounts to only 185 [34] in the years following 1970. For the years previous to that, I was not
able to obtain any citation data but I would assume it is safe to conclude that Peterlin’s work
on the persistence length of DNA was not widely appreciated. I do not find this particularly
surprising since it was tailgating the veritable explosion of molecular biology that sprung from the
epoch-making paper by Watson and Crick published in the very same year as the Nature paper by
Peterlin.

It was only much later that measurements of persistence length of DNA became fashionable. This
timeframe coincides almost exactly with the introduction of the new experimental method of optical
tweezers into the physics of single molecules. Bustamante and his coworkers [35] in a remarkable
series of physical manipulation experiments on DNA since 1992 made the DNA persistence length
respectable again and launched it into the forefront of the single molecule physics. By measuring
the force vs. extension curves for a single DNA molecule, chemically attached by one end to a glass
surface and by the other end to a magnetic bead, they verified that the random thermal flopping
of about 100-kb [36] double helix led to an ”entropic elasticity”, consistent over a thousand-fold
range of force, with the elastic equation of state obtained from the Kratky-Porod model, also used
by Peterlin in his extraction of the persistence length from light scattering experiments. They
found out that it took about 0.1 pN to pull the ends of a DNA apart a distance of half its contour
length. This 0.1 pN force scale comes from the energy associated with a thermally excited degree
of freedom divided by the DNA persistence length, the contour length of DNA over which a single
appreciable bend occurs. The main conclusion of this work is that for small stretching forces
(double stranded) DNA behaves as a linear spring with a Hookes constant kDNA = 3kBT/2LpL,
that is, inversely proportional to the length of the molecule (L) and its persistence length Lp. A
10 µm DNA molecule, for example, has a spring constant of approximately 10−5 pN/nm.

This atomic force spectroscopy, as it came to be referred to, thus uses the same physics as
Peterlin’s analysis, except that it does not describe the scattering properties of light of a Kratky
- Porod chain, but its elasticity. Bustamante and coworkers were able to fit the Kratky - Porod
elastic equation of state derived by Marko and Siggia [37] with a persistence length of 50 nm,
which is very close to the Peterlin’s value. Later these experiments were repeated at various ionic
conditions of the bathing solution leading to the measurement of a variation in the persistence
length with e.g. ionic strength of the solution [38].

The Kratky - Porod wormlike chain model thus provided the means of accurate determination of
the persistence length of DNA from both the light scattering as well as force spectroscopy experi-
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ments. By the advent of the force spectroscpy the light scattering technique of persistence length
determination was out of date, since the latter gives a much better accuracy and does not have any
drawbacks of the light scattering method. Recently however, Philip Nelson of the University of
Pennsylvania and colleagues used high-resolution AFM to critically assess the applicability of the
Kratky - Porod model to DNA in such contexts as how it recognizes and binds to other molecules,
e.g. proteins, and also for the way it packs into cellular components or viral capsids [39]. In all
these cases DNA has to bend substantially, contrary to soft thermally induced local bending that
guides its behavior in light scattering or force spectroscopy experiments. In a series of experiments
[40] they came to a conclusion that on a very short scale DNA is a lot more bendable then sug-
gested previously by the Kratky - Porod model. Nelson and colleagues used high-resolution AFM
to image the curvature in a large number of double-stranded DNA molecules over distances as
short as 5 nm, about ten times less then the scale set by the persistence length. The molecules
in their experiments were gently adsorbed onto a negatively charged mica surface with the help
of small concentrations of MgCl2. When they analysed the statistical frequency of various DNA
conformations in the AFM images, the number of highly bent segments was much greater than
predicted by the Kratky - Porod model. Their analysis on these length scales suggests that DNA
elasticity in general does not follow Hookes law. Moreover, they were able to fit their data to a
new general model that they have named the sub-elastic chain model which differs radically from
the Kratky - Porod model.

The fact that the elastic energy at length scales much shorter than the persistence length does not
obey Hooke’s law and thus can not be described by the Kratky - Porod model does not disqualify
it for describing light scattering or force spectroscopy experiments on single DNA molecules. On
the length scales probed by these mathods, the details of the elastic properties of the segments
are washed out by thermal fluctuations, and the molecule as a whole follows the predictions of
the Kratky - Porod model. At much smaller scales, however, the effect of thermal fluctuations is
small and it is possible to observe nonlinear elasticity that is not captured by the Kratky - Porod
model. In solid and soft matter, there are numerous examples of effective energies depending on the
length scale at which they are studied, so it is no surprise to find similar behaviour in semiflexible
molecules such as DNA. The new model of DNA elasticity proposed by Nelson et al. implies that
the elastic restoring force is constant when the molecule is bent on small length scales and is not
proportonal to the local curvature as implied by the Kratky - Porod model. The constancy of
restoring forces in this experiment is apparently a consequence of the thermodynamic equilibrium
between two types of differently stretched links. In a similar fashion, the small-length-scale bending
of DNA observed and quantified by Nelson et al. could be due to an equilibrium between DNA
molecules with different values of the local bend angle.

One could thus conclude that Peterlin’s breakthrough determination of DNA persistence length
in 1953 was overshadowed by the birth of molecular biology, while the possible stronger impact
of his work in later years was sidetracked by the introduction of new experimental techniques
that gave not only a much more accurate value of the persistence length, but also elucidated the
limits of the elastic model of DNA used so successfully by Peterlin. Nevertheless it should not be
forgotten that he was the first one to come up with a reliable value for DNA persistence length
that withstood the test of time.
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