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Advisor: Doc. Dr. Primož Ziherl
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Abstract

In this seminar we discuss from a group theoretical viewpoint the icosahedral
symmetry observed in capsids of many viral families. After giving the properties of
the icosahedral point group, we present the first effort of explaining the icosahedral
symmetry of viral capsids, the famous principle of quasi-equivalence proposed by
Caspar and Klug. We then consider and compare two recent models improving on
the Caspar-Klug principle, the approach of Lorman and Rochal based on the Landau
theory of crystallisation, and the viral tiling theory. Lastly, we briefly comment on
the possible origins of the icosahedral symmetry in viral capsids.
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1 Introduction

1 Introduction

When the early techniques of X-ray scattering to determine molecular structures were
applied to viruses, the resulting diffraction patterns possessed striking symmetry. It
came as an even greater surprise that the observed symmetry of many viruses was that
of an icosahedron. This additionally implied that the symmetry of viruses, structures
composed of many pieces of one or maybe few different proteins, is thus independent of
protein contact details, and that a more general physical principle is hidden behind it.

In this seminar, we shall take a look at the icosahedral symmetry of viruses. First,
we will outline the necessary theory of point groups and especially the properties of the
icosahedral group. Then we will present the famous principle of Don Caspar and Aaron
Klug, explaining the icosahedral symmetry from the viewpoint of quasi-equivalence of
structural units. Afterwards, we will take a closer look at a recently proposed improved
model for the observed symmetry which applies the Landau crystallisation theory to the
structure of small viruses. We will compare this model with the so-called viral tiling
theory, taking on the quasi-equivalence principle from another angle. Lastly, we will
mention some possible explanations for the origin of icosahedral symmetry in viruses,
which is not yet completely known.

2 Basic structure of viral capsids

But before we delve into the symmetries of viruses, we should spare a few words about
their structure to help us understand the models and their implications. We will focus
mainly on the structure of viral capsids; more details may be found in Ref. [1], wherefrom
most of the material in this section is taken.

Even though viruses are entities that depend on other organisms in order to reproduce
themselves, they can be found in almost every ecosystem, infecting both eukaryonts
(animals and plants) and prokaryonts (bacteria). In spite of myriad different viruses
adapted to their specific hosts, all of them have in common their basic structure, that
of the nucleocapsid.

The nucleocapsid consists of the viral genome, enclosed inside the viral capsid. A major
function of the viral capsid, which is formed from structural proteins, is the protection
of the genome as well as recognition and attachment to the host cell, inside which the
virus can be replicated. Furthermore, the capsid must also have the ability to alter its
conformation in order to release its genome at the appropriate time, whilst being stable
enough to survive in extracellular environment.

The nucleic acid of the viral genome can be either a DNA or an RNA molecule, and
both may be either single- or double-stranded. The lengths of viral genomes range from
very small (some 3 kbp) to lengths comparable with microbial genomes (e.g. 1200 kbp for
Mimivirus). An important consequence of this is that smaller viruses with a correspond-
ingly small genome encode only one to at most few structural proteins (i.e. different
protein species) from which the capsid is constructed, whereas the number of different
protein subunits increases with the increasing size of the genome.
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2 Basic structure of viral capsids

Figure 1: Examples of capsids with icosahedral symmetry [1]. The images were created with the
molecular graphics program UCSF Chimera using data from cryo-electron microscopy
and X-ray diffraction.
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3 Icosahedral symmetry of viruses and the Caspar-Klug theory

The individual protein subunits (monomers) are asymmetrical, yet they are organized
into morphological subunits (capsomeres) which then form capsids possessing great sym-
metry. The vast majority of the viral capsids have either helical or icosahedral symmetry,
though rods and cone-like capsids are also observed. Our focus will be on viruses having
icosahedral symmetry, encountered in the capsids of many viral families (Fig. 1). Here,
a distinction should be made between the symmetry and the shape of a capsid – icosa-
hedral symmetry does not necessarily imply a shape of an icosahedron. Again, this can
be clearly observed in Fig. 1, where we can see that the smaller viruses with icosahedral
symmetry have nearly perfect spherical shape, the deviations from which grow larger
with increasing capsid radius. Within the context of continuum elasticity theory, this
can be explained by a single parameter, termed the Föppl-von Kármán number [2]:

γ = 〈R〉2 Y
κ

. (1)

Here, 〈R〉 is the average capsid radius, Y is the two-dimensional Young modulus, and
κ is the bending rigidity. This analysis shows that the larger the virus, the greater the
influence of icosahedral symmetry on its shape, and such capsids thus possess structural
deviations in forms of cones, ridges, . . . [3]. On the other hand, the shapes of small
viruses can be very well approximated as perfect spheres, with the constituent proteins
still retaining icosahedral symmetry.

3 Icosahedral symmetry of viruses and the Caspar-Klug theory

Since icosahedral symmetry is obviously a characteristic feature of numerous viral cap-
sids, it indicates that some general physical principle and not protein-specific interactions
is the cause of it. To be able to discuss the possible origins of the symmetry we will in this
section first give the basic properties of the icosahedral symmetry from the viewpoint
of point groups, and then present the most well-known explanation for the occurrence
of such symmetry in viral capsids, the principle of quasi-equivalence put forth by Don
Caspar and Aaron Klug.

3.1 The icosahedral point group

We will begin by giving the basic group structure pertaining to objects with icosahedral
symmetry. For this purpose, we shall in this section try to follow the notation from
Refs. [4] and [5] , which is also where the reader should turn for the details of the group
theory presented here.

Icosahedral point group Y is the group of all proper coverings of the icosahedron, and
consists of 12 (6 bilateral) five-fold rotation axes C5 , 20 (10 bilateral) three-fold rotation
axes C3 , and 15 two-fold rotation axes C2 (Fig. 2). The latter can be generated by
consequently applying a C5 and a C3 rotation. We exclude inversion symmetry (group
Yh), as the asymmetry of the constituent protein monomers means that the capsids
are chiral in general. Nonetheless, the extension to the full icosahedral group is rather
trivial, as we need only include the spatial inversion (Yh = Y ⊗ S2).
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3 Icosahedral symmetry of viruses and the Caspar-Klug theory

The elements of the icosahedral group can be divided into five conjugacy classes: the
identity (E), 12 rotations by 2π/5 (12C5), 12 rotations by 4π/5 (12C2

5 ), 20 rotations by
2π/3 (20C3), and 15 rotations by π (15C2), respectively. Every other rotation can be
generated from these elements; for instance, the rotation by −2π/5 around one five-fold
axis is simply the rotation by 2π/5 around its bilateral axis. Thus, the group order is
obviously g = |Y| = 60 .

The number of conjugacy classes is equal to the number of irreducible representations
of the group [4]. A well-known relation connects the dimensionalities of the irreducible
representations sα with the order of the group:

5∑
α=1

s2α = g . (2)

The only possible solution in our case is s1 = 1 , s2,3 = 3 , s4 = 4 , s5 = 5 . We
thus have one one-dimensional representation (A), two three-dimensional representations
(T1,2), one four-dimensional representation (G), and one five-dimensional representation
(H). From here the character table for the irreducible representations (Table 1) may be
straightforwardly derived, using the orthogonality relations for group characters [4]:∑

p

cp|χp|2 = g , (3)∑
p

cpχ
(α)
p = 0 for α 6= A , (4)∑

α

sαχ
(α)
p = 0 for p 6= {E} , (5)

where cp is the number of elements in class p , and χp the character of the elements in
the corresponding class.

Table 1: Character table for the icosahedral point group Y . Here, η± = (1±
√

5)/2 .

E 12C5 12C2
5 20C3 15C2

A 1 1 1 1 1
T1 3 η+ η− 0 -1
T2 3 η− η+ 0 -1
G 4 -1 -1 1 0
H 5 0 0 -1 1
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3 Icosahedral symmetry of viruses and the Caspar-Klug theory

(a) (b) (c)

Figure 2: Proper symmetry elements of an icosahedron. The 12 ( 6 bilateral) five-fold rotation
axes pass through the opposite vertices of the icosahedron, the 20 ( 10 bilateral) three-
fold rotation axes pass through the centres of its opposite faces, whilst the 15 two-fold
rotation axes pass through the centres of opposite edges. One of each rotation axes
is shown in panel (a), and their nature clarified in panel (b). Panel (c) shows the
absence of an inversion centre in the icosahedral group Y [6].

Irreducible representations of SO(3) and their subduction to point groups

In general, a point group G consisting of proper rotations can be thought of as a subgroup
of the special orthogonal group of all rotations in three dimensions, G ⊂ SO(3) .1 The
irreducible representations D(l) of the special orthogonal group SO(3) are (2l + 1)-
dimensional with l = 0, 1/2, 1, 3/2, 2, . . . , and are spanned by the spherical harmonics
Y m
l (ϑ, ϕ) :

Y m
l (ϑ, ϕ) = (−1)m

[
(2l + 1)(l −m)!

4π(l +m)!

]
eimϕ sinm ϑ

(
d

d(cosϑ)

)l+m (cos2 ϑ− 1)l

2ll!
, (6)

with parity PY m
l = (−1)lY m

l . The characters of the irreducible representations D(l) are
given by [7]

χ(l)(ϕ) =

l∑
m=−l

eimϕ =
sin
(
(l + 1/2)ϕ

)
sin(ϕ/2)

. (7)

For the vector representation (l = 1) this reduces to the known expression χ(1)(ϕ) =
2 cosϕ+1 . It should also be mentioned that induced rotations by ϕ around a given axis
k , Rk(ϕ) , do not mix different irreducible representations amongst themselves [7],

D(l)(Rk(ϕ))Y m
l (ϑ, ϕ) = Y m

l (ϑ′, ϕ′) =
∑
n

D(l)
nm(k, ϕ)Y n

l (ϑ, ϕ) . (8)

1Should we include improper rotations (roto-inversions), such a point group would be a subgroup of
the orthogonal group O(3) .
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3 Icosahedral symmetry of viruses and the Caspar-Klug theory

As D(l) are representations of SO(3), they will also be representations of a point
subgroup, albeit in general not irreducible [4, 8]. Therefore, they can be written as
a direct sum of the irreducible representations of the point subgroup; in our case, the
icosahedral group Y :

D(l) =

5⊕
α=1

mαD
(α)
Y , (9)

where mα are the multiplicities of each irreducible representation occuring in the reduc-
tion. Using again the orthogonality relations, the multiplicities can be obtained by [4]

mα =
1

g

∑
p

cpχ
(α)∗
p χ(l)

p . (10)

Little groups and orbits

Another important concept for the understanding of the geometrical approach to cap-
sid construction is that of group orbits [9], so it shall be briefly outlined here. For
a given group G acting on a set of points Ω, its stabilizer subgroup (also called the
little group) of an element ω ∈ Ω is the set of all the group elements G that fix ω,
Gω = {G ∈ G | G ◦ ω = ω} . A closely related notion is that of a group orbit. The orbit
of a point ω ∈ Ω is the set of elements of Ω to which ω can be moved by the elements
of G, and is denoted by Gω = {G ∈ G | G ◦ ω} . More details on this topic may be found
in Ref. [8].

A regular (trivial) orbit is then such an orbit that for any group action on an element
in orbit the resulting element is again in the orbit, and that the power of the stabilizer
subgroup of each element is one, Ωreg = {ω ∈ Ω | G ◦ ω ∈ Ωreg ∧ |Gω| = 1 ∀ω ∈ Ωreg} .
For a discrete symmetry group, the number of positions in a regular orbit is equal to the
group order g [9]. In the case of an icosahedron, each point in one of the fundamental
domains (black scalene triangles in Fig. 2c) can be used to generate its regular orbit.
This notion plays an important role in the principle of quasi-equivalence discussed in the
next sections, as asymmetric proteins placed in a regular orbit of an icosahedron have
equivalent environments – consequently, no more than |Y| = 60 proteins can be placed
equivalently to construct a capsid with icosahedral symmetry.

3.2 Caspar-Klug principle of quasi-equivalence

One of the first who attempted to explain the highly symmetrical structure of spherical
viruses (such as shown in Fig. 1) were Crick and Watson in the mid 1950s [10]. Based
on experimental evidence they argued that these viruses posses the symmetry of a cubic
point group – either tetrahedral, octahedral, or icosahedral. Not much later crystallo-
graphic studies of Tomato Bushy Stunt virus made by Caspar and Turnip Yellow Mosaic
virus made by Klug showed spikes indicating five-fold symmetry (Fig. 3). At first, when
each of them separately presented their results indicating that viral capsids are a sort
of “surface crystals” with icosahedral symmetry, they were met with scepticism. Yet in-
spired by Buckminster Fuller’s geodesic domes and motivated by additional experimental
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3 Icosahedral symmetry of viruses and the Caspar-Klug theory

data, they then somewhat independently hit upon the idea of near- or quasi-equivalence
of capsid subunits, and in 1962 they together published a now famous paper considering
the geometrical aspects of virus capsid design [11].

Figure 3: (a) An X-ray diffraction pattern of a poliovirus crystal, made by Finch and Klug
(1959), (b) compared with an optical diffraction pattern of 60 points on the surface of
a sphere with icosahedral symmetry [11]. Arrows show spikes of high intensity along
certain directions, related to five-, three-, and two-fold axes of an icosahedron. Both
patterns show the same symmetry relations.

In this paper they focused on simple spherical viruses with a regular structure, the
main components being the nucleic acid and capsid proteins. They used three basic
properties in the study of viral capsid formation: the lateral type of protein interaction
(bonding), the intrinsic curvature of the bond deformation, and especially the asymmetry
of capsid proteins [9]. Using the fact that the small viral genome can encode only one or a
few types of proteins, Caspar and Klug (CK) formulated the main structural problem in
physical virology: how to construct a regular shell with the icosahedral symmetry formed
by identical copies of identical asymmetric proteins (considered as 2D units).

Such structures are formed by self-assembly, a process akin to crystallisation and gov-
erned by laws of statistical mechanics [11]. As in a crystal, molecules in a capsid should
be in identical or at least physically indistinguishable environments, since interaction of
identical proteins should lead to identical local environments. Arranging identical units
in identical environments necessarily produces a symmetrical structure, and there is only
a geometrically limited number of kinds of symmetry.

A spherical virus should thus have cubic symmetry, so that no direction in space can
be preferred. Only three types of cubic symmetry exist: tetrahedral, octahedral, and
icosahedral. The latter allows the greatest possible number of asymmetric units to be
placed in equivalent positions (i.e. in one of its regular orbits), that is 60 ; tetrahedral
and octahedral point group allow only 12 and 24 units, respectively. However, many
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3 Icosahedral symmetry of viruses and the Caspar-Klug theory

viruses contain more than 60 subunits in their shell: in general, their number is equal
to N = 60T , where T is a positive integer. Their positions belong to different regular
orbits of the icosahedron and cannot be equivalent [9, 11]. Therefore, the insistence
on strict mathematical equivalence must be dropped, whilst still retaining its physical
essentials – a way has to be found to put identical proteins on a surface of a sphere so
that they are quasi-equivalently related.

(a) (b)

Figure 4: (a) Mapping of the plane hexagonal structure onto the icosahedron surface [12]. A
net of an icosahedron containing 20 equilateral triangles can be embedded as a finite
piece of a hexagonal tiling, with six asymmetric proteins located around each six-fold
centre. Shown is a cut-and-fold construction of a (h, k) = (2, 1) icosahedron, with
triangulation number T = h2 + hk + k2 = 7. Denoted are the basis vectors of the
plane hexagonal lattice, a1 and a2 , and the vector A = ha1 +ka2 , directed along one
of the sides of the icosahedron. The latter vector connects two pentagonal disclinations
in the mapping of the hexagonal lattice onto the icosahedron surface. In the bottom
of the figure are shown also the triangular faces of (1, 1) , (2, 0) , (3, 1) , and (4, 2)
icosahedra. (b) The plane hexagonal structure with one six-fold position filled with
asymmetric structural units (proteins), presented as full circles with tails [9].

The task of CK was to find a way to put identical proteins in different but nearly
equivalent positions, and to explain the origin of this quasi-equivalence. In contrast
with the restriction of positions in regular orbits of 3D point groups, the translational
symmetry of a 2D lattice makes infinite the number of positions belonging to the same
regular orbit of a 2D crystal space group. CK were then looking for an almost regular
mapping of the plane periodic structure onto the icosahedron surface. Mapping splits one
regular orbit of the plane periodic structure into several different orbits of the icosahedron
but maintains some “traces” of their former equivalence in the plane structure, thus
making the positions in different orbits “quasi-equivalent” [9]. Symmetry analysis shows
that the only type of crystalline order suitable for the almost regular mapping is the
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3 Icosahedral symmetry of viruses and the Caspar-Klug theory

plane hexagonal structure with one six-fold regular position in the unit cell filled with
asymmetric proteins.

A net of an icosahedron which consists of 20 equilateral triangles can be embedded
as a finite piece of the considered plane hexagonal structure and then mapped (folded)
onto the icosahedron surface (Fig. 4a). The mapping is chosen in such a way that the
vertices of the regular triangular faces of the icosahedron coincide with the six-fold axes
of the plane hexagonal lattice. By cutting out twelve 60◦ sectors, one can transform six-
fold axes into five-fold ones, and then join the sector edges on the icosahedron surface.
Joining of the edges represents a continuous matching operation as the edges of the cut-
out sectors are equivalent by the symmetry of the hexagonal structure. This remarkable
symmetry property allowed CK to state that their folding is done “without destroying
the bonding pattern of the lattice” [11]. From a purely geometrical perspective, similar
mapping can be achieved with a plane trigonal structure with three- and not six-fold
symmetry axes. However, in such a case the joining of the edges would not be a matching
but a “stitching” operation, leading to a seam formation.

As seen from Fig. 4a, the edge length of the icosahedron face for a given mapping is
determined by the vector joining the vertices of the net triangles, situated in the nodes
of the hexagonal lattice,

A = ha1 + ka2 , (11)

where ai are the basis (Bravais) vectors of the hexagonal lattice, and h and k are some
non-negative integers. The square of this vector length,

T = h2 + hk + k2 (12)

is equal to the number of lattice nodes contained in two net triangles – that is, the
number of hexagons enclosed in them. As a consequence, the number of protein units
in a CK structure with triangulation number T is given by

N = 60T . (13)

Each of the CK structures can be thus characterised by the two non-negative integers
h and k . These can be also thought of as the number of jumps through the vertices of
a mapping that need to be performed in order to reach a center of a pentagon from its
neighbouring pentagon. The structures with h 6= k , h, k > 0 are chiral (skew), meaning
that their mirror image has different symmetry; a mirror image of a (h, k) mapping
is a (k, h) mapping. To discriminate between the two, the triangulation number is
sometimes used with words laevo (left) and dextro (right), and denoted by T and Td,
respectively [12].

Caspar and Klug also introduced the concept of a morphological unit (capsomere) [9,
11]: in the plane hexagonal structure, all protein positions belong to one six-fold regular
position in the unit cell, and can be divided into groups of six positions situated around
the same lattice node (Fig. 4b). The corresponding six proteins can be then considered
as a morphological unit, which is a hexamer in the considered case. The CK geometrical
model maps both the lattice nodes and the protein positions onto the icosahedron surface.
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4 Beyond Caspar and Klug

After the mapping, the number of positions around an image of a node can be either six
or five, and the corresponding morphological units can be considered as hexamers and
pentamers, respectively. The number of pentamers situated in the five-fold axes of the
icosahedron is 12 , so that there are 10(T − 1) hexamers situated around other nodes.

All in all, the Caspar-Klug principles may be summed up as follows [13]:

• Since the proteins are asymmetric, the capsid symmetry is lower than that of
the regular icosahedron – we have no inversion symmetry or mirror planes, only
rotational symmetry (group Y ⊂ Yh).

• The asymmetric proteins can be located only in the regular 60-fold positions of the
icosahedral point group Y , and so the number of proteins in a capsid is always a
multiple of 60,

N = 60T , where T ∈ N , (14)

where T is the triangulation number.

• The self-assembly of viral capsids is a process akin to crystallisation, and is gov-
erned by the laws of statistical mechanics.

• The proposed model of quasi-equivalent constructions is based on an almost regular
mapping of a hexagonal lattice onto an icosahedron surface. Thus, only those
values of T and consequently N are allowed which satisfy the relation

T = h2 + hk + k2 , (15)

for some non-negative integers h and k .

4 Beyond Caspar and Klug

The Caspar-Klug principle of quasi-equivalence was deemed to be true of all spherical
viruses, until it was discovered in the early 1980s that the Polyoma virus capsid has 360
subunits – a number forbidden by the selection rule [10]. More exceptions were found
later on (see e.g. Ref. [13] and references therein), and whilst most spherical viruses still
fall under the quasi-equivalent construction it became clear that a more general principle
is needed for their description. Recently, two such descriptions emerged: one approaches
the problem with the tools of statistical mechanics of crystallisation [9, 13, 14], whereas
the second is still based on the geometrical coverings of the icosahedron [15, 16, 17].
In the following sections we shall take a more detailed look at the former, only briefly
comparing it with the latter.

4.1 Landau theory of crystallisation applied to small icosahedral viruses

The assembly of viral capsids has similarities to micelle formation as well as crystallisa-
tion [18, 19]. The latter process is well described by Landau theory of crystallisation [20],
which describes the change of the symmetry of a system during a phase transition. When
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4 Beyond Caspar and Klug

considering crystals as well as capsids, this phase transition changes the symmetry from
an isotropic to a lower one2, and Lorman and Rochal have used this theory to explain
the formation of capsids with icosahedral symmetry which do not necessarily fall within
the CK classification, but have nevertheless been observed experimentally [9, 13, 14].

We characterise the system by introducing a density function ρ(r) which gives the
probability distribution of various positions of the proteins within the capsid [9, 20]. The
symmetry of the capsid is thus defined as the group of all coordinate transformations
under which this density is invariant. We may write

ρ = ρiso + ∆ρ , (16)

where ρiso is the density distribution in the isotropic phase, invariant under SO(3)
symmetry, and ∆ρ is the symmetry-breaking term induced by the ordering. Similarly
to the case of atomic positions in simple atomic crystals, the positions of the maxima
of the corresponding density function are associated with protein centres in the capsid
shell [13].

As we are interested only in small icosahedral viruses, their shape being almost per-
fectly spherical, we can take for basis functions the spherical harmonics,

∆ρ(ϑ, ϕ) =
∞∑
l=0

l∑
m=−l

AlmY
m
l (ϑ, ϕ) , (17)

which also span the irreducible representations of the SO(3) group. After the assembly of
proteins into capsid, the density distribution acquires icosahedral symmetry Y ⊂ SO(3) .
This symmetry breaking is associated with one critical order parameter which spans an
irreducible representation of the symmetry group of the disordered state [13, 20]. In the
vicinity of the crystallisation point the structure of the ordered state defined by ∆ρ is
determined by the critical order parameter only, the contributions of non-critical degrees
of freedom being negligible in this region. As in the crystallisation process, the order
parameter for the assembly process on a sphere represents a critical system of density
waves (CDSW), the critical part of density being determined by a CDSW with the same
wave number l [9, 20],

∆ρl(ϑ, ϕ) =
∑
m

AlmY
m
l (ϑ, ϕ) . (18)

Additionally, since we do not wish for the capsid to have inversion symmetry, the parity
of the harmonics has to be negative, thus limiting possible values of l to only odd ones,
l = odd .

The free energy expansion of the assembly process is given in standard form as F =

2For instance, one of the point or space groups.
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4 Beyond Caspar and Klug

F0 + F2 + F3 + . . . , and contains only invariant terms [9]:3

F2 = A(T, c)

l∑
m=−l

AlmAl−m ,

F3 = B(T, c)
∑

m1,m2,m3

am1m2m3Alm1Alm2Alm3δ(m1 +m2 +m3) ≡ 0 ,

F4 =
∑
k

Ck(T, c)
∑

m1,m2,m3,m4

akm1m2m3m4
Alm1Alm2Alm3Alm4δ(m1 +m2 +m3 +m4) .

Here, ai are the weight coefficients of the SO(3) group, andA(T, c) , B(T, c) , and Ck(T, c)
are temperature- and composition-dependent coefficients of the Landau theory [20]. For
odd wave numbers l the third-order term is identically zero, making the thermodynamics
of asymmetric proteins assembly different with respect to the thermodynamics of atomic
cluster formation, in spite of several common points in their formal description [13].

As seen in the previous sections, the irreducible representations D(l) of SO(3) are also
reducible representations of the icosahedral group Y [Eq. (9)]. The formed capsid has
to be invariant under all symmetry elements of the icosahedral group, and therefore the
only possible representations D(l) are those that feature in their reduction at least one
identical representation A . From Eq. (10) we have

mA(l) =
1

60

[
(2l + 1) + 12χ(l)(2π/5) + 12χ(l)(4π/5) + 20χ(l)(2π/3)− 15

]
6= 0 , (19)

where the characters χ(l)(ϕ) are given by Eq. (7). In this way we obtain for the possible
wave numbers

l = 15, 21, 25, 27, 31, 33, 35, . . . . (20)

The same wave numbers are obtained from analysis based on the theory of invariants,4

where it can be shown that any critical order parameter driving the icosahedral assembly
of asymmetric proteins has the wave number l satisfying the equation [9]

l = 15 + 6i+ 12j , (21)

where i and j are non-negative integers. This sequence of permitted wave numbers
determines the possible capsid shell structures for small icosahedral viruses.

The explicit form of the critical density function ∆ρl is then given by the basis func-
tions fkl (ϑ, ϕ) , k = 1, 2, . . . ,mA(l) , of all mA totally symmetric representations of the
icosahedral group Y in the restriction of the active irreducible representations of the

3No linear invariant can be formed from quantities which are transformed according to a non-unit
irreducible representation of a group, for otherwise that representation would be reducible [20].

4Into which we shall not delve here, as it is not necessary for the understanding of the problem.
At the same time, it is heavily technical [21], so let us just mention that the relations for the
allowed wave numbers are obtained by considering the full set of generators for the ring of invariant
polynomials. The density function should then be a homogeneous polynomial of the l-th degree, and
the homogeneity requirement gives the possible combinations.
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4 Beyond Caspar and Klug

SO(3) [Eq. (9)]. The CSDW is some linear combination of these functions invariant
with respect to the icosahedral group,

∆ρl(ϑ, ϕ) =

mA∑
k=1

Bkf
k
l (ϑ, ϕ) , (22)

where Bk are arbitrary coefficients. For small icosahedral capsids, the construction of
the protein density distribution is simplified because the basis in Eq. (22) contains only
one function. Specifically, Eq. (19) yields

mA(l) 6 1 for l 6 43 , (23)

so that
∆ρl(ϑ, ϕ) = Bfl(ϑ, ϕ) for l 6 43 . (24)

In such cases the positions of the maxima of the density distribution do not depend
on the coefficient B , but are generated by a single function fl(ϑ, ϕ) which has no fitting
parameters. The explicit form of the symmetry adapted irreducible icosahedral den-
sity function fl(ϑ, ϕ) for a given wave number l is obtained by averaging of spherical
harmonics over the icosahedral symmetry group [9],5

fl(ϑ, ϕ) =
1

60

∑
G∈Y

T (G)Y m
l (ϑ, ϕ) . (25)

For any fixed value of m this procedure gives either the same function fl(ϑ, ϕ) we are
looking for or zero. Since the functions are defined up to a constant complex factor, an
appropriate choice makes the functions fl real. The above equation may be rewritten
as [7]

fl(ϑ, ϕ) =
1

60

∑
G∈Y

∑
m′

D
(l)
m′m(G) · Y m′

l (ϑ, ϕ) , (26)

and the actions of group elements are given in terms of the Euler angles (α, β, γ) [22,
23, 24]:

D
(l)
m′m(αβγ) = e−im

′γd lm′m(β)e−imα , (27)

d lm′m(β) =
∑
k

(−1)k−m+m′√
(l +m′)!(l +m)!(l −m′)!(l −m)!

(l −m′ − k)!(l +m− k)!k!(k −m+m′)!
× (28)

× cos2l+m−m
′−2k (β/2) sin2k+m′−m (β/2) , (29)

where k runs from k = max(0,m−m′) to k = min(l−m′, l+m) . The definition of Wigner
matrices Dl

m′m follows the one given in Ref. [24] for the zyz Euler angles convention.
The Euler angles for the proper icosahedral group Y can be found in Ref. [23]. Thus we

5In fact, a projection of a spherical harmonic onto the identical representation.
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4 Beyond Caspar and Klug

finally obtain in the expansion of the irreducible icosahedral density function over the
spherical harmonics [Eq. (18)] the expression for the expansion coefficients Alm :

Alm′ =
1

60

∑
G∈Y

D
(l)
m′m

(
G(α, β, γ)

)
, (30)

up to a normalisation factor. We may also easily verify whether such a function is truly
invariant, as the set of coefficients must then satisfy

Alm′ =
∑
m

D
(l)
m′m

(
G(α, β, γ)

)
Alm ∀G ∈ Y . (31)

With the solution for the irreducible icosahedral density function fl , invariant un-
der the icosahedral group, the positions of the asymmetric capsid proteins are entirely
determined by the maxima of the density function. Due to 60 equivalent fundamental
domains of the icosahedron we may search for the maxima only within one such domain,
and obtain the positions within the other domains by application of the group elements.
This number of different density maxima within the domain also has a clear connection
with the CK triangulation number T , and the total number of maxima of the density
function equals N = 60T .

In this way we obtain the possible configurations of the capsid proteins. Several
examples are given in Fig. 5, where, for the sake of clarity, only the positive part of
the density function fl(ϑ, ϕ) > 0 is shown. On one hand, the distributions in Fig. 5a
(e.g. Satellite Tobacco Mosaic virus), Fig. 5d (e.g. Cowpea Chlorotic Mottle virus), and
Fig. 5e (e.g. Sindbis virus) give classical CK structures [13]. However, the distributions
in Fig. 5b and Fig. 5f do not satisfy the CK selection rules for the triangulation number,
and the distribution for l = 25 with T = 3 (e.g. Dengue virus, Fig. 5c) shows no
hexagonal arrangements of proteins and cannot be obtained by the CK model.

The protein environments as predicted by the Landau crystallisation theory violate
the CK geometrical model and are not quasi-equivalent in the strict sense [9]. However,
they do not violate the physical equivalence of the protein posititons induced by the
single irreducible density function. Each position in these constructions has five or six
neighbours and the distances between these neighbours are approximately equal. In
other words, if the asymmetric identical building blocks can be slightly deformed (as
also assumed in the original CK theory), then there is no problem to put them together
in the structure in slightly different environments [9].

Not only does the Landau theory of crystallisation predict capsid structures with
all values of T (in contrast with the CK theory), it also predicts several qualitatively
different protein distributions for capsids with the same number of protein positions. An
example for T = 3 can be seen in Figs. 5c and 5d. This makes it possible to apply the
theory to describe a reconstructive structural transformation of capsids, a possibility not
present in the CK principle [14].

The reconstructive structural transformation is a process where the protein positions
are rearranged during the maturation of the procapsid [1, 14]. This also involves different
specific, often irreversible, biochemical features. In contrast to the procapsid formation,
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4 Beyond Caspar and Klug

(a) l = 15 , T = 1 (b) l = 21 , T = 2 (c) l = 25 , T = 3

(d) l = 27 , T = 3 (e) l = 31 , T = 4 (f) l = 33 , T = 5

(g) L-A virus, T = 2 (h) CCMV virus, T = 3 (i) Dengue virus, T = 3

Figure 5: (a) – (f) The first six irreducible icosahedral density functions fl(ϑ, ϕ) with wave
numbers l = 15, 21, 25, 27, 31, 33 . The corresponding numbers of different 60-fold po-
sitions of density maxima are T = 1, 2, 3, 3, 4, 5 . The distributions with l = 15, 27, 31
give classical CK structures, whilst the distributions with l = 21, 25, 33 cannot be
obtained by the CK mapping. (g) – (i) Experimental capsid structures for several
viruses (not to scale). The capsid of the CCMV can be classified as a CK structure
with T = 3 and is given by the density function with l = 27 . On the other hand, the
capsids of L-A and Dengue viruses cannot be obtained by the CK model, but are well
described by density functions with l = 21 and l = 25 , respectively. The experimental
structures were rendered with the molecular graphics package UCSF Chimera [25].
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4 Beyond Caspar and Klug

(a) Immature Dengue virus (b) b25 = 0 , b27 = 1 (c) b25 = 1/3 , b27 = 2/3

(d) b25 = 2/3 , b27 = 1/3 (e) b25 = 1 , b27 = 0 (f) Dengue virus

Figure 6: Variation of the protein density function in the intermediate states of the procapsid-
capsid transformation in the Flavivirus family. The density function is chosen in the
form ∆ρ = b27f27 + b25f25 with b25 + b27 = 1 . The experimental structures of the
Dengue virus were rendered with the molecular graphics package UCSF Chimera [25].

which displays universal properties, biochemical changes during maturation are not the
same for different virus families. As it was shown that in the Flavivirus family (Dengue
virus, West Nile virus, . . . ) immature capsids first undergo reversible structural changes
that then render them accessible to irreversible protein cleavage, this indicates that
in this family the structural transformation from procapsid to a capsid is a reversible
physical process [26, 27]. Thus, a continuous thermodynamical description of the recon-
structive transformation in the capsids of the Flaviviridae may be given [14]. It is also
important to note that the point symmetry of the protein shell remains icosahedral in
all intermediate states of the reconstructive structural transformation in Flaviviridae,
a characteristic observed in recent experiments [26, 27]. Conservation of the icosahe-
dral symmetry during the transformation means that the protein density function in the
intermediate states is a combination of

∆ρ = b27f27 + b25f25 , where b25 + b27 = 1 , (32)

with the relative weight of the two functions being a thermodynamical variable depending
on the external parameters (Fig. 6). A detailed discussion of this mechanism, along with
the possibility of identifying the minima of the irreducible density function with the
binding sites on the capsid surface, is given in Ref. [14].

Lastly, the approach of Lorman and Rochal to capsid assembly and structure has
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4 Beyond Caspar and Klug

another consequence: due to the absence of a cubic term in the free energy F the
icosahedral capsid assembly can be a second order phase transition [13]. This means
that there is no latent heat involved in the transition, and the assembly takes place
without a nucleation process. The latter feature implies that in equilibrium either intact
virus shell or free proteins are dominant species while assembly intermediates are found
only in trace concentrations. Nonetheless, no clear conclusion concerning the assembly
kinetics can be drawn on the basis of the symmetry analysis alone [9].

4.2 Mathematical virology: the viral tiling theory

The other approach to improving the Caspar and Klug construction is based on re-
considerations of its geometrical principles. As mentioned, the CK principle of quasi-
equivalence may be thought of as a mapping of a hexagonal lattice onto a sphere. The
viral tiling theory differs from the CK construction by introducing more general types
of surface lattices, inspired by the theory of quasicrystals [16]. The hexagonal regular
tiling in two dimension is extended to non-regular (Penrose) tilings that fill the space,
permitting tessellations in shapes other than hexagons. An example of such a tiling is
shown in Fig. 7.

Figure 7: An embedding of an icosahedral net into an irregular tiling, consisting of two types of
rhombs [15]. The protein positions are shown as dotted decorations, and the dashed
lines show how the proteins are positioned in the special case of the L-A virus.

The viral tiling (VT) theory does not build upon the principle of quasi-equivalence
in a strict sense as it allows for tesselations of spherical geometric objects with more
than one building block (tile), as long as the tesselation preserves the overall icosahedral
symmetry. Additionally, the tesselation must also abide by the generalised principle
of quasi-equivalence: on any given tile protein subunits are located only at corners
subtending the same angle (Fig. 8a) [15]. This assumption ensures that identical types
of protein subunits can only occupy structurally or mathematically equivalent sites on
the tiles. Mathematically, the generalised principle of quasi-equivalence manifests itself
in the restriction on the tile decoration, that is, the prescription for the location of
protein subunits on the tiles. The Caspar-Klug tesselation corresponds to triangle tilings,
whereas another important class is given by the Penrose tilings, having the shapes of
kites, darts, and rhombs [15].
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4 Beyond Caspar and Klug

(a) (b)

Figure 8: (a) Possible tilings in two dimensions which yield three-dimensional polyhedra compat-
ible with the icosahedral symmetry [15]. Shown are the dart, kite, and rhomb tilings;
a triangular tiling would again yield the CK constructions. The protein positions are
restricted to decorations of the tiles along the edges subtending a same angle. (b)
Shapes of the three polyhedra in the triacontahedral series, giving rise to structures
not included within the CK quasi-equivalence principle [17].

In two dimensions, the Penrose tilings are obtained via projection from a regular
lattice in five dimensions. Similarly, tilings relevant for the description of viruses can be
obtained via projection from a suitable lattice in six dimensions, which is the smallest
dimension in which a lattice invariant under the icosahedral group can occur [16, 28].
The polyhedra symmetric under the icosahedral group are obtained with a so-called
affine extension of the non-crystallographic Coxeter group H3 , given by a projection
from the group D6 [28, 29]. More details on this procedure along with examples are
given in Refs. [17] and [28]. In this manner, finite dimensional point sets S(N) can
be derived, defining nested point sets in three dimensions related to a six-dimensional
lattice via the projection formalism mentioned above [16]. Here, N is termed the cut-off
parameter because it limits the number of points in the set. By construction, these
point sets contain the vertices of the desired polyhedra or tilings. For N = 5 , a series of
three polyhedra is obtained, containing a rhombic triacontahedron (or an icosahedron),
a snub cube (which has octahedral symmetry), and a snub dodecahedron [28].6 From
these polyhedra coordinates of the vertices (and the corresponding tilings) for the three
cases can be obtained, and these structures can be matched with the capsids within
the Polyomaviridae family [17]. The relations of the three tilings obtained are shown in
Fig. 8b, and the relative radii of the structures match the measured values within the
experimental accuracy [17].

In addition to specifying the locations of protein subunits in the capsids as in the
CK principle, the VT theory is also used to predict the locations of inter-subunit bonds
between proteins in different capsomeres [16]. The VT theory can thus model dimer
and trimer interactions, these being different bonding environments of the protomers.

6It should be mentioned that in the latter two cases, the edge distances are not the same as one would
expect for the true polyhedra; however, the deviations are rather small.
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4 Beyond Caspar and Klug

An example of this is provided in the following section. Another extension of the viral
tiling theory to multi-level tilings was also made in order to include the possibility of
crosslinking in some viral capsids, i.e. interconnecting of the protein subunits, resulting
in a chainmail organisation covering the entire capsid [30].

4.3 Comparison of the two approaches: L-A and Polyoma viruses

Both the viral tiling theory and the Landau crystallisation approach provide an expla-
nation for the non-CK structures of viral capsids, yet they consider the problem from
different perspectives. An in-depth comparison would be beyond the scope of this semi-
nar, but we will now sketch a comparison of the theories on the examples of two viruses,
the L-A virus and the Murine Polyoma virus.

L-A virus

The first example of a virus which is not included in the CK principle of quasi-equivalence
is the L-A virus, built from 120 GaG proteins organised into 60 dimers. According to the
CK principle, such a virus has a forbidden triangulation number of T = 2 . The L-A virus
symmetry is usually still classified as a T = 1 virus, but with the basic morphological
unit now being a dimer rather than a monomer [31, 32]. This means that the icosahedron
net is no longer triangular, as can be seen from the grid in Fig. 9b. However, within the
frameworks of the Landau crystallisation theory and the viral tiling theory, the resulting
structure can be explained differently.

From the viewpoint of the VT theory, the structure of the L-A virus can be viewed
as a rhomb tiling, with tiles and decorations as shown in an inset of Fig. 9b (the same
structure is also shown in Fig. 7). On the other hand, the approach of Lorman and
Rochal clearly allows all values of triangulation numbers, and the only icosahedral density
function with T = 2 shows nice correspondence with the experimental structure of the
virus (Figs. 9c and 9a).

(a) L-A virus (b) VT theory (c) l = 21 , T = 2

Figure 9: (a) Experimental structure of the L-A virus capsid, (b) rhomb tiling of the capsid
(inset) within the T = 1 classification of the symmetry [32], (c) and the irreducible
icosahedral density function f21(ϑ, ϕ) as obtained with the Landau crystallisation the-
ory. The experimental structure of the virus was rendered with the molecular graphics
package UCSF Chimera [25].
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Murine Polyoma virus

Another interesting case is the capsid of the Murine Polyoma virus which consists of
360 subunits, and is classified as a T = 7d capsid [31] even though the number of
subunits implies a triangulation number of T = 6 , again a forbidden number within
the CK construction. Additionally, all the protein subunits are observed in clusters of
pentamers (Fig. 10a), contrary to what the CK principle predicts.

The tesselation within the viral tiling theory is in this case based on rhombs and kites,
and is shown in Fig. 10b superimposed on the 7d CK hexagonal lattice. In this case the
tiling approach also predicts the orientation and bonding of protein subunits (based on
the three different tile decorations, the yellow-yellow rhomb, the red-blue rhomb, and
the green-purple-white kite) [15]. In the context of the Landau crystallisation theory,
the capsid structure is described by the l = 37 irreducible icosahedral density function
with T = 6 (Fig. 10c). The positions of the different maxima agree well with the
experimentally observed structure.

(a) Murine Polyoma virus (b) VT theory (c) l = 37 , T = 6

Figure 10: (a) Experimental structure of the Murine Polyoma virus capsid, (b) kite and rhomb
tiling of the capsid as predicted by the viral tiling theory [15], (c) and the irreducible
icosahedral density function f37(ϑ, ϕ) as obtained with the Landau crystallisation
theory. The experimental structure of the virus was rendered with the molecular
graphics package UCSF Chimera [25].

Discussion

As we have seen, both the VT theory and the Landau crystallisation approach produce
several capsid structures with icosahedral symmetry that are not included within the
CK principle. However, there are certain differences between the two approaches. It is
interesting to note that the VT theory claims predicting the correct bonding patterns in
the case of Murine Polyoma virus, whereas nothing is said of the matter in the case of
the L-A virus. Consequently, protein bonding prediction does not appear to be a general
property of the VT theory; on the other hand, the theory of Lorman and Rochal makes
no such claims altogether.

It should also be mentioned that the concept of the basic morphological unit being
a monomer or a dimer must principally be based on the energetics of the inter-protein

22



5 Origin of icosahedral symmetry in viruses

bonds, and not on pure geometrical considerations and convenience [12]. The dimer and
trimer interactions in the VT theory do not seem to follow from the generalised quasi-
equivalence principle, which restricts only the possible decorations of the tiles. The
Landau crystallisation theory predicts well the positions of the proteins in the capsid,
but perhaps also a connection should be made, or at least considered, between the
properties of the irreducible icosahedral density functions and the relative orientations
and bonds between the protein subunits.

Each of the two theories gives some new predictions of their own. The VT theory for
instance predicts the possibility of cross-linking protein subunits in some of the phage
capsids, and the approach of Lorman and Rochal predicts a structural transformation of
a capsid that some viruses can undergo. And lastly, there are also some capsid structures
(for example that of the Dengue virus) which are obtained by the Landau crystallisation
theory, but have not as of yet been considered by the viral tiling theory.

The main objection to the viral tiling theory would therefore be that, in contrast to
the tiling decorations, protein positions and inter-protein bonds do not follow from a
general principle. The theory thus predicts some new structures, but so far not all of the
ones that the theory of Lorman and Rochal has covered. The latter theory appears to
have a sounder foundation, but it would be necessary to explore in greater detail what
exactly are the implications of the theory besides the new icosahedral capsid structures.
Even so, the expansion of the CK classification by the two theories is an achievement in
itself.

5 Origin of icosahedral symmetry in viruses

Whereas the new approaches to the construction of icosahedral viruses improve the model
proposed by Caspar and Klug, which in itself describes well a number of different capsids,
the origin of icosahedral symmetry in viruses and the physical principles underlying the
quasi-equivalence principle have yet to be fully elucidated [33].

The icosahedral point group is the one that generates the maximum enclosed volume
for shells composed of a given number of subunits [11], but the fact that many viruses
self-assemble under in vitro conditions indicates that the icosahedral symmetry should
be a generic feature of the free energy minima of aggregates of viral capsid proteins [33].
An interesting fact is that the models of capsid assembly which dealt with identical
capsomeres regularly produced capsid symmetries lower than icosahedral.7 These models
range from the closest packing of N disks (capsomeres) on the surface of a sphere, which
is in turn related to the Thomson problem of repelling charges, to the self-assembly of
adhering hard disks [33, 34, 35, 36].

Several models considered optimal equilibrium structures of the assembled capsids, not
describing individual subunits but focusing on the morphological units (capsomeres) [33,
36]. In contrast with individual protein subunits whose interactions can be asymmetric
and species-specific, capsomeres interact through a more isotropic and generic interaction

7As we have noted before, the tetrahedral and octahedral group are also sufficient, and the latter is, in
fact, sometimes observed as the energetic minimum [33].
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Figure 11: Minimum energy structures of capsid assembly from N capsomeres (pentamers,
shown in black, and hexamers), produced by Monte Carlo simulations [33]. (a)
The pentamer and hexamer states have the same energies, and differ only in their
size. The resulting structures correspond to CK icosahedra. (b) Minimum energy
structures for large energy difference between different capsomeres, i.e., only one
size (type) of capsomere. The N = 24 and N = 48 now show octahedral symme-
try, whereas N = 32 is icosahedral. Structure with N = 72 is highly degenerate,
fluctuating over structures with different symmetry.

potential. Within the class of viral capsids satisfying the CK principle an essential feature
is the existence of two different types of capsomeres, pentamers and hexamers.

Zandi et al. carried out Monte Carlo simulations of the capsid assembly from these two
types of capsomeres interacting via Lennard-Jones potential8 [33]. The only difference
in the interaction potential of different capsomeres was that the equilibrium spacing
(minimum of the potential) included the geometrical size difference between pentamers
and hexamers of the same edge length. The energy difference between the pentamers
and hexamers, reflecting differences between individual contact interactions and folding
conformations of capsomere proteins, entered as a Boltzmann factor that provided the
relative thermal probability for a non-interacting unit to be in a pentamer state. For a
fixed number of capsomeres N the number of pentamers was thus permitted to vary and
was not fixed to 12 as in the CK construction.

For the case where the energy difference between different capsomeres was zero and
the only difference between them was their size, the pronounced energy minima were
found for values of N where the capsid structures coincided with icosahedral CK struc-

8However, different potentials were tested, and the results were found to be robust.
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tures (Fig. 11a). The appearance of icosahedral symmetry thus seems to be a direct
consequence of the free energy minimisation of a generic interaction, containing attrac-
tion and excluded volume repulsion, and the existence of two different morphological
units. However, when there was only one type of capsomere present (i.e. the energy dif-
ference between the two types was significantly increased), the observed minima differed
greatly (Fig. 11b). Some minima now had octahedral symmetry, whereas others fluctu-
ated over structures with different symmetries. It was also found that the presence of
a small compression of a capsid systematically facilitated the appearance of icosahedral
symmetry [33].

Altogether, the study concluded that the existence of two different types of morpho-
logical units is not absolutely necessary for obtaining capsids with icosahedral symmetry,
even though their presence strongly favours it [33]. It would be thus interesting to com-
pare low-T structures obtained with the Landau crystallisation theory for the cases of
icosahedral and octahedral symmetry. Given an appropriate description of interactions
between positions of protein subunits, one would be able to see which symmetry yields
an energetic minimum.

6 Conclusions

That icosahedral symmetry should feature so prominently in the capsids of viruses is
not at all obvious, especially considering the many different types of viruses and their
constituents. It is observed in various families of viruses, and is not dependent on protein-
specific interactions but rooted in physical origins. These are not yet fully understood,
and the first theory explaining the existence of icosahedral symmetry, the Caspar-Klug
principle of quasi-equivalence, focused mainly on the possible structures composed of
identical units, whatever the mechanism of their assembly.

Its shortcomings were recently addressed by two models, the viral tiling theory and the
Landau crystallisation on a spherical surface. Both include new types of structures not
included in the CK construction, yet differ between themselves. The VT theory is still
based on geometrical principles, and consequently seems to possess limited prediction
power. On the other hand, the approach of the Landau theory considers the capsid
self-assembly as a crystallisation on a sphere, and from this yields icosahedral structures
both within the CK principle and those outside it. None of the models tries to explain
the origin of the symmetry, but the crystallisation approach might give some insight to
results of various self-assembly models.

Understanding the origin of the icosahedral symmetry in the self-assembly of identical
units would be of much value, and the two models represent a significant step in this
direction. After all, the symmetry of the capsid has important implications for the
symmetry of the entire virus, including the shape of the packaged genome, the stress
distribution over the capsid, and more. But we have seen that the simplicity of the
symmetry clearly does not imply a simple explanation, and much still remains to be
done.
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