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ABSTRACT

Basic tsunami physics of propagation and run-up is discussed for the
simple geometry of a channel. Modifications of a numerical technique are
suggested for the long-distance propagation and for the nonlinear pro-
cesses in tsunami waves. The principal modification is application of the
higher order of approximations for the first derivative in space. Presently,
tsunami calculations employ the high resolution 2D and 3D models for
generation and runup processes, while propagation is resolved by the reg-
ular 2D models. Such approach requires boundary conditions which will
seamlessly connect the high resolution calculations to the propagation
models. These conditions are described with the help of the method of
characteristics.
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1. Introduction

This is the second part of the paper on relations between tsunami calculations and
their physics (Kowalik, 2001, hereinafter, K01). The purpose is to consider modifications
of numerical techniques used for the long-distance open ocean propagation and for the
upslope propagation. While computing an open-ocean propagation at the resolution of
1 nautical mile (approximately 2km) the numerical dispersion slowly changes tsunami
wave parameters by changing amplitude and generating the short dissipative waves. This
is especially important for the long-distance deep-ocean propagation of the short-period
waves (5min-15min period). To alleviate these numerical effects we suggest using of the
higher order of approximations especially for the spatial derivative.

While tsunami wave starts to climb upslope towards the shore the nonlinear advective
terms in the equations of motion and the nonlinear terms in the continuity equations
start to play important role. Tsunami wave steepens up and starts to break into shorter
waves. This dissipative process cannot be fully reproduced through the numerical means
because it is connected to the short wave domain, which is not resolved by the applied
numerical grid. In this domain the short waves of numerical origin occur along with the
physical processes. Neither higher space resolution nor higher time resolution is completely
rectifying this problem which starts in the subgrid domain. Application of the simple filter
results in deleting the short numerical waves thus allowing to observe how tsunami wave
changes while part of its energy is outflowing into the short wave during the tsunami wave
breaking. Is this ”remnant” tsunami wave is actually observed in nature or only in the
computer models? Investigations in this paper and results given by Lynett et al. (2001)
show that the physics of the nonlinear processes can be described by numerical solution
but the numerical solution needs modifications to take into account the wide spectra of
processes.

Applications of the different numerical approaches for the different ocean domains
require boundary conditions which will seamlessly connect these domains. A problem
to be considered is construction of semi-transparent boundaries. The boundary between
oceanic and coastal domains should allow the signal arriving from the ocean to enter the
coastal domain without any reflection or dissipation and afterwards when the signal is
reflected by shoreline back towards the ocean it must cross the same boundary without
any reflections as well. If, for example, such boundary is not completely transparent for
tsunami which has entered coastal domain and a portion of the signal is reflected from the
boundary back, tsunami will pump energy towards the shore causing permanent increase
of the amplitude at the shore. The various conditions at the open boundaries are described
with the help of the method of characteristics.

2. Numerical approximations for the spatial derivatives.

Consider the numerical solution of the equations of motion and continuity

∂u

∂t
= −g ∂ζ

∂x
(1)

∂ζ

∂t
= − ∂

∂x
(Hu) (2)
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Solution of this system is usually searched by the two-time-level or the three-time-level
numerical schemes (Kowalik and Murty, 1993a, Imamura, 1996). For construction of the
space derivatives in the eqs. (1) and (2), a space staggered grid (Figure 1) is usually used
(Arakawa C grid). The two-time-level numerical scheme

(um+1
j − um

j )
T

= −g ζ
m
j − ζm

j−1

h
(3)

ζm+1
j − ζm

j

T
= −(um+1

j+1 Hj+1 − um+1
j Hj)

h
(4)

is of the second order of approximation in space and only the first order in time. All
notations are standard: u is velocity, ζ denotes sea level changes, t is time, x denotes
horizontal coordinate, g is the Earth’s gravity acceleration (g=981 cm s−2), and H is
depth.

h

T

j=1 j=2 j=3

m

m+1

u ζ

j=-1j=-2

h

Figure 1
Space-time grid for the tsunami propagation. j is space index, m is time index.

The space-staggered grid given in Figure 1 is used to construct space derivatives in
the above equations. Variables u (dashes) and ζ (crosses) are located in such a way that
the second order of approximation in space is achieved. The depth is taken in the sea level
points. The space step along the x direction is h. Index m stands for the time stepping
and the time step is T . Let us consider a simple problem of a sinusoidal wave propagating
over the long distance in the channel of the constant depth. At the left end of the channel
a sinusoidal wave is given as

ζ = ζ0 sin(
2πt
Tp

) (5)

Here the amplitude is ζ0=100 cm, and the period Tp will be taken from 5 min to 0.5 hour
range.
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Figure 2

Propagation of the monochromatic wave of 10 min period along the channel of
constant 4077 m depth. DX denotes spatial step and T is time step.
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Propagation of this monochromatic wave toward the right end of the channel will
be studied through eqs. (3) and (4). The right end of channel is open, and a radiating
condition will be used so that the wave can propagate beyond the channel without reflection
(see eq.(29) Sec. 5, and Reid and Bodine 1968). At the left end of the channel, eq (5) is
applied for one period only; after that, the radiating condition is used as well. The channel
is 6000 km long and 4077 m deep. The wave period under consideration is 10 min, which
results in a 120-km wavelength. The time step of numerical integration will be taken equal
to 5 s or 0.5 s. The initial space step is chosen equal to 10 km (close to 5′ represented
by gridded topography). The 10-km space grid sets 12 steps per wavelength (SPW). Such
a resolution will slowly introduce numerical errors into reproduced waves. In Figure 2,
results of computation are given for the space step of 10 km (SPW=12) and the time step
5 s (upper panel), for the space step of 10 km and the time step 0.5 s (middle panel), and
for the space step of 2 km (SPW= 60) and the time step 5 s (bottom panel). The wave
propagation from the left end has been depicted at distances of 2000 km, 4000 km, and
6000 km. The relatively poor space resolution in the upper and middle panels results in
the wave damping along the channel.

At approximately 1500 km, the amplitude of the first wave became smaller than the
amplitude of the second wave. Traveling wave train has a tail of secondary waves trailing
behind the main wave. The shorter time step does not correct dispersive behavior (see the
middle panel), only the shorter space step which increases the number of SPW, allows the
nondispersive propagation. Dispersive numerical error is cumulative, i.e. for the longer
travel distances it will become large enough to generate dispersive waves again. Therefore,
the choice of the SPW index will depend on the propagation distance as well.

The time step is aimed at resolving the tsunami wave period and the space step
at resolving wavelength. The above discussion shows that the encountered problems are
related to the space resolution. This is because we are able to control time resolution
but the spatial resolution depends on the resolution of the available bathymetric data.
To improve solutions obtained by the numerical methods we shall apply higher order of
approximations for the first derivatives in space. We start by constructing the space
derivative for the sea level in the equation of motion. The central point (u point) located
in the j grid point is surrounded by the two sea level grid points at the distance h/2 from
the velocity point (see Fig. 1). Consider Taylor series in these points,
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Along with Taylor series at the distance h3/2,
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Figure 3

Propagation of the monochromatic wave of 10 min period along the channel of
constant 4077 m depth. DX denotes spatial step and T is time step. Middle
panel shows application of the higher order derivatives

Here ζu
j denotes the sea level in the u point. Space derivative for the sea level in (3) is
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obtained by subtracting (7) from (6). Similar formula follows from (8) and (9), but with
the longer space step of 3h. The errors (the order of approximation) in both formulas,
for the first derivative are proportional to the third derivatives. Thus by combining the
two formulas the higher order formula can be constructed. The new formula for the first
derivative of the sea level in the u point reads,

∂ζ

∂x
= [27(ζj − ζj−1)− (ζj+1 − ζj−2)]/24h+O(h4) (10)

Space derivative for the velocity in the continuity equation (2) can be constructed in
the similar way by noticing that the central point for such derivative is the sea level and
the space index should be moved to the right so that j ought to be substituted by j + 1.
Thus the derivative for the velocity in the ζ point reads

∂

∂x
(Hu) = {27[uj+1(hj + hj+1)/2− uj(hj + hj−1)/2]−

[uj+2(hj+2 + hj+1)/2− uj−1(hj−2 + hj−1)/2]}/24h+O(h4) (11)

The propagation of the monochromatic wave described with the new derivatives is given in
Fig. 3. This is repetition of the Fig. 2 with the middle panel resulting from application the
new formulas. It shows essential improvement when compared against the results obtained
with the second order derivatives (upper panel).

3. Propagation in sloping channel

We shall proceed to construct a simple algorithm for the propagation along the up-
sloping channel as we did in the previous paper (K01). This numerical scheme allows us to
investigate processes occurring across the shelf. We will be able to pinpoint the influence
of friction and nonlinear terms on the process of propagation and dissipation and hopefully
understand how numerical schemes change tsunami physics. Consider equation of motion
and continuity along x direction:

∂u

∂t
+ u

∂u

∂x
= −g ∂ζ

∂x
− ru|u|

D
(12)

∂ζ

∂t
=

∂

∂x
(Du) (13)

Solution of this system will be searched through the two-time-level numerical scheme. The
nonlinear (advective) term will be approximated by the upwind/downwind scheme. D in
the above equations denotes the total depth D = H + ζ.

The following numerical scheme is used to march in time:

(um+1
j − um

j )
T
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(um

j − um
j−1)

h
+ un

(um
j+1 − um

j )
h

= −g (ζ
m
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j−1)
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+
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j |um
j |

0.5(Dm
j +Dm
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Here: up = 0.5(um
j + |um

j |), and un = 0.5(um
j − |um

j |)

ζm+1
j − ζm

j

T
= −[(um+1

j+1 0.5(Dm
j +Dm

j+1)− um+1
j 0.5(Dm

j−1 +Dm
j )]/h (15)
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Figure 4
Amplitude (upper panel) and velocity (lower panel) of 5 min period wave.
Advective term and bottom friction are included.

In this experiment the upsloping channel of 100 km length is considered. Depth is
changing from 50 m at the entrance to 5 m at the end of the channel. We start by
computing propagation of a 5 min period tsunami wave from the deep water towards the
shallow water. Results we had obtained previously are depicted again in Fig.4. Again,
it is important to notice the large disparity in the sea level and velocity. While the sea
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level amplitude changes over a small range along the channel, velocity, on the other hand,
displays much greater variations and is less prone to the dissipation. The wider range of
changes in the velocity field offers better opportunity to compare models and observations.
The comparison of the models against the sea level amplitude only, often show that the
lack of the bottom friction results in an increase of the amplitude, but the results are not
very different from the frictional models (Titov and Synolakis, 1998).
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Figure 5

Velocity wave of the unit amplitude (upper panel). The nonlinear wave pro-
duced by the advective term (middle panel) and by the bottom friction (lower
panel)

Here we investigate the wave breaking process in the upsloping channel. Is this true
physical process of the long wave breaking or this is a numerical artifact? The period is
600 s and the time step 0.1 s, thus the temporal resolution is 6000SPP (step per period).
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The wavelength is changing from approximately 7 km at the 50 m depth to 2 km at the 5 m
depth. The latter is resolved with 25 m grid resulting in 80SPW, which is still an excellent
resolution. Unfortunately, a simple notion of the spatial and temporal resolution needs
to be reexamined since in the shallow water a strong nonlinear interaction occurs. This
phenomenon should change our approach to analyzing the numerical stability of the basic
set of equations, because previously we relied on the linear stability analysis only. Strong
nonlinearities are often source of computational instabilities (Lewis and Adams, 1983).
It follows from Fig.4 that even if the entire spectra of incident waves is limited to only
one period the nonlinear interactions should result in the new periods and in the rectified
current. The average velocity calculated over an incident wave period is not equal to zero,
resulting therefore in the rectified currents. Let’s consider a wave of the unit amplitude
in velocity and of the 5 min period (Fig. 5, upper panel) and calculate the influence of
the advective terms (middle panel) or the bottom friction terms (lower panel). The new
period in the middle panel is 2.5 min, and in the bottom panel is 1.67 min. Generally, the
wave of the period T generates through the advective terms the new oscillations whose
periods are TA = T/2i, where i = 1, 2, 3, .... The new periods due to the bottom friction
are TB = t/(2i+ 1), where i = 1, 2, 3, ... (Parker, 1991). It is of interest to notice that the
amplitude of the secondary oscillations in the lower panel is significantly smaller that the
amplitude of oscillations in the middle panel. Conclusion is that the advective mechanism
more effectively transfers linear motion into the nonlinear motion. The process of breaking
longer waves into shorter waves proceeds continuously, thus the waves shown in Fig. 5 will
break into the shorter period waves as well. To test whether the short period waves are the
part of physical phenomenon we carry out a simple experiment with an improved spatial
resolution by taking step h=5m. The result of calculation is given in Fig. 6. In the upper
panel for comparison the result with h=25 m is also shown.

The improvement in resolution (lower panel) leads to decreasing of the short wave
oscillations. Therefore, we may conclude that the short wave oscillations is an computa-
tional artifact caused by the poor space resolution. The main source of nonlinear effects
is advective term. To the advective term in eq. (14) the upwind method of the first order
approximation in space is applied. The upstream approach is used for the stability reason.
To deal with stability problems even with the higher order of approximation for the first
derivatives (see Kowalik and Bang, 1987, Kowalik and Murty, 1993a) the upstream ap-
proach is needed. Construction of the first derivative can be carried out on the three-point
or four-point stencil. For the three-point stencil the following construction can be used for
the advective term,

u
∂u

∂x
� up

(3um
j − 4um

j−1 + um
j−2)

2h
+ un

(−um
j+2 + 4um

j+1 − 3um
j )

2h
+O(h3) (16)

Application of this approach to the advective term together with the higher order
derivatives (10) and (11) for the remaining space derivatives leads again to the improved
results shown in the lower panel of Fig. 7.
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Figure 6
Wave traveling in upsloping channel. Solution obtained by eqs. (14) and (15).
Upper panel: space step 25 m, lower panel: space step 5 m.
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Figure 7
Wave traveling in upsloping channel. Upper panel: solution by eqs. (14) and
(15), lower panel: solution by the third order approximation
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Figure 8
Wave traveling in upsloping channel. Upper panel: solution by eqs. (14) and
(15), lower panel: solution by the third order approximation and space filter

Conclusion from the above experiments is that the parasitic short wave oscillations
can be deleted through an application of the high spatial and temporal resolutions. A
somewhat different and easier solution is application of a simple space filter. It is applied
only to the computed velocity. The new velocity um+1

j is filtered in the following manner,

UN(J) = um+1
j ∗ (1− ALP ) + 0.25 ∗ (um+1

j−1 + 2. ∗ um+1
j + um+1

j+1 ) ∗ALP (17)

The filter parameter ALP = 0.005. The computation carried out with the high order
derivatives and the above filter are shown in the lower panel of Fig. 8
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4. Run-up in channel

We use here the algorithm previously given in K01, see also Kowalik and Murty,
(1993b). The equation of motion is solved by (14), while the continuity equation is ap-
proximated by the upwind/downwind approach as well. This approach introduced by
Mader (1986) makes equation of continuity quite stable at the boundary between wet and
dry domains. The following numerical scheme is used to march in time for the equation of
continuity:

ζm+1
j − ζm

j

T
= −(upj1×Dm

j + unj1×Dm
j+1 − upj ×Dm

j−1 − unj ×Dm
j ) (18)

In the above equation:

upj1 = 0.5(um+1
j+1 + |um+1

j+1 |) and unj1 = 0.5(um+1
j+1 − |um+1

j+1 |)

upj = 0.5(um+1
j + |um+1

j |) and unj = 0.5(um+1
j − |um+1

j |)
To simulate the run-up and run-down, the variable domain of integration is established

after every time step by checking whether the total depth is positive. This was done
through a simple algorithm proposed by Flather and Heaps (1975) for the storm surge
computations. To answer whether uj is a dry or wet point, the sea level is tested at this
point;

{
uj is wet point, if 0.5(Dj−1 +Dj) ≥ 0;
uj is dry point, if 0.5(Dj−1 +Dj) < 0 (19)

Figure 9, middle and lower panels, describes an experiment in which 15 min and
30 min period waves of 1 m amplitude are continuously generated at the open end of the
channel.

After this signal is reflected from the sloping boundary, a standing wave is settled in
the constant bottom domain. One can glean from this figure that the runup for the 15 min
period is much bigger than the runup for the 30 min. Such growth usually show conditions
close to the resonance. The sea level distribution in the channel depends strongly on the
open boundary condition used for the computation. Setting only velocity or sea level at the
open boundary may generate an additional error. The boundary condition must be semi-
transparent. With the help of such boundary condition we should be able to set required
sea level (or velocity) at the boundary and when the incident wave reflects from a shore
and arrives to the open boundary it should cross the boundary without any reflections.
These boundary conditions are discussed in the next sections.

Science of Tsunami Hazards, Vol 21, Number 3 (2003) page 166



        
150

 

100

 

50

 

0

 
-50

D
E

P
T

H
 (

M
)

        
-600

-400

-200

0

200

400

600

 A
M

P
L

IT
U

D
E

 (
C

M
) PERIOD=15 MIN

0 20 40 60 80 100 120 140
DISTANCE (KM) 

-600

-400

-200

0

200

400

600

 A
M

P
L

IT
U

D
E

 (
C

M
) PERIOD=30 MIN

Figure 9

Upper panel: depth distribution. Propagation of 1 m amplitude wave: Middle
panel: 15 min period, lower panel: 30 min period.
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5. Boundary conditions for the tsunami problems

Presently, to calculate tsunami generation and runup the high resolution 2D or 3D
models are used, while the open ocean physics is well resolved by 2D models. To construct
a boundary condition for connecting the propagation and generation domains let’s consider
first a simple flow in a channel described by eqs. (1) and (2).

Introducing solution in the form (u, ζ) = (u0, ζ0)Φ(x− ct) into these equations gives
rise to a simple set

−cu0 + gζ0 = 0 (20)

Hu0 − cζ0 = 0, (21)

whose solution defines the well known dispersion relation c = ±√
(gH).

Solutions to eqs.(1) and (2) can be written now as superposition of two waves traveling
into positive and negative directions along the x axis,

ζ = ζ+
0 Φ(x− ct) + ζ−0 Φ(x+ ct) (22)

u = u+
0 Φ(x− ct) + u−

0 Φ(x+ ct) (23)

Through eq.(20) and (21) the velocity amplitudes are related in the following way to
the sea level amplitudes

u+
0 =

√
g

H
ζ+
0 and u−

0 = −
√

g

H
ζ−0 (24)

With this substitution eq.(23) reads,

u =
√

g

H
ζ+
0 Φ(x− ct)−

√
g

H
ζ−0 Φ(x+ ct) (25)

Combining eqs.(22) and (23) the two dependent variables u and ζ are expressed by two
disturbances ζ+

0 Φ(x − ct) and ζ−0 Φ(x + ct) which we denote as Φ+ and Φ−. Through
eqs.(22) and (25) these functions are expressed as

Φ+ =
ζ + u

√
H/g

2
(26a)

Φ− =
ζ − u

√
H/g

2
(26b)

The Φ+ is a function of x − ct, therefore it must be constant along any line x −
ct=constant. Such line is called characteristic and speed c is the slope of the characteristic
(Abbot and Minns, 1998, Durran, 1999). In the finite difference domain a characteristic
located between two spatial grid points at the old time step can be followed to predict the
value of Φ+ at the new time step. Similar conclusion can be deduced with respect to Φ−.
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The variables Φ+ and Φ− can be also used to construct two equations instead of eqs. (1)
and (2),

∂Φ+

∂t
+ c

∂Φ+

∂x
= 0 (27)

∂Φ−
∂t

− c
∂Φ−
∂x

= 0 (28)

These will better serve for the boundary condition construction since the values of Φ+

and Φ− are preserved along characteristics.
Consider, the wave propagation in a channel with the left end located at x = 0 and

the right end at the distance x = L. From the left end enters a wave denoted as Φ+, it
propagates towards the right end. If the right boundary ought to be transparent to this
wave the requirement is that there will be no reflection, or Φ− = 0. From eq.(26b) it
follows that the sea level at the right end of the channel is

ζ = u
√
H/g (29)

Similarly, if the left end of channel ought to be transparent for an incoming wave, eq.
(26a) will prescribe the sea level under condition that Φ+ = 0

ζ = −u
√
H/g (30)

Problem to solve is a construction of semi-transparent boundaries, when e.g., at the
left-hand boundary a permanent signal is generated and the right-hand boundary is the
reflective one. A signal, reflected from the right boundary when arriving to the left bound-
ary must find the way out because if this boundary is not transparent the reflected signal
will pump energy causing permanent increase of the amplitude in the channel. To this
purpose, can serve eq. (26a), assuming that incoming wave from the left boundary is con-
stant Φ+ = Const, the relations between amplitude and velocity follows. There are a few
variations of this approach e.g., setting sea level at the left boundary as a constant and
calculating Φ+ and Φ− along characteristics in proximity to the boundary and afterwards
inserting this values for the boundary conditions to calculate velocity from eq.(23).

In many applications, while going from the larger-scale domain to the smaller-scale,
the open boundary for the smaller domain are taken from the larger scale computations
or observations. Suppose at the left-hand boundary the sea level (ζb) and velocity (ub) are
given either from measurements or computations. The incoming value of the Φ+ is defined
as

Φ+ =
ζb + ub

√
H/g

2
(31)

and for the smooth propagation into domain this value ought to be equal to the invariant
specified inside computational domain in the close proximity to the boundary

Φ+ =
ζ + u

√
H/g

2
(32)
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or,
ζ = ζb + (ub − u)

√
H/g (33)

Some understanding of the above condition can be gleaned by comparison to the ra-
diation conditions given by eqs. (29) and (30). Generally eq.(33) requires that at the
boundary, calculated variables in the smaller domain be equal to the measured (or input
variables). One cannot expect this condition to be fulfilled at the initial stage of a com-
putation, especially when the computation start from zero velocity. The second term at
the right-hand-side of eq.(33) is actually a radiation condition, which radiates difference
between prescribed and computed velocity. When stationary conditions will be achieved
the difference of velocity will be close to zero. Condition (33) is often used to establish
open boundary condition for the tidal computations (Flather, 1976). The usefulness of
eq.(33) for the transient tsunami processes requires further testing.

6. Numerical implementation of the boundary condition

Fig. 10 depicts grid distribution at the left-hand boundary. Two-time level numerical
scheme is considered. Both sea level and velocity are having the same space index. Let’s
start by considering radiation boundary condition defined for the velocity. Here a simple
implementation of eq.(30) reads,

um+1 = −ζm+1
1

√
g/H (34)

The question to be answered is that eq.(34) is actually valid along the characteristic and
not at the grid points. First, it is useful to notice that this radiating condition is also
fulfilled by the equation for the sea level

∂ζ

∂t
− c

∂ζ

∂x
= 0 (35)

and thus the value of the sea level is constant along the characteristic which propagates
from the old time (m) into the new time (m+ 1) domains as shown in Fig. 10 by dashed
line. The distance dx = cT , where c denote phase velocity and T is time step. The sea
level at the old time step is defined at the point p on the characteristic,

ζp =
ζm
1 (h− dx) + ζm

2 dx

h
(36)

This sea level is equal to the sea level at the new time step (ζm+1
1 = ζp), and since

dx = cT , and time step and space step are given; denoting cT/h as γ, the above equation
can be written as,

ζm+1
1 = ζm

1 (1− γ) + ζm
2 γ (37)

Eq.(37) can be introduced into (34) to calculate velocity. Notice that this velocity is
defined in the sea level point (j = 1). Calculations show that actually (34) works quite
well even if the variables are defined in the grid points and not along the characteristics.
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Figure 10

The boundary conditions defined through the modeling or observations require also
smooth transition between conditions and computed variables. To this purpose serves well
eq.(33); at the left boundary it can be written as (assuming sea level is prescribed at the
j=1 grid point and velocity at the j=2 grid point),

ζm+1
1 = ζm+1

b + (um+1
b − um+1

2 )
√
H/g (38)

The major problem arises when only one variable is given at the open boundary:
sea level or velocity. With such condition an incoming characteristic is not fully defined,
therefore the above relation cannot be applied. It is easy to start computation with the
prescribed sea level but when the reflected wave arrives to the open boundary and its
magnitude differs from the open boundary value, the energy build up ensue resulting in
an instability. Several solutions are feasible but none is resolving the problem completely.
Generally, a difference between the prescribed sea level magnitude at the boundary and
the sea level generated by the reflected wave at the same boundary is due to an initial
adjustment problem or due to transient character of the signal. The prescribed boundary
condition should actually include both incoming and outgoing signal. One possible solu-
tion for arriving at the stationary signal, is to introduce the radiating mechanism into a
boundary condition and slowly remove this mechanism in time. Assume, at the left bound-
ary the amplitude is prescribed as ζm+1

1 = a cosω(m+ 1)T , now introducing accordingly
to eq.(30) a radiating signal, the boundary condition at the left boundary reads,

ζm+1
1 = a cosω(m+ 1)T − um+1

2

√
H/g (39)

The second term at the right-hand-side of the above equation ought to be slowly removed
in time after the initial adjustment process is over. If only the sea level (ζm+1

b ) is given
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at the boundary a different approach can be worked out starting from eq.(38). The new
boundary value (ζm+1

1 ) at the same grid point can be calculated by the radiation condition,
using, e.g., eq.(37). This sea level will differ from prescribed boundary value ζm+1

b . The
difference may be used to calculate a correction for the boundary value of velocity at the
point j = 2. We rewrite eq.(38) as

um+1
2,c = um+1

2 +
√
g/H(ζm+1

b − ζm+1
1 ) (40)

Velocity um+1
2 has been computed in the regular way, i.e., by application of ζm+1

b as the
boundary value.
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