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Abstract

In my seminar I present the e�ect of rotating environment on �uid �ows. First I show an
interesting e�ect of wind on ocean currents. I than focus on a teacup and explain why particles at
the bottom gather in the centre of cup. Finally I show fascinating (stable) patterns that researchers
observed during rotating disk experiment and compare the pictures with numerical simulations.

Picture on the front page is from [10]. The storm on the left is in the Southern Hemisphere and
the storm on the right is in the Northern Hemisphere.
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Figure 1: Spiral galaxy [9].

1 Introduction

Spiral galaxies (Figure 1), atmospheric or oceanic circulation, hurricanes and tornadoes, and, closer
to our daily lives, bathtub vortices and stirring tea in a teacup, are all examples of the ubiquity of
swirling �ows at all scales in nature.

Vortices and rotating �ows have fascinated people for centuries. But the description of swirling
�ows in more than just observational details had to wait for the Navier�Stokes equation. And even
then the equation was so di�cult to solve, that it had to await the advent of computers and with
them numerical solutions.

The fascination continues today. In my seminar I will describe some examples of rotating �uids.
I shall begin with the most common rotating frame � the Earth. In this frame I will describe �ow
of an ocean, driven by a wind (Nansen 1902 and Ekman 1905). Than I shall turn my attention to
rotation on a smaller scale. I shall present the �teacup experiment� (Einstein 1926) and afterwards
apply some theory, describing the phenomena. At the end of the seminar, I will present latest
experiments on �uid �ow patterns between rotating disks ([6], [7], [8]).

2 Wind-driven ocean currents

At the end of the XIX-th century the Norwegian oceanographer Fridtjof Nansen took part in polar
expeditions. In the 1898 expedition he noticed quite a remarkable fact that the iceberg drift was
not along the wind direction, as expected, but rather towards the right. Nansen himself was not
able to explain this observation theoretically, but Swedish physicist Walfrid Ekman was.

Let us follow Ekman's derivation. We start with the Navier�Stokes equation for incompressible
�uid (∇ · u = 0) [1]:

ρ
∂u

∂t
+ ρ(u · ∇)u = −∇p + η∇2u + ρf . (1)

In equation ρ is density, u velocity and η viscosity of the �uid, p is pressure and f are external forces
per unit mass [N/kg] acting on �uid. In Nansen's case only the last two factors remain. The �rs
factor vanishes because of the assumption of steady �ow, the second because of incompressibility of
the �uid (∇·u = 0) and the third one because there's no pressure gradient (the pressure is constant).
Since gravity and centrifugal force only shift the pressure, the only external force present in our
problem is the Coriolis force. It is de�ned by

f = 2ρu× ωE , (2)

where ωE is the angular velocity with which the Earth spins about its axis and ωE its magnitude.
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Figure 2: Coordinate system in which the wind-driven ocean �ow is described.

We assume a steady, homogeneous and horizontal �ow. As a consequence the time and horizontal
derivatives are zero ∂/∂t = ∂/∂x = ∂/∂y = 0. Therefore the �uid velocity has two components:
x-component ux and y-component uy, which depend on z-coordinate which is positive downward
(increases with depth). From (1) we have

η
∂2ux

∂z2
+ 2ρωE sin(λ)uy = 0

η
∂2uy

∂z2
− 2ρωE sin(λ)ux = 0, (3)

where λ stands for Earth latitude (λ = +π/2 at the north pole and λ = −π/2 at the south pole). In
solving set of equations (3) we make use of typical procedure. We �rst multiply the second equation
by imaginary constant i =

√
−1, than add both equations, set ux− iuy = w and 2ρωE sinλ/η = α2

and we arrive at the equation
∂2w

∂z2
− α2w = 0, (4)

which has the solution
w = w0 exp(±αz). (5)

Since the velocity must diminish with depth, only the negative sign is relevant. Constant α is
α = ±

√
2ρωE sinλ/η

√
i = ±D(1 + i), where D =

√
ρωE sinλ/η. 1 We have to take positive α to

have �nite velocity at great depths. We can now write the solutions:

ux = V0 exp(−Dz) cos(−Dz + δ)
uy = V0 exp(−Dz) sin(−Dz + δ), (6)

where V0 is the amplitude of velocity and δ another constant which comes from w0. The constants
still have to be evaluated from boundary conditions. Boundary conditions are the components
of stress tensor that acts on the surface of the ocean. We take the wind blowing to the north
(y-direction). Therefore we only have wind stress that acts in north direction whereas that to the
east (x-direction) is zero:

τyz = −η

(
∂uy

∂z

)
z=0

= τ 6= 0 and τxz = −η

(
∂ux

∂z

)
z=0

= 0. (7)

From the last equation we get

−V0Dη exp(−Dz)[− sin(−Dz + δ) + cos(−Dz + δ)]z=0 = 0 ⇒ sin δ = cos δ ⇒ δ = π
4(8)

1√i =
√

exp(iπ/2) = exp(iπ/4) = cos π/4 + i sin π/4 =
√

2
2

(1 + i)
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Figure 3: Ekman current generated by a 10 m/s wind at 35 ◦N [11].

and from the �rst equation of (7) we get

V0Dη exp(−Dz)[sin(−Dz + δ) + cos(−Dz + δ)]z=0 = τ ⇒ V0 =
√

2τ
2Dη = τ√

2ηρωE sin λ
. (9)

We can see from equation (9) that the amplitude of current velocity is proportional to the
e�ective wind stress τ and inversely proportional to the sine of the latitude. Since the motion in
the ocean is turbulent rather than laminar, we substitute �eddy viscosity� A for the normal viscosity
η to account for turbulent motion. Eddy viscosity A is typically much greater than η (for water
η = 10−3kgs−1m−1 but A = 10kgs−1m−1). 2 Let us calculate V0! We assume the wind speed is
10m/s at middle latitudes (35◦). At that speed A = 57.7kgs−1m−1 and we take the wind stress to
be τ = 0.35Nm−2. Inserting these values into equation (9) we get V0 = 36cms−1 (values for A and
τ are taken from [5]).

We just found out (equation (8)) that the ocean surface current �ows at 45 ◦ to the right of the
wind when looking downwind in the northern hemisphere. 3 This means that if the wind blows to
the north an iceberg will move to the north�east. We can also see from equations (6) that the �ow
velocity rotates and decays exponentially with depth:

u =
√

u2
x + u2

y = a exp(−Dz). (10)

Figure 3 shows how the �ow velocity changes with depth.
The most fascinating thing about the wind driven current is the fact that total mass transport

is only in the x-direction. 4 The total mass transport is de�ned as

Mx =
∫ ∞

0

ρ ux dz and My =
∫ ∞

0

ρ uy dz. (11)

By inserting the appropriate expressions for velocities ux and uy we get

Mx =
τ

2D2
=

τη

2ρωE sinλ
and My = 0. (12)

Therefore the mass of water moves perpendicular to the wind direction. This is quite di�erent from
what one would expect at �rst sight.

O� course our derivation is not valid in every sea. I will therefore summarize the assumptions
we made.

2The uncertainties in our knowledge of the �e�ective� wind stress τ and �e�ective� eddy viscosity coe�cients prohibit
a thorough comparison of theoretical results with direct observations.

3The current is 45 ◦ to the left of the wind in the southern hemisphere.
4We assume the wind blows to the north (y-direction).
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Figure 4: Primary and secondary motion in a teacup [12].

1. The ocean has no boundaries. This is valid away from coasts in large oceans.

2. In�nitely deep ocean. This is never really true, but is a good approximation for oceans deeper
than 200 m.

3. We assumed steady �ow. This is valid only if wind blows in the same direction for at least
one day.

4. The approximation of homogeneous density is quite good, though it does change with depth.

5. We assumed that the wind friction is con�ned to a thin boundary layer and is zero inside the
ocean.

3 Swirling �ow in a teacup

In this section we shall move towards our everyday life. We have surely all drunk tea. But how
many of you asked why do tea leaves (or other small particles heavier than water) collect towards
the center of the cup? One would expect at �rst sight the particles should be expelled outwards
by the centrifugal force. It is said that this was exactly the question that teased Mrs. Schrödinger.
And it was Albert Einstein who appeased her curiosity, which her husband could not satisfy.

When the tea leaves are rotating around the bottom of a cup, they spiral towards the center of
the cup as they follow the motion of the water that was induced by stirring the tea with spoon.
They move towards the center after the spoon is removed and, hence, when the water in the cup
begins to spin down towards a state of rest. The pressure near the side walls of the cup is higher
than the pressure in the center when the water is rotating. This can be observed by the shape of
the surface of the water which is concave from the viewpoint of the drinker. This pressure variation
is required to balance out the centrifugal acceleration of the rotating liquid water. However, the
water near the bottom of the cup cannot move as freely because the water adjacent to the bottom
sticks to the bottom (that is, the water moves much more slowly near the bottom because of friction
or viscous e�ects). The water touching the wall does not move at all (this is the no-slip boundary
condition that occurs in �ows of viscous �uids). As a consequence of �uid friction, the angular
momentum of the water near the bottom is not enough to oppose the e�ect of the radial pressure
�eld created by the rotating water away from the bottom boundary layer; in fact the pressure
variation is such as to push the water near the bottom of the cup towards the center. Because
mass is conserved in this �ow, the water that is caused to move towards the center of the cup
turns upward towards the surface. Subsequently, it turns towards the side wall at the surface and
�nally moves down towards the bottom boundary layer replenishing the water that was originally
there. This circulatory pattern of motion is the secondary motion (that can be viewed in a meridian
plane). The primary motion is, of course, the circulatory motion initially induced by stirring with
the spoon.
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Figure 5: The secondary �ow between di�erentially rotating boundaries [2]. The secondary �ow is
completed due to an outer wall that is not shown here. At that wall the upper part of secondary �ow
turns downwards and than towards the centre of the bottom disk.

We have seen what happens in a rotating �uid in the case of teacup. If we want to describe that
motion theoretically, we have to restrict ourselves to a more ideal situation. This is the subject of
the next section.

4 Rotating �ows controlled by boundary layers

Imagine two disks, one at z = 0, the other at z = L, rotating about the z-axis with angular velocity
Ω and Ω(1 + ε), respectively (Figure 5). 5 Here, ε is small. Between the disks there is a viscous
�uid with viscosity η. The �uid at the border moves with it � the so called no-slip condition.
Between the disks the �uid must somehow achieve the slight change in angular velocity implied by
the boundary condition. If the Reynolds number Re = ΩL2

ν is large, we expect thin viscous layers
on both boundaries and an essentially inviscid �interior� in between which is largely controlled by
the boundary layers. In the upper equation ν is kinematic viscosity de�ned as ν = η

ρ .
It is convenient to start with the Navier�Stokes equations relative to the frame of reference

which rotates at angular velocity Ω.

∂u
∂t + (u · ∇)u + 2Ω× u + Ω× (Ω× x) = − 1

ρ∇p + ν∇2u ∇ · u = 0 (13)

Here u denotes the �uid velocity relative to the rotating frame, and ∂u/∂t denotes the rate of
change of u at a �xed position x in the frame. The third and fourth term in equation are Coriolis
and centrifugal term, respectively. Vector identity

Ω× (Ω× x) = −∇
[
1
2
(Ω× x)2

]
(14)

enables us to clear away the centrifugal term by de�ning a �reduced pressure� pR = p− 1
2ρ(Ω×x)2.

In the subsequent derivation we shall drop the su�x, but will keep in mind that p denotes reduced
pressure.

In our derivation we are interested in relative �ows u which are weak compared to the basic
rotation of the system as a whole. If we let U denote a typical value of |u|, and let L denote a
typical length scale of the �ow, the dimensionless parameter U/ΩL will therefore be small (of order
ε). Now, the term (u · ∇)u ≈ U2/L = εΩU may be neglected in comparison with the Coriolis term
2Ω × u ≈ ΩU . The equations governing the small departure u from a state of uniform rotation
with angular velocity Ω are then

∂u
∂t + 2Ω× u = − 1

ρ∇p + ν∇2u and ∇ · u = 0. (15)

5As we will see later on it is the di�erence in angular velocities that matters. Therefore one of the disks could be kept
still.
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Within this framework we consider the �ow at large Reynolds number Re = ΩL2/ν, and we assume
the main part of that �ow to be essentially inviscid.

4.1 Steady, inviscid �ow

Let us take Cartesian coordinates (x, y, z) �xed in the rotating frame with the z-axis parallel to
the rotation axis, so that Ω = (0, 0,Ω). We deduce from equation (15) that a steady, inviscid �ow
uI = (uI , vI , wI) satis�es

−2ΩvI = −1
ρ

∂pI

∂x
2ΩuI = −1

ρ

∂pI

∂y
(16)

0 = −1
ρ

∂pI

∂z

∂uI

∂x
+

∂vI

∂y
+

∂wI

∂z
= 0. (17)

Clearly pI is independent of z. It follows immediately from equations (16) that vI and uI are
independent of z also. Moreover, on substituting equations (16) into the right expression of (17)
we see that

∂wI

∂z
= 0. (18)

It follows that uI is independent of z. 6 This far reaching result is known as the Taylor�Proudman
theorem.

4.2 Ekman boundary layer

Let us now turn to the particular problem of steady �ow between two di�erentially rotating (rigid)
disks at z = 0 and z = L (Figure 5).

If R is large, the �ow in the `interior' will be essentially inviscid, and therefore subject to
Taylor�Proudman theorem, but there will be thin viscous layers on both disks.

Consider the boundary layer on z = 0. If we assume, in the normal way, that variations of
u = (u, v, w) with z are much more rapid than those with x or y, 7 we �nd that equations (15)
reduce to

−2Ωv = −1
ρ

∂p

∂x
+ ν

∂2u

∂z2
0 = −1

ρ

∂p

∂z
+ ν

∂2w

∂z2
, (19)

2Ωu = −1
ρ

∂p

∂y
+ ν

∂2v

∂z2
0 =

∂u

∂x
+

∂v

∂y
+

∂w

∂z
. (20)

From the last equation we deduce that w is much smaller than the velocity component parallel to
the boundary which leads to the conclusion that p is essentially a function of x and y only. Thus
∂p
∂x and ∂p

∂y take on throughout the boundary layer their inviscid `interior' values, which are given
in terms of the interior �ow components uI(x, y), vI(x, y) by equations (16). The boundary layer
equations then become

−2Ω(v − vI) = ν ∂2u
∂z2 , (21)

2Ω(u− uI) = ν ∂2v
∂z2 , (22)

and these can be integrated immediately. We make use of the same trick we used in paragraph 2;
we multiply the second equation by i and add the results to the �rst, whence

ν
∂2f

∂z2
= 2Ωif, (23)

where
f = u− uI(x, y) + i[v − vI(x, y)]. (24)

6I have to emphasize that this does not mean also wI = 0; wI can have some constant value.
7For this and other approximations in subsequent derivation consult [2], pp. 266-267.
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The general solution is again

f = A exp[−(1 + i)z'] + B exp[(1 + i)z'], (25)

where z' = (Ω/ν)1/2z, and A and B are arbitrary functions of x and y. To match with the interior
�ow we require f → 0 as z'→∞, so B = 0. As the rigid boundary z = 0 is at rest in the rotating
frame, we require u = v = 0 there, so

f = −(uI + ivI) exp[−(1 + i)z'], (26)

which implies

uE = uI − exp[−z'](uI cos z' + vI sin z'), (27)

vE = vI − exp[−z'](vI cos z'− uI sin z'). (28)

At the `edge' of this Ekman boundary layer, where the �ow matches with that in the interior,
there is a small, but highly signi�cant, z-component of velocity. To see this, note that√

Ω
ν

∂w

∂z'
=

∂w

∂z
= −

(
∂u

∂x
+

∂v

∂y

)
=

=
(

∂vI

∂x
− ∂uI

∂y

)
exp[−z'] sin z'−

(
∂uI

∂x
+

∂vI

∂y

)
(1− exp[z'] sin z'). (29)

Now, the �nal term vanishes by virtue of equations (16), so on integrating with respect to z' from
z' = 0 to z' = ∞ we �nd the value of w at the edge of the Ekman layer to be

wE(x, y) =
1
2

√
ν

Ω

(
∂vI

∂x
− ∂uI

∂y

)
. (30)

This expression may be written

wE(x, y) =
1
2

√
ν

Ω
ωI , (31)

where ωI is the z-component of the vorticity of the interior �ow. 8

If the (bottom) disk is rotating with angular velocity Ωb relative to the rotating frame, the
above expression generalizes to

wE(x, y) =
√

ν

Ω

(
1
2
ωI − Ωb

)
. (32)

Similarly, if Ωt denotes the angular velocity of a (rigid) upper disk at z = L relative to the rotating
frame, than there is a small z-component of velocity up into the boundary layer on z = L of

wE(x, y) =
√

ν

Ω

(
Ωt −

1
2
ωI

)
. (33)

4.3 Determination of the `interior' �ow

We are now in a position to determine the �ow in the inviscid interior of the �uid. The argument is
beautifully simple: the components uI , vI and wI are all independent of z, so ωI = ∂vI/∂x−∂uI/∂y
and wI are independent of z. The expressions (32) and (33), valid at the top of the lower boundary
layer and the bottom of the upper boundary layer respectively, must therefore match. So

1
2
ωI − Ωb = Ωt −

1
2
ωI ,

that is
ωI = Ωt + Ωb.

8Vorticity is de�ned as ω = ∇× u, where u is �uid velocity.
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In the case of Figure 5, with Ωb = 0 and Ωt = Ωε, this gives

ωI =
∂vI

∂x
− ∂uI

∂y
= Ωε.

At this point it is convenient to switch to cylindrical polar coordinates, and on assuming that
the velocity �eld is axisymmetric we �nd

1
r

d
dr

(ruθI) = Ωε.

The solution of this which is �nite at r = 0 is

uθI =
1
2
Ωεr,

so the �uid in the interior rotates at an angular velocity, which is the mean of those of the two
boundaries. This behaviour is a direct result of the in�uence of the top and bottom boundary
layers.

The solution in the interior is completed by returning to equation (30) to obtain

uzI =
1
2

√
νΩε,

and then turning to the incompressibility condition

1
r

∂

∂r
(rurI) +

∂uzI

∂z
= 0

in the interior, which gives urI = 0. The secondary �ow in the interior is therefore purely in the
z-direction (Figure 5).

5 Rotating disks experiment

In order to investigate the �uid �ow in rotating frames, researchers performed various experiments.
The basic idea is that the (viscous) �uid is con�ned between two rotating disks. In general case two
boundary layers may be present. 9 The problem is that the equations of motion are so complex,
that no exact solutions are known for this problem even in the stationary regime (one disk �xed
the other rotating). Therefore scientist have to make use of numerical simulations and various
experiments to shed light on the physical mechanisms going on in the rotating �uid. 10

5.1 Experimental set-up

In order to study the �ow between two rotating disks the experimental set-up shown in Figure
6 was built. The cell consists of a cylinder of small height h closed by a top disk and a bottom
disk, both of radius R = 140 mm. The upper disk is made of glass and rotates together with the
cylindrical sidewall which is made of PVC. The reason why the cylinder and top disk are made
of PVC and glass is to allow visualization from above and from side. The bottom disk is made
of recti�ed brass, with a black coating to improve visualization contrast. To allow the di�erential
rotation the radius of the bottom disk is slightly smaller (a tenth of millimeter) than the radius of
the shrouding cylinder. The thickness h of the cell can be varied between few mm up to several
cm.

9This problem gave rise to a famous controversy in the history of �uid mechanics: George Batchelor (1951) argued
that two boundary layers, separated by a solid body rotation core, must take place in the �uid, whereas Keith Stewartson
(1953) claimed that only one boundary layer should be present. It has actually been shown, many years later, that a
large variety of solutions may coexist in this �ow, including the ones of Batchelor and Stewartson.

10In this section the focus is not on the recirculation (teacup) �ow but rather on the instability patterns in rotating
�uids.
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Figure 6: Sketch of the experimental set-up [6].

The cell is �lled with a mixture of water, glycerol and small anisotropic �akes. The latter
enable us to visualize the �uid �ow. The �akes' orientation with the �uid leads to variations of
the re�ected light. For example, if the �akes are mainly horizontal, they re�ect light, if they are
vertical they do not re�ect it so well. The kinematic viscosity ν = η/ρ, where η is viscosity and ρ
density of the �uid, lies between 1 · 10−6 < ν < 8 · 10−6 m2s−1 due to di�erent concentration of
glycerol.

Each of two disks rotate with its own angular velocity Ωi, where index i = b, t stands for bot-
tom and top disk respectively. Angular velocities of the disks range from 0 to 10 rad/s but the
upper disk rotates anticlockwise only, whereas the bottom one can rotate clock- or anticlockwise.
Anticlockwise rotation is taken positive. We call co-rotation the situation where both disks rotate
in the same direction (Ωb and Ωt are of the same sign) and counter-rotation when the disks rotate
in the opposite directions (they have opposite signs). If one of the disks is left �xed, the other
rotating, the regime is called rotor-stator regime.

We will de�ne some dimensionless numbers that describe our cell. The �rst is radius-to-height
ratio de�ned as Γ = R

h , where R is radius and h height of the cell. The second number is Reynolds

number Rei = Ωih
2

ν , where index i = b, t denotes the bottom and top disk respectively, Ωi is the
angular velocity of the disks and ν the kinematic viscosity. The last number is rotation ratio de�ned
as s = Ωb

Ωt
= Reb

Ret
.

Rotation ratio is positive (s > 0) in the co-rotation regime and negative (s < 0) in the counter-
rotation regime.

5.2 Recirculating �ow

Each rotation is associated with a meridian recirculating �ow, which can be inward or outward
depending on the rotation ratio. For arbitrary positive and small negative rotation ratio s, the
radial recirculating �ow is roughly the same as in the rotor-stator case (s = 0): it consists of an
outward boundary layer close to the faster disk and an inward boundary layer close to the slower
disk. At small negative rotation ratio the centrifugal e�ect of the slower disk is not strong enough
to counteract the inward �ow from the faster disk. But as the rotation ratio s is decreased below
−0.2, the slower disk induces a centrifugal �ow too, and the radial recirculating �ow appears to
come organized into two-cell recirculating structure as shown in Figure 7, 8. 11 At the interface
of these two cells a strong shear layer takes place. The centrifugal �ow induced by the faster
disk recirculates towards the centre of the slower disk due to the lateral endwall. This inward
recirculation �ow meets the outward radial �ow induced by the slower disk, leading to a stagnation
circle where the radial component of the velocity vanishes.

11PIV is acronym for Particle Image Velocimetry. Small particles (≈ 10 µm in diameter) seeding the �ow are used as
a tracer and illuminated by laser pulses. Images are acquired with camera synchronized with the laser pulses.
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Figure 7: Two cell recirculating �ow. Solid red arrows show primary motion (azimuthal �ow), dotted
arrows show secondary motion (recirculation �ow) in the cell [8].

Figure 8: Experimental velocity �eld of the base �ow in the meridian plane made by PIV measurements.
Note that only the region 0.14 ≤ r/R ≤ 0.68 is shown [7].
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Figure 9: Mixing of axisymmetric propagating vortices C and positive spirals S+ (a), propagating
circular vortices C (b) and disordered �ow D [6].

5.3 Instability �ow patterns

We now turn to the instability patterns of the �ow between two rotating disks close to each other
(Γ = 20.9), in both co- and counter-rotating �ows.

For s ≥ 0 (rotor-stator or co-rotation) and Reb �xed, on increasing Ret, propagating circular
structures are �rst observed. They are shown in Figure 9 (b). These axisymmetric vortices appear
close to the cylindrical wall, propagate towards the center and disappear before reaching the center
of the cell. Above a secondary threshold of Ret, spiral structures appear at the periphery of the
disks, and circles remain con�ned between two critical radii (Figure 9 (a)). These spirals are called
positive spirals (denoted S+) since they roll up to the center in the direction of the faster disk
(here the top one). Increasing Ret further, positive spirals progressively invade the whole cell. Still
increasing Ret, the �ow becomes more and more disordered (denoted D, Figure 9 (c)).

From Figure 12 we can see that co-rotation shifts upwards the instability thresholds for circles
and positive spirals. However, threshold line for circles is parallel to the solid body rotation (Ωb =
Ωt) indicating that the angular velocity di�erence ∆Ω = Ωt − Ωb is the only control parameter of
this instability and no in�uence of the global rotation occurs. By contrast, the borderline for the
positive spirals has a larger slope than the solid body rotation line; in this case the relative angular
velocity ∆Ω is not the only control parameter and an extra velocity of the upper disk is needed for
the spirals to arise. The global rotation in this case has a stabilizing e�ect.

For s < 0 (counter-rotating case) the onset of the instability patterns depends on the Reynolds
numbers of both disks. For low bottom Reynolds number, −11 < Reb < 0, on increasing the
Reynolds number of the upper disk, the appearance of the instability patterns is the same as in the
rotor-stator or co-rotation case: axisymmetric propagating vortices, positive spirals and disorder.

But, for −18 < Reb < −11, spirals of a new kind appear on increasing Ret. These spirals
are said to be negative (and denoted S−) since they now roll up to the centre in the direction
of the slower counter-rotating disk (Figure 10 (a)). Unlike circles and positive spirals, negative
spirals extend from the periphery to the center � they invade the whole cell. Also, the onset time
for negative spirals is much longer than for positive ones or circles; when the onset is carefully
approached from below, the growth time of negative spirals can exceed 15 minutes which strongly
contrasts circles and positive spirals which appear almost instantaneously. 12

Increasing Ret further, positive spirals appear as well at the periphery of the disk, as can be
seen in Figure 10 (b). Here negative and positive spirals seem to coexist without strong interaction,
which indicates the di�erence in their origin. The circles and positive spirals have their origin in
the boundary layer instability whereas negative ones, on the other hand, originate from shear layer
instability.

Still increasing Ret, negative spirals disappear and positive spirals alone remain (Figure 10 (c)).
Increasing Ret yet further, circles appear as in the co-rotation case. Still increasing Ret, the

structures become disorganized and the �ow becomes turbulent. For Reb < −18 the negative spirals
described above become wavy, the �ow is more and more disorganized and continuously becomes

12Further from the threshold growth time of negative spirals takes more reasonable values (≈ 1 min or few s). Actually,
it can be shown that this growth time diverges as one approaches the onset.
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Figure 10: Negative spirals S− (a) and mixing of positive and negative spirals (b). Positive spirals left
after the negative ones faded away (c) [6].

Figure 11: Instability pattern for smaller Γs (Γ = 6.1, 7, 7 from left to right) [7].

turbulent without a well-de�ned threshold. Depending on the Reynolds number, the disorder can
be generated �rst at the periphery or in the center and then invades the entire cell.

Up to now our instability patterns were limited to radius-to-height ratio Γ = 20.9. Does anything
changes if one changes it? Researchers enlarged the gap h between the disks (Γ diminishes) and
observed a new pattern that consisted of a sharp-cornered polygon of m sides, surrounded by a
set of 2m outer spiral arms, as can be seen on Figure 11. These polygons arise only for small
Γs (less than approx. Γ = 10). For higher values the vertical con�nement leads to a saturated
pattern where inner arms, connecting the corners of the polygon to the center of polygons, turn
into negative spirals.

Another interesting property of the patterns is that they are not �xed but rather rotate as a
whole. Therefore we de�ne the azimuthal phase velocity ωφ in the laboratory frame. It corresponds
to the angular velocity of the global rotation of the spiral pattern. For the S+ spirals ωφ is always
positive (anticlockwise), i.e. the positive spirals rotate in the direction of the faster (top) disk,
regardless of motion of the bottom one. S− spirals, on the other hand change sign of ωφ. It means
that for small Ret the pattern rotates in the direction of the slower (bottom) disk while at higher
Ret it moves with the top (faster) disk. Here I only compare the directions of the disks and phase
velocity. The size of phase velocity is only a fraction of the disk velocities.

The domains of existence of all these patterns are summarized in the regime diagram on Figure
12. We see that the co-rotation �ow (Reb > 0, right-hand part of the diagram) is qualitatively the
same as the rotor-stator �ow (vertical line Reb = 0); the thresholds of instabilities (circles C and
positive spirals S+) are found to increase just with the bottom Reynolds number. By contrast, the
counter-rotating case (Reb < 0, left-hand part) is much more rich.

5.4 Numerical description of the patterns

In order to obtain further insight into the instability mechanism of the counter-rotating �ow,
scientists performed PIV measurements and numerical simulations. On the left part of Figure 13
you can see the horizontal velocity and the associated vertical vorticity �eld, measured by PIV
at mid-height z = h/2 for Γ = 7. Left part of Figure 13 shows the axisymmetric base �ow (a)
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Figure 12: Regime diagram of the rotating disk �ow for the aspect ratio Γ = 20.9 (thickness h = 6.7
mm). The right part corresponds to the co-rotation case (Ωb > 0), the left side to the counter-rotation
case (Ωb < 0), the vertical line denotes the rotor-stator case (Ωb = 0). The continuous lines de�ne the
domain limits, while the dashed give a rough estimate of the disorder transition [8].

while other pictures on the left side show polygonal deformed �ow. In order to gain deeper insight
in the structure of �ow scientists also made numerical simulations. You can see computed axial
vorticity �eld at z = h/2 for Γ = 21 on the right side of Figure 13. Only the inner spirals can be
seen in numerical simulations, suggesting that the outer spirals are outside the mid-height plane.
The three-dimensional structure can be inferred from numerical vorticity and velocity �elds. It
is remarkable that the locations of the vorticity extremes approximately coincide for each �eld,
suggesting that the �ow structure is roughly invariant along the vertical direction, except close
to the disks where boundary layers occur. Along these columnar vortices strong upward �ow is
present, which advects negative vorticity from the bottom to the top disk.

To �nd out how the nonlinear di�erential equations depend on the initial condition two compu-
tations were performed for the same �ow parameters (Γ = 3, Ret = 280), which di�er only by the
initial condition. The axisymmetric stable �ow for Reb = 70 is taken as the initial condition for the
�st computation where Reb was suddenly increased from 70 to a value above the threshold. For
the second computation, the bottom Reynolds number was gradually increased from 70 to 80 in
four steps, waiting for the saturation of the �ow at each step. While the �rst computation showed
a mode m = 5 the second one showed a mode m = 4. For similar values of Reb the experiment
shows a mixed state of modes 4 and 5. These observations clearly illustrate the sensitivity of the
observed pattern to the initial condition. They are in good agreement with a number of experi-
mental observations, where strong hysteresis is observed for the modes, although no hysteresis is
present in the value of threshold.

6 Conclusion

Fluid dynamics is one of the most intriguing parts of physics. Why? One part of the answer is
that the equations are well established but we are still not able to solve them, except for some very
simpli�ed (and unreal) cases. The other part is that we have everyday contact with �uids and their
�ow, we are fascinated by their complexity and beauty.

In my seminar I presented some examples of �uid �ow in rotating frames. One can see that
they are impossible to describe mathematically and all but simple and intuitive. Nevertheless
modern computers, capable of heavy computations, o�er new and exciting perspectives in their
understanding. In this context, the excellent recent agreements between experiments and numerical
simulations are encouraging.
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Figure 13: Left : Experimental velocity and vorticity �elds at mid-height z = h/2 for Γ = 7. First
picture (a) is below the onset of instability. Right : Numerical axial vorticity �eld ωz at mid-height for
Γ = 21 showing a mode m = 11. Only the central region r ≤ 0.95R is shown [7].

The study of �uid motion in rotating environments is very important in large-scale meteorology
and oceanography where the Coriolis e�ect has to be taken into account. 13

Study of swirling �ows is also of great importance in a number of industrial or practical appli-
cations. Hard disk drives are an important example: the instabilities of the thin air layer over the
rapidly rotating platters induce vibrations of the read/write heads, that may damage the platters'
surface. This type of involvement was especially actual at the time of Bernoulli disks. They worked
on the Bernoulli principle. When the disk is spinning the air drags it close towards the read/write
heads (50µm for the Bernoulli Box). But because the head doesn't actually touch the disk, there
are fewer chances for magnetic head crashes. Also, since the disk is closely (but safely) aligned with
the magnetic head, more data can be stored and accessed, since the head can accurately read/write
from more tracks than otherwise possible.
Another point of practical interest are the turbo machines used in power plants or aeronautics en-
gineering. This latter application involves huge rotation rates (more than 10000 rpm) and accurate
modelling of the turbulent phenomena present at small scales are clearly needed for such numerical
simulations.

Last but not least the study of swirling �ows is interesting because of all the beauty it possesses.
Or, as R.P.Feynman put it: �But the real reason is that the subject is enjoyable, and although we
humans cut up nature in di�erent ways, and we have di�erent courses in di�erent departments,
such compartmentalization is really arti�cial, and we should take our intellectual pleasure where
we �nd them.� 14

13One interesting consequence of rotating Earth are super tankers. They are long enough (more than 300m) to feel
the Earth's rotation. When travelling north in the Northern Hemisphere their direction deviates to the west unless
compensated.

14R.P. Feynman, R.B. Leighton and M. Sands: The Feynman Lectures on Physics, Vol. I (Addison Wesley, Reading,
Mass. 1963), pp.22-1.
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