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Abstract 

Free energy of liquid crystal and different confinement geometries such boundary 

conditions enforced by planar substrates or curved boundary conditions are investigated. 

The effect of confinement on the orientational order parameter of nematic liquid crystal is 

examined in the framework of Landau-de Gennes theory by assuming a large surface 

orientation potential. Calculations are presented for both the semi-infinite-sample case and 

the finite-thickness-sample case. Variation phase diagrams are discussed to show the effect 

of sample thickness and substrate potential on the bulk as well as boundary-layer phase-

transition temperature.  
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1. Introduction 

Studies of the influence of confinement and random substrate disorder on physical 

properties are topic of current interest. Such studies are particularly important for liquid 

crystal system since their weak orientational and translational order is considerably 

influenced by the presence of surface. In addition, because of the existence of long-range 

correlations near a phase transition, liquid crystals are a unique and rich system to test in 

restricted geometries [1]. On the technological side, the advances have also been 

spectacular: liquid crystal displays, thermometers, optical imaging and other application. 

For many of these utilities we have to confine liquid crystal to use them. These means we 

put sample between borders of some kind and some exact geometry. To understand how 

different technology work and to invent new applications it is important to understand 

theory that describes confined liquid crystals [2]. 

There are several theoretical and few experimental studies on the confinement effect on 

the orientational order parameter, phase transition, and specific heat of nematic liquid 

crystal enclosed inside the walls of different geometries [1, 3-7].  

2. Free energy 

In a given microscopic region of a liquid crystal there is a definite preferred molecular axis. 

Even in equilibrium the direction of this axis can vary from place to place, and it can be 

forced to vary by the action of external forces or boundary conditions. This variation is 

described by vector function     , where     . We will refer to the deformation of 

relative orientations away from the equilibrium position as curvature strains. Restoring 

forces which arise to oppose deformations are then called curvature stresses or torques. 

Let us consider a uniaxial liquid crystal. We assume that   varies slowly from point to point, 

and thus is defined by continuity at other points in the region. At    we introduce local right-

handed Cartesian coordinate system       with   parallel to  . We define curvature strains. 

                                             Splay:        
   

  
   ,          

   

  
                                                         (1) 

                                             Twist:        
   

  
   ,       

   

  
                                                         (2) 

                                              Bent:          
   

  
   ,        

   

  
                                                         (3)  

these quantities measure director deformation. The curvature strains represent three 

different distortion types of the director. Called splay, twist, bend, see Fig. 1. 
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Figure 1. The three principal types of deformation in nematic liquid crystal. 

We postulate that the Gibbs free energy density of a liquid crystal, relative to its free energy 

density in the state of uniform orientation, can be expanded in terms of the six curvature 

strains: 

                                                                 
 
    

 

 
        

 
                                                  (4) 

Fortunately, there are restrictions on the free energy that reduce the number of 

independent constants       . First there can be no term for which   and –   give different 

energy values. Second, there can be no linear terms. These terms change if the coordinate 

system is rotated about the director, if the director is reversed, or if the coordinate system 

is inverted. Finally, terms that can been written as divergence and integrated over the 

volume of the sample can be changed to a surface integral. These contributions to the free 

energy must be taken into account when considering surface effects, but in most cases can 

be ignored in a discussion of the volume free energy per unit volume. 

The free energy per unit volume of nematic liquid crystal can be written as follows, 

                              
 

 
          

 

 
            

 
 

 

 
            

 
                      (5) 

        and     are called elastic constants (or Frank constants). These three constants 

describe how ‘stiff’ the liquid crystal is to distortion of the director for each of the 

characteristic deformation modes shown in Fig. 1. They are temperature dependent, 

         , where   is order parameter. Typical values of these constants are about 

        , whit     being two or three times larger than     and    . 

The equilibrium state of the liquid crystal is obtained by minimizing the total free energy 
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Whit appropriate boundary conditions and subject to the condition    . Allowing    to 

vary in Eq.6, we know Euler-Lagrange equations 

                                                           
 

   

  

 
   
   

 
  

   
                                                                   (7) 

where   is Lagrange multiplier due to constrain     [2]. 

3. Confinement  

The confinement of liquid crystals imposed by surface boundary conditions is at the heart of 

most liquid crystal device applications. This confinement can come in the form of boundary 

conditions enforced by planar substrates or curved boundary conditions. 

3.1  Liquid crystal in curved geometry  

Interest in liquid crystalline materials confined to curved geometries has expanded greatly 

in recent years because of their important role in new and emerging electro-optic 

technologies and their richness in physical phenomena. The discovery of the usefulness of 

these materials, conspicuous in electrically controllable light scattering windows and 

reflective mode display technology, has burgeoned into a mature reflective display 

technology and heralded an era of fascination with the confinement organized fluids. 

Independent of the method used to constrain liquid crystals, phase separation, 

encapsulation, or permeation; these systems have one underlying common theme: a 

symmetry-breaking, non-planar confinement imposed by the surrounding matrix. In 

addition, confined liquid crystal systems differ from macroscopic bulk liquid crystals 

because of their large surface-to-volume ratio [1]. When sample is closed inside sphere 

made of some suitable substance (polymer). Liquid crystal again order inside the droplet 

according to boundary condition. In spherical confinement the configuration strongly 

depends on the delicate interplay between surface and elastic forces. For the homeotropic 

aligned droplets (Fig. 2), several configurations are possible:  

(1) The radial (splay-elastic deformation,    ); 

(2) The axial with defects (splay-bend configuration,       ); 

For the homogeneous aligned droplets in Fig. 2, there are several other configuration: 

(1)  The bipolar configuration with defects at the poles (splay-bend configuration,     

   ); 
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(2) The aligned bipolar configuration when an electric field is applied to a material with a 

positive dielectric anisotropy (     , splay-bend configuration       ); 

 

Figure 2: Examples of liquid crystals confined to spherical droplets. 

Liquid crystal can also be confined to cylinders, as shown in Fig. 3. When homeotropic 

alignment persists, radial (splay,    ), planar polar (splay-bend,        ) configurations 

are possible [8]. 

 

Figure 3: Examples of liquid crystals confined to cylinders. 
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3.2 Liquid crystal between two flat plates 

Our discussion is more about liquid crystal between two flat plates, the simplest one but not 

least useful. Such studies on nematic liquid crystals are important both from fundamental 

and technological points of view. For example, nematic liquid crystal is sandwiched between 

two parallel glass plates for display (LCD) applications. 

To see how theory from sect. 2 works let us consider an example. Being with the most 

simple geometry possible, Fig. 4. Imagine that liquid crystal is sandwiched between two flat 

glass plates separated by a distance  . The   axis is perpendicular to glass surface. Let us call 

the angle between the director and  -axis     ; then                . In general, the 

energy associated with distortion involves splay, twist and bend. Calculated terms are 

                                              
  

  
      

  

  
                                      (8) 

 

Figure 4: twist nematic cell. On the left wall these is easy axis along direction   , on the right wall 

easy axis is along   . 

Using these results in Eq. 4 one has 

                                                                     
 

 
    

  

  
 

 

                                                                 (9) 

Now we follow the procedure presented at the end of Sec. 2, and the appropriate Euler 

equation is 

                                                                        
 

  

  

 
  

  

 
  

  
                                                                            

Substituting the expression for   into this equation yields 
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  ,          and,                                                        (10)      

We see that   is linear function of   with  -interception        and slope         

             . This solution is good only for strong anchoring and in the bulk area. This 

means that   is fixed at     and     because the surface forces are strong enough to 

impose a well-define direction to the director  . In real situation it can happen that this is 

not true one deals with weak anchoring on one or on both walls. In this case Eq. 9 no longer 

holds. Weak anchoring can be modeled by an appropriate phenomenological surface term, 

which increases energy if director is not aligned with easy axis, e.g. 

                                                                   
 

 
                                                             (11)    

where   is surface term strength and    is easy axis. Suppose that we have weak anchoring 

only at    , in this case we have 

                                           
 

 
    

  

  
 

 

   
 

 
             

 

 
                       (12) 

For that kind of energy a possible solution for      is shown on Fig. 5. To estimating the 

anchoring strength we define, Fig. 5, extrapolation length  . We will not derive       and   

at surface from microscopic calculations but we can obtain estimate of   by estimating Eq.5 

hold down to the surface and at surface we add appropriate term 

                       
 

 
     

         

 
 

 

 
 

 
                          because                  (13) 

Minimizing this with respect to      we find 

                                                                          
   

 

  

  
                                                                        

Comparing equation with the definition of   we see that, in our approximation 

                                                                             
   

 
                              

This length is a good measure of how strong anchoring is in comparison with elastic 

constant    . This is the fundamental formula for boundary effects. We have two 

possibility: strong anchoring, if   is comparable to the molecular  , this means that 

ratio                 . For weak anchoring, extrapolation length may become much 

larger than the molecular dimensions   and angle      is large [2]. 
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Figure 5: depiction of      minimizing free energy Eq. 12. In region of molecular thickness   near 

the surface area the twist depends on detailed molecular properties.   is the extrapolation length. 

4. Effect of alignment on nematic liquid crystal 

Now we consider the effect of confinement on the order parameter of nematic liquid 

crystals due to the alignment at the walls. Ping Sheng has calculated the order parameter 

profile in thin cells using the Landau de Gennes theory assuming a surface potential, which 

enhances the order parameter at surface. 

4.1 Semi-infinite sample problem 

Consider a sample of nematic liquid crystal bounded on one side by a substrate. The solid- 

liquid crystal interface is defines as    , and the sample is assumed to be uniform in   

and   directions. The substrate is treated so that the nematic liquid crystal molecules in its 

immediate vicinity experience an uniaxial aligning potential along some fixed spatial 

direction   . The potential felt by each molecule can expressed in general as 

                                                                                                    (14) 

where   is the angle between the long axis of the molecule,      is the normal distance from 

the substrate,   is a constant denoting the strength of the potential,     denotes even-

order Legendre polynomials, and  ,  , etc., are the series expansion coefficients for the 

angular part of the series expansion coefficients for the angular part of the potential. In Eq. 

13, it is assumed that the surface potential is short range as indicated by the delta function. 

If, in addition,       is truncated to the leading term of the series and averaged over the 

many molecules within a small spatial region, then the resulting form of the macroscopic 

potential is given by 

                                          V=                                                                 (15)         
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To study the thermodynamic consequences of such a substrate potential, we strat with the 

Landau-de Gennes free-energy density  : 

                                                               
  

  
 

 

 
 

 
                                                      (16) 

                                                                                                                     (17) 

where   is the temperature,          and   are material parameters which can be 

determined from thermodynamic and fluctuation measurements, and   is the area of the 

planar substrate. Given  , the total free energy   is obtained directly by integration over  : 

                                                    
 

 
          

  

  
 
 

   
 

 
 

 

 
                                              (18) 

where    denotes the value of   at    . To determine the equilibrium from of     , we 

employ the condition of minimum free energy. The minimization procedure involves two 

steps: First,    is held fixed and the integral in Eq. 18 is minimized variationally with respect 

to     . The resulting expression for   is then minimized with respect to   . 

Implementation of the first step results in the Euler equation 

                                                                            
   

                                                                      

which can be integrated once to yield 

                                                                  
  

  
 

 

                                                                 (19) 

The constant   is determined by the condition that at    , the bulk liquid crystal is 

uniform and, therefore, 

                                                                            
  

  
 
   

                                                                (20) 

which directly implies 

                                                                 
  

  

  
 

 

                                                            (21) 

Here         
       is the correlation length,             

  , and    is the bulk value 

of the order parameter. Substitution of Eq. 21 into Eq. 18 yields 

                                  
 

    
                               

  

  
                             (22) 

The equilibrium value of    is determined by the condition           , or 
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                                                           (23a) 

where    is found by the stipulation that 

                                                                                                                                      (23b) 

where min represents the absolute minimum of     . In case Eq. 23 has multiple roots, the 

correct    is that one which gives the lowest value of     as expressed by Eq. 22. Once    is 

found, the      profile can be obtained through the integral of Eq. 20, or 

                                                            
 

  
  

  

           

  

    
                                               (24)  

The calculated results of    as a function of temperature for the nematic liquid crystal 4-

penty-4’-cyanobiphenyl (PCB) is shown in Fig. 6. In the calculation, measured values 

                                                         and       

          were used []. It is seen that for             experiences a discontinuous  

 

Figure 6. Calculated PCB order-parameter value at the substrate-nematic interface as a function of 

temperature. Magnitude of the substrate potential is labeled beside each curve. Values of the 

critical point parameters are noted in the figure. 
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transition in its value at bulk-transition temperature   
 . However, at             

        , the transition of    occurs at a temperature higher than   
 . At     , the 

transition disappears and the variation of    becomes a continuous function of 

temperature. The nature of the transition at      and in the range         deserves 

closer scrutiny. The behavior of the boundary layer for         is shown in Fig. 7. 

At     
 , it is seen that both   and    experience a discontinuous jump as indicated by 

the two curves corresponding to      just before and just after the transition. The 

simultaneous transition of     and    in understandable since the value of    is linked to the 

bulk    by elastic forces [represented by the           term in the free-energy density] 

and in the limit of weak substrate potential the transition in    is induced by the bulk 

transition. At           , however, a different type of boundary-layer behavior is 

predicted as illustrated in Fig. 8. Fig. 8(a) shows the      just before and just after the bulk 

transition at   
 . Although    has a discontinuous jump,    stays fixed. At     

       , 

on the other hand, the value of    exhibits a discontinuous transition while    stays 

unchanged (=0) as illustrated in Fig. 8(b). Since, in this case, the first-order transition 

involves only the boundary layer, the phase change shown in Fig. 8(b) is called as a 

boundary-layer phase transition. The physics of this occurrence is actually fairly simple. The  

 

Figure 7. Variation of the order parameter   as a function of distance      away from the substrate. 

Upper curve shows      just before the bulk transition at     
 , and lower shows      just after 

the transition. Value of the substrate potential         is noted in the figure. 
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layer of nematic molecules at the liquid crystal substrate interface experience two forces: 

the elastic forced, which connects the surface molecules with the bulk, and the substrate 

aligning force. When the substrate potential is sufficiently strong, i.e.,      (but     ), 

the increase in the elastic part of the free energy caused by the lowering of the bulk order-

parameter value at   
  cannot overcome the surface aligning potential. Therefore,    stay 

unchanged. However, as temperature increases beyond   
 , there is a point at which a trade 

off between the elastic free energy and the surface potential energy becomes 

advantageous and a boundary-layer transition occurs in which the gain in surface potential 

energy (resulting from the decrease of   ) is offset by the lowering of the elastic free energy 

(and vice versa when   is lowered through the transition temperature) [3].  

 

 

 Figure 8. (a) Variation of the order parameters   as a function of distance      away from the 

substrate. Two curves show      just before and just after the bulk transition at     
 . Magnitude 

of the substrate potential         is noted in the figure. In this case, the bulk order parameter 

has a discontinuous jump, but the value of    stays fixed. (b) Variation of   as a function of      

at     
        . Substrate potential is the same as in (a). Two curves correspond to     just 

before and just after a transition have occurred. Since in this case the transition involves only the 

boundary layer, it is labeled the boundary-layer phase transition.  
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4.2 Finite thickness sample problem 

Consider a sample of nematic liquid crystal of uniform thickness    sandwiched between 

two identically treated substrates situation at     and     . Instead of the condition 

              for the semi-infinite sample, in this case Sheng used 

              due to the symmetry of the problem. Therefore, if the    denote the 

order parameter value at middle of the sample, i.e.,    , then we are led to exactly  Eq. 

22, where   now stands for half of the total free energy of sample. However, due to the 

fact that   is finite,    and    can no longer be decoupled as in the previous case. So he had 

to solve the coupled equations 

                                                                                 
  

 
                                                       (25a) 

                                                                     
  

 
 

  

           

  

  
                                               (25b) 

When there are multiple pairs of solutions        , the correct pair is always that one which 

gives the lowest value of   as expressed by Eq. 22. It should be noted that when       , 

Eq. 25 reduces to Eq. 23 for the semi-infinite case. 

Through the use of the measured parameter values of PCB, Sheng has calculated the 

variations of    and    as a function of    , and  . For          it is seen from Fig. 9 that 

transition temperature of    increases with decreasing  . As to   , at         , it shows 

two transitions: the boundary-layer phase transition plus the one induced by the transition 

of   . We will label the transition which causes discontinuities in both    and    as the “bulk 

transition,” in accordance with its limiting characterization as       . Since the 

boundary-layer transition temperature is found to be invariant with respect to  , the 

increasing bulk-transition temperature means that there is a thickness         , below 

which the boundary-layer transition disappears into the bulk transition. As   decreases 

even further, the first-order transition in both    and    eventually turn into second-order 

transition at        . Results of similar calculations with            are plotted in 

Fig. 10. In contrast to the semi-infinite case in which    has no abrupt transition at this value 

of the substrate potential, for finite sample thickness    always experiences a discontinuous 

jump coincident with the first-order transition in   . This behavior is similar to that 

for         at         . The critical thickness in this case occurs at         [3]. 
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Figure 9. Variation of    (dashed curve) and    (solid curve) as a function of temperature. The (half) 

thickness of the sample is labeled beside each curve. Magnitude of the substrate potential,   

     , is noted in the figure.  

 

Figure 10. Variation of    (dashed curve) and    (solid curve) as a function of temperature. The (half) 

thickness of the sample is labeled beside each curve. Magnitude of the substrate potential,   

     , is noted in the figure. 
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5. Conclusion 

In this seminar we discussed behavior of liquid crystals enclosed inside the walls of different 

geometries. The effect of confinement on the orientational order parameter of nematic liquid 

crystal in the framework of Landau-de Gennes theory assuming surface potential, which enhance 

the order parameter at surface has investigated. It is shown that the substrate potential, which can 

arise from surface treatment of liquid crystal display cells, not only induces a boundary layer in 

which the order-parameter values can be significantly different from that of the bulk, but also 

introduces a new boundary-layer phase transition which occurs at temperatures higher than the 

bulk-transition temperature. Various phase diagrams have presented to show the effects of sample 

thickness and substrate potential on the bulk as well as the boundary-layer phase-transition 

temperature.       
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