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Abstract 
 
It is believed that almost any pair of people in the world can be connected to one another 
by a short chain of intermediate acquaintances, of typical length about six. This 
phenomenon, colloquially referred to as the “six degrees of separation”, has been the 
subject of considerable interest within the physics community in recent years. 
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1 Introduction 
 
The world of human society has become quite large in recent times, but people routinely 
claim that it’s still a small world we live in - and in a certain sense they could be right. 
Despite the enormous number of people on the planet, the topology and structure of 
social networks is such that we are all closely connected to one another. 
 
 

1.1 Milgram’s experiment 
 
One of the first quantitative studies of the structure of social networks was performed in 
the late 1960’s by Stanley Milgram of Harvard University [1]. He took a number of letters 
addressed to a stockbroker in Boston and distributed them to a random selection of 
people in Nebraska and Kansas. His instructions were that the letters were to be sent to 
the stockbroker by passing them from person to person and, in addition, could be sent 
only to someone whom the current holder knew on a first-name basis. Since it was not 
likely that the initial recipients of the letters were on a first-name basis with a Boston 
stockbroker, their best strategy was to pass their letter to someone they presumed was 
more likely to know the person to whom the letter was ultimately addressed.  
By requiring each intermediary to report their receipt of the letter, Milgram kept track of 
the letters and the demographic characteristics of their handlers.  
 
A reasonable number of letters eventually reached their destination, with a median chain 
length of about six. Milgram concluded that six was therefore the average number of 
acquaintances separating any two people in the entire world. This situation has been 
labeled “six degrees of separation”, a phrase which has passed into popular folklore. 
 
There were certainly enough possible sources of error in Milgram’s experiment, from his 
sample selection to the fact that it was confined to the United States, to suspect that the 
figure six is probably not a very accurate one. However, the general result that two 
randomly chosen human beings can be connected by only a short chain of intermediate 
acquaintances has been subsequently verified and is now widely accepted. This result is 
referred to as the small-world effect. 
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1.2 Importance of social networks 
 
But why should a serious scientist care about the structure of social networks? Because 
such networks are crucially important for communications. Most human communication 
takes place directly between individuals. The spread of news, rumours, fashions all take 
place by contact between individuals. Even more importantly, the spread of disease also 
occurs by person-to-person contact and the structure of networks of such contacts has a 
huge impact on the nature of epidemics. In a highly connected network, diseases like HIV 
virus or this year’s superflu, SARS, can spread faster than in a network where the paths 
between individuals are relatively long. 
 
 
 

2 Networks and graphs 
 
Networks are omnipresent. The brain is a network of neurons, organizations are 
networks of people, the global economy is a network of national economies and markets. 
 
Any kind of network can be represented by a graph, composed of nodes or vertices and a 
set of lines joining the nodes. The nodes can represent members of a population and the 
edges stand for their interpersonal ties. Traditionally, networks are modeled as either 
completely ordered or completely random. 
 
 

2.1 Random graphs 
 
The simplest explanation for the small-world effect uses the idea of a random graph [1]. 
Let N be the number of people in the world, who on average have z acquaintances. This 
means that there are ½Nz connections between people in the entire population. The 
number z is called the coordination number of the network. 
 
The probability p that an edge is present between two vertices in such a network is  
p = z/(N-1), which is usually approximated by z/N for large N. The number of edges 
connected to any particular vertex is called the degree k of that vertex, and has a 
probability distribution Pk given by 
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where the second equality becomes exact in the limit of large N. We recognize this 
distribution as the Poisson distribution – the ordinary random graph has a Poisson 
distribution of vertex degrees. 
 
A very simple model of a network represented by a random graph can be made by taking 
N dots and drawing ½Nz lines between randomly chosen pairs to represent connections 
(fig. 1). 
 

 
Figure 1. A schematic representation of a random graph, the circles representing vertices and 

lines edges. 
 
It is easy to see that a random graph shows the small-world effect. If a person A, 
represented by a node, has z neighbours on such a graph, and each of A’s neighbours also 
has z neighbours, then A has about z2 second neighbours, z3 third neighbours and so on. 
Most people have between a hundred and a thousand acquaintances, so z3 is already 
between about 108 and 1012, which is comparable to the population of the world. The 
diameter of the graph, D, is given by zD = N, which implies that  
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This logarithmic increase in the diameter of the graph and distance between the nodes is 
typical of the small-world effect. Since log N increases only slowly with N, it allows the 
distances to be quite small even in very large systems. 
 
However, random graphs are not a good model of social networks. People’s circles of 
acquaintances tend to overlap to a great extent. Since people meet most new friends 
through existing friends, the networks are locally ordered. The outcome of local ordering 
in such a network is that one individual’s friends are more likely than not to know one 
another – a characteristic that is called clustering. Clustering means that if A is connected 
to B and B is connected to C, then A is more likely to be connected to C than to some 
other random node. Therefore in a real social network it is not true to say that A has z2 
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second neighbours, since many of those second neighbours are already first neighbours 
of A.  
 
We define a clustering coefficient C as the average fraction of pairs of neighbours of a 
node which are also neighbours of each other [1]. In a fully connected network, in which 
everyone knows everyone else, C = 1.  
A random graph does not show clustering. In a random graph the probability that two of 
A’s friends will be friends of one another is no greater than the probability that two 
randomly chosen people will be - C is equal to p, C = z/N, which is very small for a large 
network. 
 
In real-world networks it has been found that, while C is significantly less than 1, it is 
much greater than the random graph value z/N. 
 
 

2.2 Ordered lattice 
 
In order to model the real-world networks, graphs must have both clustering and small-
world properties. Random graphs show the small-world effect – average vertex-to-vertex 
distances increase only logarithmically with N – but they do not show clustering. 
 
The opposite of a random graph is a completely ordered lattice, the simplest example of 
which is a one-dimensional lattice (fig. 2a). If we connect each vertex to z vertices closest 
to it, it is easy to see that most of immediate neighbours of any site are also neighbours of 
one another – it shows clustering properties. Just for convenience, we apply periodic 
boundary conditions to the lattice (fig. 2b).  
 
 
 
 
 
 
 
 

 
 
 

Figure 2. (a) A one-dimensional lattice with each site connected to its z nearest neighbors, 
where in this case z = 6. (b) the same lattice with periodic boundary conditions. 
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For such a lattice the clustering coefficient C can be calculated exactly [1],  
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which tends to ¾ in the limit of large z. We can also build networks out of higher-
dimensional lattices, such as square or cubic lattices, and these also show the clustering 
property. The value of clustering coefficient in general dimension d is 
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Regular lattices however do not show the small-world effect of vertex-to-vertex distances 
which increase only slowly with system size. It is easy to show that for a regular lattice in 
d dimensions with the shape of a square or a hypercube of side L with N = Ld vertices, the 
average vertex-to-vertex distance increases as L, or equivalently as N1/d. In one 
dimension, it means that the average distances increases linearly with system size, this is 
not the typical small-world behaviour. 
 
So, if random graphs and ordered lattices do not match well the properties of real-world 
networks, is there an alternative model that does? 
 
 

2.3 The small-world model of Watts and Strogatz 
 
Watts and Strogatz have proposed a model for small-world networks, which fits well with 
our intuitions about the nature of social networks [2]. Their model is essentially a regular 
lattice with some degree of randomness in it to produce the small-world effect. They 
suggested a specific procedure to achieve this. Each edge of a regular lattice from fig. 2b is 
randomly rewired with some probability p, meaning that one of its ends is moved to a 
new randomly chosen position in the lattice. For small p this produces a mostly regular 
graph but a few connections stretch long distances across the lattice (fig. 3). The 
coordination number of the lattice is still z on average as it was before, although any 
particular vertex can have more or less than z neighbours. 
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Figure 3. The Watts-Strogatz model is created by rewiring a small fraction of the links to new 

sites chosen at random. 
 
 
This model can be justified by saying that, while most people are friends with their 
immediate neighbours, some are also friends with a few people who are a long way away, 
in a social or geographical way. These acquaintances are presented by the long-range 
links in the model. 
 
Structural properties of the model are quantified by the characteristic path length L(p) 
and clustering coefficient C(p) as functions of the rewiring probability p. Characteristic 
path length L is defined as the number of edges in the shortest path between two vertices, 
averaged over all pairs of vertices. 
We know that the regular lattice at p = 0 is a highly clustered, large world where L grows 
linearly with N, whereas the random graph at p = 1 is a poorly clustered, small world 
where L grows only logarithmically with N. These limiting cases might lead one to suspect 
that large C is always associated with large L, and small C with small L. 
 

 
Figure 4. Characteristic path length L(p) and clustering coefficient C(p) for the family of 
randomly rewired graphs. The data shown in the figure are averages over 20 random 
realizations of the rewiring process and have been normalized by the values L(0), C(0) for a 
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regular lattice. All the graphs have N = 1000 vertices and an average of z = 10 edges per 
vertex. A logarithmic horizontal scale has been used to resolve the rapid drop in L(p), 
corresponding to the onset of small-world phenomenon. During this drop, C(p) remains 
almost constant at its value for the regular lattice, indicating that the transition to a small 
world is almost undetectable at the local level. 

 
 
On the contrary, we find that there is a broad interval of p over which L(p) is almost as 
small as Lrandom yet C(p) >> Crandom (fig. 4). Introduction of a few long-range edges results 
in an immediate drop in L(p). Such short-cuts connect vertices that would otherwise be 
much farther apart than Lrandom. For small p, each short-cut has a highly nonlinear effect 
on L, contracting the distance not just between the pair of vertices that it connects, but 
between their immediate neighbourhoods, neighbourhoods of neighbourhoods and so 
on. By contrast, an edge removed from a clustered neighbourhood to make a short-cut 
has, at most, a linear effect on C. Hence C(p) remains practically unchanged for small p 
even though L(p) drops rapidly. The important implication is that at the local level – as 
reflected by C(p) – the transition to a small world is almost undetectable. 
Characteristic path length L is comparable with that for a true random graph, even for 
small values of p. For example, for a random graph N = 1000 and z = 10, the average 
distance is about L = 3.2 between two vertices chosen at random. For the rewiring model, 
L was only slightly greater, 3.6, at p = ¼, compared with L = 50 for a perfectly ordered 
lattice with no rewired links. And even for p = 1/64 = 0.0156, L = 7.4, about twice the value 
for the random graph. Thus the model appears to show both the clustering and the small-
world properties simultaneously. 
 
 
 

3 Empirical examples of small-world networks 
 
To test the above ideas, L and C have been computed for three different real-world 
networks, for which all the data necessary is available [2]. The first system is a 
collaboration graph of feature film actors (generated from data available at 
http://www.imdb.com), the second one is the electrical power grid of the western United 
States and the third is the neural network of the nematode worm Caenorhabditis elegans. 
These examples were not hand-picked; they were chosen because of their inherent 
interest and because complete wiring diagrams were available. The graph of film actors is 
a surrogate for a social network, with the advantage of being much more easily specified.  
The graph of the power grid is relevant to the efficiency and robustness of power 
networks. And C. elegans is the sole example of a completely mapped neural network.  
The graphs are defined as follows: Two actors are joined by an edge if they have acted in a 
film together. For the power grid, vertices represent generators, transformers and 
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substations, and edges represent high-voltage transmission lines between them. For C. 
elegans, an edge joins two neurons if they are connected by either a synapse or a gap 
function. 
Table 1 shows characteristic path lengths and clustering coefficients for the three 
networks, compared to random graphs with the same number of vertices N and average 
number of edges per vertex z. All three networks show the small-world phenomenon:  
L ≤  Lrandom but C >> Crandom.  
 

 Lactual Lrandom Cactual Crandom 

Film actors 3.65 2.99 0.79 0.00027 

Power grid 18.7 12.4 0.080 0.005 

C. elegans 2.65 2.25 0.28 0.05 

 
Table 1. Characteristic path length L and clustering coefficient C for three real networks. 

 
 
 

4 Diameter of the World-Wide Web 
 
World-Wide Web is another system that has been found to display small-world 
properties.  Although obtaining a complete topological map of WWW is an impossible 
task, its large-scale properties can be characterized by local connectivity measurements 
[3]. 
 
To determine the local connectivity of the web, the robot was constructed that added to 
its database all URLs found on a document and recursively followed these to retrieve the 
related documents and URLs.  
The data collected was used to determine the probability Pk that a document has k links. 
Pk follows a power law over several orders of magnitude, remarkably different from the 
Poisson distribution predicted by the classical theory of random graphs (Fig. 7). The 
power-law tail indicates that the probability of finding documents with a large number of 
links is significant as the network connectivity is dominated by highly connected web 
pages. 
 
The shortest path between two documents was found to follow the form 
 

L = 0.35 + 2.06 log N 
 
At the time of the experiment (1999), the total number of documents N on WWW was 
estimated at around 8 × 108, which yields L = 18.59, meaning that any two documents on 
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the Web are just 19 clicks away. But the logarithmic dependence on N means that even a 
1000% increase in the size of the Web changes L very little, from 19 to only 21. 

 
Figure 7. Distribution of links on the World-Wide Web, separated between a) outgoing links 
(URLs found on an HTML document) and b) incoming links (URLs pointing to a certain 
document). Data were obtained from a complete map of the domain nd.edu, which contains 
325,729 documents and 1,469,680 links. C) Average of the shortest path between documents as a 
function of system siz, as predicted by the model. To check the validity of the predictions, L was 
determined for documents in the domain nd.edu. The measured L = 11.2 agrees well with the 
prediction L = 11.6 obtained form the model. 

 
 

5 Scaling properties of real world networks 
 
We have seen that the connectivity distribution Pk for WWW decays as a power law, 

following γ−= kPk . It is a feature unpredicted by existing random graph models, where Pk 

has a Poisson distribution with a fast decaying tail. In fact, many real world networks 
have connectivity distributions obeying a power law [4] with different exponents γ (Fig. 
8). Power law distributions are said to have no scale, to be scale-free. In scale-free 
distributions very large values – i.e. much larger than the mean – can be observed. In 
contrast, bell-shaped distributions such as Poisson or Gaussian are called single scale as 
they are characterized by a single scale (mean). Such is, for example, the distribution of 
human height. It is the fact that we associate a scale to the height of humans that would 
lead us to reject as false any report of a human even twice as tall as the mean. For power 
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law distributions values even 10 times larger than the mean can be observed for quite 
small samples. 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8. a) Log-log plot of the cumulative distribution of connectivities for the network of movie 
actors. This plot suggests that, for values of number of collaborations between 30 and 300, the data 
are consistent with a power law decay. The apparent exponent of this cumulative distribution is γ = 
2.3. For larger number of collaborations, the power law decay is truncated. b) Linear-log plot of the 
cumulative distribution of connectivities for the friendship network of 417 high-school students. The 
number of links is the number of times a student is chosen by another student as one of his/her two 
best friends. The lines are Gausssian fits to the empirical distributions. c) Distribution of links on 
WWW. Dotted lines represent analytical fits used as input distributions in constructing the 
topological model of the Web. The tail of distributions follows Pk = k-γ with γ = 2.45 
 

 
Scale-free networks emerge in the context of a growing network in which new vertices 
connect preferentially to the more highly connected vertices in the network. By 
incorporating growth and preferential attachment into existing models, the power law 
scaling is obtained.  
 
Most real networks are open and they form by continuous addition of new vertices to the 
system. For example, the actor network grows by the addition of new actors, WWW grows 
exponentially over time by the addition of new Web pages… 
In contrast to random network models, most real networks exhibit preferential 
connectivity. For example, a new actor is most likely to be cast in a supporting role with 
more established and better-known actors. Similarly, a newly created Web page will be 
more likely to include links to well-known popular documents with already high 
connectivity. These examples indicate that the probability with which a new vertex 
connects to existing vertices is not uniform; there is a higher probability that it will be 
linked to a vertex that already has a large number of connections. Preferential attachment 
is taken into account by assuming that the probability Π that a new vertex will be 
connected to vertex i depends on the connectivity ki of that vertex, so that  
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Such a network will evolve into a scale-invariant state with the probability that a vertex 
has k edges following a power law [5]. 
This “rich-get-richer” phenomenon is easily detected in other real networks such as 
business, social and transportation networks. 
 

 

6 Spread of Infectious Disease 
 
To investigate the dynamical behaviour of a small-world network, we take a deliberately 
simplified model for the spread of an infectious disease [2]. The population structure is 
modeled by the small-world graphs in Fig. 3. At time t = 0, a single infective individual is 
introduced into an otherwise healthy population. Infective individuals are removed 
permanently (by immunity or death) after a period of sickness that lasts one unit of 
dimensionless time. During this time, each infective individual can infect each of its 
healthy neighbours with probability r. On subsequent time steps, the disease spreads 
along the edges of the graph until it either infects the entire population, or it dies out, 
having infected some fraction of the population in the process.  
 
Two results emerge. First, the critical infectiousness rhalf, at which the disease infects half 
the population, decreases rapidly with p (Fig. 5). There is a clear correlation between 
critical infectiousness and the amount of randomness in the network. 
 

 
Figure 5. Simulation results for a simple model of disease spreading. The community structure 
is given by one realization of a randomly rewired graph. Critical infectiousness rhalf at which the 
disease infects half of the population, decreases with p. 
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Second, for a disease that is sufficiently infectious to infect the entire population 
regardless of its connective topology, the time T(p) required for global infection has 
essentially the same functional form as the characteristic path length L(p) (Fig. 6). Even if 
only a few percent of the edges in the original lattice are randomly rewired, the time to 
global infection is nearly as short as for a random graph. Thus, infectious diseases are 
predicted to spread much more easily and quickly in a small world. 
 

 
Figure 6. Simulation results for a simple model of disease spreading.  The time T(p) required for a maximally 

infectious disease (r = 1) to spread throughout the entire population resembles the L(p) curve. 
 
 
 
 
 
 
 
7 Other models of the small world 
 
Although most of the work on the small world phenomena is based on the Watt-Strogatz 
model, a number of other models of social networks have been proposed. 
 
One alternative to the view put forward by Watts and Strogatz is that the small-world 
phenomenon arises not because there are a few long-range connections in the otherwise 
short-range structure of a social network, but because there are a few nodes in the 
network which have unusually high coordination numbers or which are linked to a 
widely distributed set of neighbours. Perhaps the “six degrees of separation” effect is due 
to a few people who are particularly well connected. A simple model is depicted in Fig. 8, 
in which the starting point is again a one-dimensional lattice, but instead of adding extra 
links between pairs of sites, a number of extra vertices are added in the middle which are 
connected to a large number of sites on the main lattice, chosen at random. This model is 
similar to the Watts-Strogatz model in that the addition of extra sites effectively 
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introduces shortcuts between randomly chosen positions on the lattice. Even in the case 
where only one extra site is added, the model shows the small-world effect if that site is 
sufficiently highly connected. 

 
Figure 8. An alternative model of a small world, in which there are a small number of individuals who are 

connected to many widely-distributed acquaintances. 
 
Another suggestion has argued that a model such as that of Watts and Strogatz, where 
shortcuts connect vertices arbitrarily far apart with uniform probability, is a poor 
representation of at least some real-world situations. In the real world, people are 
surprisingly good at finding short paths between pairs of individuals given only local 
information about the structure of the network (Milgram’s letter experiment is a good 
example). On the other hand, no algorithm exists which is capable of finding such paths 
on networks of the Watts-Strogatz type, again given only local information. There must 
be some additional properties of real-world networks which make it possible to find short 
paths with ease. The corresponding model has shortcuts added between pairs of vertices 

i, j with probability which falls off as a power law r
ijd −  of the distance between them. 
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8 Conclusions 
 
The work by Watts and Strogatz has set off a small avalanche among researchers in both 
the natural and social sciences to explore the implications of the small-world 
phenomenon. Small-world graphs – those possessing both short average person-to-
person distances and “clustering” of acquaintances – show behaviours very different 
from either regular lattices or random graphs. Some of the more interesting observations 
are: 
 

- These graphs show a transition from a large-world regime in which the average 
distance between two people increases linearly with system size, to a small-world 
one in which it increases logarithmically. 

- Disease models which incorporate a measure of susceptibility to infection have a 
transition point at which an epidemic sets in, whose position is influenced 
strongly by the small-world nature of the network. 

- Some real-world networks appear to have a scale-free distribution of the 
coordination number of vertices as a result of growth and preferential attachment. 
An example is the World-Wide Web. 

 
Empirical work to determine the exact structure of real networks is underway in a 
number of groups, as well as theoretical work to determine the properties of the proposed 
models. As Watts notes in one of his early papers on the subject, the notion of small-
world connectivity "may have implications in fields as diverse as public health, 
organizational behavior, and design." The work has just begun. 
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