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Abstract

This seminar describes physical phenomena related to surface tension, such as menisci
and capillary waves, that influence animals living atop the water surface, and the means
by which they are exploited by these animals for locomotion.
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1 Introduction
Many animals have mastered the enviable act of walking on water through the use of
surface tension. Many of those have evolved to live on the water surface almost exclusively,
living, hunting, even reproducing on the calm surfaces of ponds, rivers, lakes and the sea.
Such are the animals of the family Gerridae, which are more commonly known as water
striders. These are animals which range in size from a couple of millimetres to well over
20 centimetres whose physiology is uniquely suited to life on such vast slippery plains.

Figure 1 Natural and mechanical water striders. a, An adult water strider Gerris remigis.

b, The static strider on the free surface, distortion of which generates the curvature force

per unit leg length 2j sin v that supports the strider’s weight. c, An adult water strider

facing its mechanical counterpart. Robostrider is 9 cm long, weighs 0.35 g, and has

proportions consistent with those of its natural counterpart. Its legs, composed of 0.2-mm

gauge stainless steel wire, are hydrophobic and its body was fashioned from lightweight

aluminium. Robostrider is powered by an elastic thread (spring constant 310 dynes cm21)

running the length of its body and coupled to its driving legs through a pulley. The resulting

force per unit length along the driving legs is 55 dynes cm21. Scale bars, 1 cm.

Figure 2 The relation between maximum curvature force Fs ¼ jP and body weight

Fg ¼ Mg for 342 species of water striders. j is the surface tension of either pond water

(67 dynes cm21) or sea water17 (78 dynes cm21) at 14 8C and P ¼ 4(L1 þ L2 þ L3) is

twice the combined lengths of the tarsal segments (see strider B). Anatomical

measurements were compiled from existing data20,26–29. Open symbols denote striders

observed in our laboratory. Insets show the adult Gerris remigis (B) and extremes in size:

the first-instar infant Gerris remigis (A) and the Gigantometra gigas20 (C). The solid line

represents Mc ¼ 1, the minimum requirement for static stability on the surface. The

surface tension force is more than adequate to support the water strider’s weight;

however, the margin of safety (the distance above Mc ¼ 1) decreases with increasing

body size. If the proportions of the water strider were independent of its characteristic size

L, one would expect P , L and hence Fs , L, and Fg , L 3: isometry would thus

suggest Fs , F g
1/3, a relation indicated by the dash-dotted line. The best fit to the data is

given by Fs ¼ 48F g
0.58 (dashed line). Characteristic error bars are shown.
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Figure 1: Water strider Gerris remigis. Scale bar, 1 cm. Adopted from [4]

2 Surface tension
Surface tension arises from the fact that the sum of the forces on the water (or any other
liquid) molecule at the surface differs from the total force on the molecule in the bulk,
leading to a finite surface energy in the form

Ws = σS, (2.1)

where S is the liquid surface and σ is surface tension
[

N
m

]
. Because of strong interaction

between water molecules provided by the hydrogen bond network between them, water
has a high surface tension (72.8 mN/m at 20 ◦C) compared to that of most other liquids
(for toluene, ethanol, acetone σ ≈ 20 mN/m [1]).
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2 SURFACE TENSION

Consider a surface (unit outward normal n̂) of a liquid of density ρ in the vicinity
of a long, straight obstacle (e.g. wall, or a water-strider’s leg) at position x = 0. Let
η(x) = z be the deviation from a flat surface caused by the obstacle. The balance between
hydrostatic and curvature pressures are expressed by the Young-Laplace equation

ρgη = σ∇ · n̂. (2.2)

The boundary condition for this equation is the angle θ of the water surface relative to
the horizontal (as defined in Fig. 2) at the water—obstacle contact at x = 0. This angle
is determined by obstacle orientation (the angle of the obstacle surface facing the water)
and the contact angle, which is in turn determined by the nature of interaction between
molecules of water and the obstacle (hydrophobic or hydrophilic). Angle θ is positive if
the surface is curved upward and negative if it is curved downward.

By further assuming that ∂η
∂x

is everywhere sufficiently small, Eq. (2.2) yields a menis-
cus shape of

η(x) = lc tan θe−x/lc , (2.3)
where lc is the capillary length

lc =
√
σ

ρg
(2.4)

and equals around 30 mm in water. The vertical component of force per unit length on
such an obstacle is

Fz = σ sin θ.
Water striders’ legs are covered by thousands of hairs, making them effectively non-

wetting. This way they can deform the water surface in such a way that it supports their
weight through surface tension as is shown in Fig. 2.

Figure 1 Natural and mechanical water striders. a, An adult water strider Gerris remigis.

b, The static strider on the free surface, distortion of which generates the curvature force

per unit leg length 2j sin v that supports the strider’s weight. c, An adult water strider

facing its mechanical counterpart. Robostrider is 9 cm long, weighs 0.35 g, and has

proportions consistent with those of its natural counterpart. Its legs, composed of 0.2-mm

gauge stainless steel wire, are hydrophobic and its body was fashioned from lightweight

aluminium. Robostrider is powered by an elastic thread (spring constant 310 dynes cm21)

running the length of its body and coupled to its driving legs through a pulley. The resulting

force per unit length along the driving legs is 55 dynes cm21. Scale bars, 1 cm.

Figure 2 The relation between maximum curvature force Fs ¼ jP and body weight

Fg ¼ Mg for 342 species of water striders. j is the surface tension of either pond water

(67 dynes cm21) or sea water17 (78 dynes cm21) at 14 8C and P ¼ 4(L1 þ L2 þ L3) is

twice the combined lengths of the tarsal segments (see strider B). Anatomical

measurements were compiled from existing data20,26–29. Open symbols denote striders

observed in our laboratory. Insets show the adult Gerris remigis (B) and extremes in size:

the first-instar infant Gerris remigis (A) and the Gigantometra gigas20 (C). The solid line

represents Mc ¼ 1, the minimum requirement for static stability on the surface. The

surface tension force is more than adequate to support the water strider’s weight;

however, the margin of safety (the distance above Mc ¼ 1) decreases with increasing

body size. If the proportions of the water strider were independent of its characteristic size

L, one would expect P , L and hence Fs , L, and Fg , L 3: isometry would thus

suggest Fs , F g
1/3, a relation indicated by the dash-dotted line. The best fit to the data is

given by Fs ¼ 48F g
0.58 (dashed line). Characteristic error bars are shown.
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Figure 2: a water strider on the surface. The force per unit length applied on any of its
hydrophobic limbs cannot exceed 2σ, lest its legs pass through the surface. As the striders
increase in size, their legs therefore become proportionately longer. Adopted from [4].
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3 PROPULSION

3 Propulsion

3.1 Capillary waves
The driving force behind large waves on the water surface is gravity. Gravity is the
restoring force that tends to flatten out the bulges in a curving surface. But on scales
of one centimetre or less, gravity is not the dominant force any more. Capillary waves,
or ripples, that affect surface aquatic animals, are mainly driven by surface tension. In
this section we will calculate the phase speed and momentum of capillary waves (in the
derivation I have relied heavily on [3]).

Consider a body of water on the surface of the Earth (g = 9.81 m/s2). Suppose that
x measures horizontal distance and z measures vertical height, with z = 0 corresponding
to the flat surface of water. We assume that there is no motion in the y direction.

Because of effective incompressibility of water at phase speeds of surface waves, the
continuity equation is reduced to

∂vx

∂x
+ ∂vz

∂z
= 0. (3.1)

Let p(x, z, t) be the pressure in the water. Newton’s second law states

ρ
∂vx

∂t
= −∂p

∂x
, (3.2)

ρ
∂vz

∂t
= −∂p

∂z
− ρg, (3.3)

the difference between x and z directions being that water is subject to a downward
acceleration due to gravity. We can write

p = p0 − ρgz + p1,

where p0 is the atmospheric pressure and p1 is the pressure perturbation due to the wave.
Substitution into equations (3.2) and 3.3 and derivation of these equations with respect
to z and x, respectitavely, yields

ρ
∂

∂t

(
∂vx

∂z
− ∂vx

∂z

)
= 0

or
∂vx

∂z
− ∂vx

∂z
= 0. (3.4)

(Actually, this quantity could be non-zero and constant in time, but this is not consistent
with an oscillating wave-like solution.) Eq. (3.4) indicates that we can at this point
introduce a velocity potential φ:

vx = ∂φ

∂x
, vz = ∂φ

∂z
.

Finally, equations (3.2) and (3.3) yield

p1 = −ρ∂φ
∂t
. (3.5)
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3.1 Capillary waves 3 PROPULSION

Potential φ can be obtained from Eq. 3.1, which is now Laplace’s equation,

4φ = 0 (3.6)

We can now introduce surface tension. Because of it, there is a small pressure discontinuity
across a curved surface:

pst = σ
∂2η

∂x2 ,

where the second derivative represents a reciprocal value of the radius of curvature of the
surface. The Laplace’s equation (3.6) must thus satisfy a boundary condition

σ
∂2η

∂x2 = ρgη − p1|z=0.

We are looking for a propagating wave-like solution in the form of

φ(x, z, t) = Aekz cos(ωt− kx). (3.7)

Note that the second boundary condition, the “deep water” condition is already satisfied
by the solution in the form of Eq. (3.7) because of its exponential decay with increasing
depth (z < 0). By inserting Eq (3.7) into the Laplace equation we finally get the phase
velocity of surface waves

v2
ph = σk

ρ
+ gk. (3.8)

The first part describes the effect of surface tension and the second part describes the effect
of gravity. On a scale of about a centimetre the contributions are roughly equal while on
a millimetre scale the influence of gravity is already smaller by an order of magnitude (i.e.
proper capillary waves).

Having calculated the dispersion relation of capillary waves, let us now consider their
momentum. The momentum of a wave is given by

P = E

vph
,

where E = Ws is the energy the wave is carrying. The energy of a capillary wave is stored
in the enlarged liquid surface due to its sinusoidal (instead of flat) form. For a single
wavelength of a plane wave of a lateral extent W the Eq. (2.1) is written as

E = W∆lσ,

where ∆l is the difference in (surface) length of the sinusoidal wave compared to the flat
surface. For infinitesimal amplitude it is calculated as

∆l =
∫ λ

0

√√√√1 +
(

dη
dx

)2

− 1 dx ≈ 1
2

∫ λ

0

(
dη
dx

)2

dx.

Using the sinusoidal waveform as η, amplitude a and the dispersion relation (3.8), the
expression for momentum carried by a single wave of lateral length W is

P = a2πW
√
kσρ, (3.9)

where k is the magnitude of the wave vector 2π
λ
.
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3.2 Water strider propulsion 3 PROPULSION

3.2 Water strider propulsion
In order for the water strider to move, it has to somehow transfer the momentum of its
legs to the underlying liquid. It has long been thought that generation of momentum via
capillary waves was the sole mean of such propulsion. But with the help of previously
derived equations we can show that this cannot be the case.

A water strider of mass m ≈ 0.1 g achieves a characteristic speed of v =100 cm/s,
meaning that it generates a momentum of P = mv ≈ 1g cm/s with a single stroke.
The measurements, on the other hand, have indicated that each leg stroke produces a
capillary wave packet of about three waves with wavelength λ and amplitude a a couple
of millimetres. Their width was measured to be around W ≈ 0.3 cm [4]. Using Eq. (3.9)
we can calculate the momentum of such a wave package to be roughly P ≈ 0.1 g cm/s —
an order of magnitude less that the momentum of the strider.

The solution has come from careful observations of high speed videos of a moving water
strider, which have shown a series of small hemispherical dipolar vortices in its wake (as
shown in Fig. 4 and Fig. 3) not dissimilar to vortices in the wake of a rowing boat and
moving backwards at a characteristic speed of vv ≈ 4 cm/s. The radii of the vortices were
measured to be rv ≈ 0.4 cm (mass mv = 2ρπr3

v/3), giving a pair of such vortices a total
momentum of P = 2mvvv ≈ 1 g cm/s. The vertical extent of rv is much greater than the
static meniscus depth of the driving legs (120 µm), but comparable to the maximum depth
of the meniscus at which the leg would penetrate the surface (0.1 cm). This suggests that
the water strider uses its legs as paddles and the adjoining menisci as blades — pushing
the legs as deep as possible without sinking and using the leg’s menisci to propel water
backwards.

(Fig. 2). The challenge was constructing a self-contained device
sufficiently light to be supported by surface tension and capable of
rowing without breaking the water surface. An important design
criterion, that the force per unit length along the driving legs not
exceed 2j, was met by appropriate choice of elastic thread and pulley.
High-speed video footage indicates that Robostrider does not break
the surface despite leg speeds of 18 cm s21. Like its natural counter-
part, the Robostrider generates both capillary waves and vortices, and
the principal momentum transfer is in the form of vortices shed by
the rowing motion. Robostrider travels half a body length per stroke
in a style less elegant than its natural counterpart. A
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Figure 4 Dipolar vortices in the wake of the adult water strider. Images captured from a

side view indicate their hemispherical form. a, A thin layer (2–5 mm) of thymol blue was

established on the surface of the water, disturbance of which revealed the vortical

footprints of the water strider. b, The ambient texture results from Marangoni convection30

in the suspending fluid prompted by thymol blue on its surface. The starburst pattern

results from the chunk of thymol blue evident at its centre reducing the local surface

tension, thus driving surface divergence that sweeps away the dyed surface layer. The

fluid is illuminated from below; consequently, the light-seeking water strider is drawn to

the starbursts. Scale bars, 1 cm.
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Figure 3: vortices, captured with the help of a thin layer of thymol blue on the surface of
the water. Scale bars, 1 cm. Adopted from [4].
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4 CLIMBING THE MENISCUS

which was deduced independently by measuring the strider’s accel-
eration and leaping height. The applied force per unit length along
its driving legs is thus approximately 50/0.6 < 80 dynes cm21. An
applied force per unit length in excess of 2j < 140 dynes cm21 will
result in the strider penetrating the free surface. The water strider is
thus ideally tuned to life at the water surface: it applies as great a
force as possible without jeopardizing its status as a water-walker.

The propulsion of a one-day-old first-instar is detailed in Fig. 3.
Particle tracking reveals that the infant strider transfers momentum
to the fluid through dipolar vortices shed by its rowing motion. The
wake of the adult water strider is similarly marked by distinct vortex
dipole pairs that translate backwards at a characteristic speed Vv <
4 cm s21 (Figs 3c and 4). Video images captured from a side view
indicate that the dipolar vortices are roughly hemispherical, with a
characteristic radius R < 0.4 cm. The vertical extent of the hemi-
spherical vortices greatly exceeds the static meniscus depth24,
120 mm, but is comparable to the maximum penetration depth of
the meniscus adjoining the driving leg, 0.1 cm. A strider of mass
M < 0.01 g achieves a characteristic speed V < 100 cm s21 and
so has a momentum P ¼ MV < 1 g cm s21. The total momentum
in the pair of dipolar vortices of mass M v ¼ 2pR 3/3 is
Pv ¼ 2MvV v < 1 g cm s21, and so comparable to that of the strider.

The leg stroke may also produce a capillary wave packet, whose
contribution to the momentum transfer may be calculated. We
consider linear monochromatic deep-water capillary waves with
surface deflection z(x,t) ¼ ae i(kx2qt) propagating in the x-direction
with a group speed c g ¼ dq/dk, phase speed c ¼ q/k, amplitude a,
wavelength l ¼ 2p/k and lateral extent W. The time-averaged
horizontal momentum associated with a single wavelength,

Pw ¼ pjka2Wc21, may be computed from the velocity field and
relations between wave kinetic energy and momentum21,25. Our
measurements indicate that the leg stroke typically generates a wave
train consisting of three waves with characteristic wavelength
l < 1 cm, phase speed c < 30 cm s21, amplitude a < 0.01–
0.05 cm, and width L 2 < 0.3 cm (see Fig. 3c). The net momentum
carried by the capillary wave packet thus has a maximum value
Pw < 0.05 g cm s21, an order of magnitude less than the momen-
tum of the strider.

The momentum transported by vortices in the wake of the water
strider is comparable to that of the strider, and greatly in excess of that
transported in the capillary wave field; moreover, the striders are
capable of propelling themselves without generating discernible
capillary waves. We thus conclude that capillary waves do not play
an essential role in the propulsion of Gerridae, and thereby circumvent
Denny’s paradox. The strider generates its thrust by rowing, using its
legs as oars and its menisci as blades. As in the case of rowing boats,
while waves are an inevitable consequence of the rowing action, they
do not play a significant role in the momentum transfer necessary for
propulsion. We note that their mode of propulsion relies on the
Reynolds number exceeding a critical value of approximately 100,
suggesting a bound on the minimum size of water striders. Our
continuing studies of water strider dynamics will follow those of birds,
insects and fish11,15,16 in characterizing the hydrodynamic forces acting
on the body through detailed examination of the flows generated
during the propulsive stroke.

We designed a mechanical water strider, Robostrider, constructed
to mimic the motion of a water strider (Fig. 1c). Its proportions and
Mc value were consistent with those of its natural counterpart

Figure 3 The flow generated by the driving stroke of the water strider. a, b, The stroke of a

one-day-old first-instar water strider. Sequential images were taken 0.016 s apart.

a, Side view. Note the weak capillary waves evident in its wake. b, Plan view. The

underlying flow is rendered visible by suspended particles. For the lowermost image,

fifteen photographs taken 0.002 s apart were superimposed. Note the vortical motion in

the wake; the flow direction is indicated. The strider legs are cocked for the next stroke.

Scale bars, 1 mm. c, A schematic illustration of the flow structures generated by the

driving stroke: capillary waves and subsurface hemispherical vortices.

letters to nature
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Figure 4: the rowing motion of a water strider and the vortices it creates. The capillary
waves are mostly just a bi-product, carrying away a negligible part of the transferred
momentum. Scale bars, 1mm. Adopted from [4].

4 Climbing the meniscus
Surface-dwelling animals must cross the border between land and water on a regular
basis; to lay eggs or to escape from predators, for example. But to achieve this they must
somehow climb the frictionless slope of meniscus at the water’s edge. The task is simple
for animals which are much larger than the characteristic length of lc (Eq. (2.4)). But
many millimetre scale animals are unable to simply stride over the slippery slope. Through
evolution, they have thus developed an ingenious technique of climbing the meniscus by
assuming a fixed body posture without even moving their appendages.

Figure 5: The attractive force holding two floating paper-clips together and the grouping
of bubbles at the glass’ edge are both caused by surface tension.
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4 CLIMBING THE MENISCUS

The lateral forces acting between objects floating on the surface have long been known
to physicists (Fig. 5). These forces are caused by interaction between particles through
deformation of the surface. The interfacial profile around two floating particles can be
written as a linear combination of profile functions appropriate to the isolated particles.
Provided the interfacial slope is everywhere sufficiently small and that particles themselves
are small (point force) the profile is simply the sum of both functions [6]. When two
floating particles approach each other they thus influence each other through a change in
gravitational potential energy, and the force of the second particle on the first particle is
simply calculated as

~F21(x) = −∂E(x)
∂~r

= −F1z
∂η2(x)
∂~r

, (4.1)

where F1z ẑ is the vertical force of the first particle (e.g. weight) and η2(x) is the inter-
facial profile of an isolated second particle. The problem is equivalent to an object on a
frictionless slope (see Fig. 6).

η2 η1

F21

Flat

1
st

 particle 2
nd

 particle

η2

η1F21

Flat

1
st

 particle

2
nd

 particle

Figure 6: interfacial profile around two objects that exert vertical force on the water surface
in the same direction (left) and in opposite directions (right). The lateral force between
the objects in the first case (e.g. two paper-clips) will be attractive. In the second case
(e.g. a paper-clip and a bubble), the lateral force is repulsive. If the the interfacial slope
is everywhere sufficiently small the magnitude of lateral force Flat is almost equivalent to
F12.

Let a hydrophillic wall (e.g. a floating log) on the edge of the water now take on the
roll of the second particle and a small, massless object at distance x0 from the edge and
acting on the surface with the vertical force Fzẑ be the first particle. By combining Eq.
2.3 which describes the meniscus shape near such a wall and Eq. 4.1 we get

~F (x0) = −Fz tan θe−x0/lcx̂. (4.2)

An object pushing into the surface (Fz < 0) of a meniscus will thus slide down the slope;
however by pulling the surface upward (Fz > 0) it will be drawn up the slope. An insect
can exploit this fact by using its front and rear tarsi, equipped with hydrophilic claws,
to pull the water surface up (force F1 with the front tarsi and F3 with the back) and its
hydrophobic middle tarsi to push down (F2), as dictated by the force balance. By applying
the majority of upward force to the front legs and stretching out the back legs as far as

8



4 CLIMBING THE MENISCUS

possible (to balance the torque) the insect takes advantage of the exponentially curved
surface to achieve negative net force that draws it up the slope, as is shown in Fig. 7.

© 2005 Nature Publishing Group 

 

Andersen3 and Miyamoto9 note that several climbers, such as
Hydrometra, tilt their bodies during ascent (see inset B in Fig. 3).
Presumably, such tilted postures are assumed in order to maximize
the capillary thrust. Theoretical modelling of the tilted postures
requires consideration of additional torque balances that are
immediately satisfied in the symmetric posture, specifically, those
that prevent the insect’s angular acceleration about a vertical axis
(yaw) and about an axis aligned with the mean direction of motion
(roll).
Miyamoto9 reported that a number of terrestrial insects have also

developed the ability to ascend menisci, an adaptation exploited as
they seek land having fallen onto water, often from overhanging
vegetation. Unlike water-walking insects whose hairy legs render
them effectively non-wetting3,20,21, terrestrial insects must deform the
surface with their wetting body perimeters. For example, the larva of
the waterlily leaf beetle is circumscribed by a contact line, and
deforms the free surface by arching its back (Fig. 2). The beetle
larva will be drawn up the meniscus if the anomalous surface energy

generated by arching its back exceeds the gain in the system’s
gravitational potential energy associated with its ascent. By arching
its back to match the curvature of the meniscus, the beetle larva may
generate a lateral force that drives it up themeniscus.We note that for
a randomly oriented beetle larva, the forces (in equation (1))
produced by its arched posture generate a torque about the vertical
axis that serves to align the beetle larva perpendicular to the
meniscus; the beetle thus abuts the wall tail first.
Figure 3 shows the observed trajectories of a Mesovelia individual

of length 2mm and weight 0.2 dynes. Accompanying theoretical
trajectories were obtained by numerically integrating equation (4).
The insect’s position and leg configuration were recorded by high-
speed video; the insect’s weight and the meniscus contact angle on
plexiglass (408) were measured using a scale and a still camera,
respectively. Given the leg position andmeniscus contact angle, there
is a single unknown in the model, F1. ForMesovelia, F1 was inferred
from the trajectory to be 2–4 dynes, values comparable to jpw, the
maximum force the front leg tip of diameter w < 60 mm can apply to

Figure 1 |Meniscus climbing by the water treaderMesovelia. a, Mesovelia
approaches a meniscus, from right to left. The deformation of the free
surface is evident near its front and hind tarsi. b, High-speed video images of
an ascent. Lighting from above reveals the surface deformation produced. In
pulling up, the insect generates a meniscus that focuses the light into a bright
spot; in pushing down, it generates a meniscus through which light is

diffused, casting a dark spot. Characteristic speeds are 1–10 cm s21. Scale
bars, 3 mm. See Supplementary Information for the accompanying video
sequence. c, Schematic illustration of the meniscus-climbing Mesovelia: it
pulls up with its wetting front and hind claws, and pushes down with its
middle legs. n denotes the normal to the undeformed meniscus, and x0 the
lateral position of the insect’s centre of mass.
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Figure 7: Meniscus climbing by the water treader Mesovelia (weight 2 µN). Note the
pulling with the front and hind legs and pushing with the middle legs. In pulling up the
insect generates a meniscus that casts a shadow on the floor, and in pushing it generates
a bright spot. Characteristic speed of ascent is a couple of cm/s and the corresponding
F1 (see Eq. (4.3)) was calculated to be about 20-40 µN. Scale bars, 3mm. The bottom
picture illustrates the physical model of the ascent. Adopted from [7].

Consider an insect shown in this figure, of mass M with the center of mass at point x0
from the edge of the water. We assume that the meniscus slope is small (sinψ ≈ tanψ ≈
−η̇(x)) and does not change considerably over the length of the insect. The force balance
in the z axis is

F2 = F1 + F3 +Mg.

The torque balance about the insect’s middle legs is

F3L3 = F1L1 −MgL2.

9
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Using Eq. 4.2, the driving force in tangential direction produced by the legs can be
expressed as

F (x0) = − tan θe−x0/lc
(
F1eL1/lc + F3e−L3/lc − F2e−L2/lc

)
.

This force is balanced out by the tangential component of gravitational force and acceler-
ation. The tangential force balance on the insect is

M
d2x0

dt2 = − tan θe−x0/lc
(
F1eL1/lc + F3e−L3/lc − F2e−L2/lc −Mg

)
. (4.3)

The acceleration is negative (i.e. the bug travels up the slope) if the effect of pulling with
front and hind legs is greater than the push with middle legs and the tangential component
of gravitational pull. Some terrestrial animals have mastered this ability without having
legs especially suited to manipulate the water surface, as is shown in Fig. 8. They use
their whole body to deform the surface, but they still use the same principle given by Eq.
4.3.

Although the validity of this equation breaks down with higher contact angles it can
still be used to illustrate qualitatively the meniscus climbing ability. This ability is unique
in a sense that an animal does not transfer its muscular strain energy directly into kinetic
and gravitational energy of itself and the kinetic energy of surrounding fluid, but instead
it stores the energy into deformation of the free surface that powers its ascent.

© 2005 Nature Publishing Group 

 

the free surface without breaking through. The corresponding force
F2 is comparable to the maximum force, 2jL, the insect leg can apply
without breaking through with the tarsal segment of length L of its
middle leg (see inset A in Fig. 3). The trajectory of the beetle larva, of
length 6mm and weight 150 dynes, was similarly computed using
equation (4), by setting F 2 ¼ 0. Again, the single unknown in
modelling the beetle larva’s ascent is F1, which is equal to F3 by
symmetry; the best fit is obtained with a force of 20 dynes that
corresponds to the maximum surface tension force it can generate
with its frontal perimeter of 3mm. Figure 3 also shows the climbing
trajectory for the tilting climber Hydrometra, a water-walker of
length 1.1 cm and weight 1.8 dynes, reported by Andersen3. An
accompanying theoretical trajectory was computed from the
reported leg positions and inferred values of v and the net capillary
force.
Meniscus climbing is an unusual means of propulsion in that the

insect propels itself in a quasi-static configuration, without moving
its appendages. Biolocomotion is generally characterized by the
transfer of muscular strain energy to the kinetic and gravitational
potential energy of the creature, and the kinetic energy of the
suspending fluid22–25. In contrast, meniscus climbing has a different
energy pathway: by deforming the free surface, the insect converts
muscular strain to the surface energy that powers its ascent.

METHODS
The following equations were considered in computing the trajectories of the
meniscus-climbing insects. Normal and tangential directions refer to orientation
with respect to the meniscus at the point x0. We assume that the meniscus slope
does not vary appreciably over the length of the insect. Terms are defined in
Fig. 1c. The normal force balance on the insect is

2F2 ¼ 2F1 þ 2F3 þMgcoswðx0Þ ð2Þ

The torque balance about the insect’s middle legs is

2F3L3 ¼ 2F1L1 2MgL2coswðx0Þ ð3Þ

Figure 2 | Meniscus climbing by the larva of the waterlily leaf beetle. The
beetle larva is a terrestrial insect unsuited to walking on water but it is
nevertheless able to ascend the meniscus, from right to left. a, It is partially
wetting and so circumscribed by a contact line. It deforms the free surface by

arching its back, thus generating the desired capillary thrust. b, The beetle
larva’s ascent is marked by peak speeds in excess of 10 cm s21. Scale bars,
3 mm. See Supplementary Information for the accompanying video
sequence.

Figure 3 | Observed evolution of insect speed during the ascent of
menisci. Insects are Mesovelia (A, circles), Hydrometra3 (B, triangles) and
the beetle larva (C, squares). Circles around the insects’ feet indicate the
sense of the surface deflection: white upwards and black downwards.
Theoretical predictions based on equation (4) are presented as dashed lines.
Inferred forces F1 applied by the frontmost appendage are given in dynes.
The sensitivity of the theoretical trajectories to F1 are indicated for the beetle
larva trajectory. For the Hydrometra data3, the best-fit trajectory yielded the
net capillary force, from which the individual Fi values were calculated. We
assumed the meniscus contact angle to be 408, comparable to the contact
angle of water on plexiglass, and then inferred the net capillary force by
optimally fitting the observed trajectory. The individual forces Fi applied by
the insect were then calculated by consideration of the four governing
equations (the normal force balance and three torque balances) and the
upper bounds on the forces applied by each leg. The error bars (shown for
one point but applicable to every data point) reflect the uncertainty
associated with measuring the body position.
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Figure 8: Meniscus climbing by the larva of the waterfly leaf beetle (weight 1.5 mN).
Although a terrestrial insect, it has nevertheless developed a meniscus-climbing ability for
survival purposes. It deforms the surface by arching its back. The corresponding F1 was
calculated to be about 0.2 mN. Scale bars, 3 mm. Adopted from [7].

10



5 CONCLUSION

5 Conclusion
The basics of animal locomotion on the water surface have been mostly unlocked by scien-
tists and researchers from around the world. This is best illustrated by the construction of
the mechanical Robostrider (Fig 9) by the Department of Mechanical engineering of MIT.
However the style of locomotion, far less elegant than than that of its natural counterpart,
leaves much to be desired. The maximum speed of the spring-powered Robostrider is only
about a third of the common Gerridae, not to mention that a single winding takes it only
about 20 cm far [4].

The problem of water walking seems as intriguing and complicated as the related
conundrum of insect flight. The insects too have puzzled the scientist for generations with
their perfected technique of flapping which continues to evade all but the most complicated
aerodynamic explanations. There too, vortices and vortex shedding seem to be play a
major role in propulsion. What is more, in addition to the shed vortices which carry the
brunt of the momentum keeping the insect aloft, a prominent leading edge vortex remains
stably attached on the insect wing throughout the flapping cycle and does not shed into
the wake, as it would from simple non-flapping wings (or rudimentary Robostrider’s rigid
metallic legs). Its presence, combined with other mechanisms acting during changes in
angle of attack, greatly enhances the forces generated by the wing, thus thwarting most
of the engineers’ attempts to replicate an insect wing [8].

The evolution has equipped humble insects that populate air and water alike with a
keen understanding of hydrodynamics which humans are just now beginning to get a grip
of. Our machines that operate at those scales are cumbersome at best because simply
adding more engine power, which we are accustomed to do with machines that serve
us in everyday life, just does not cut it when it comes to delicate movement of insects’
appendages. What is needed is a deeper hydrodynamic understanding of those movements
and intricate mechanics to exploit it. And scientists are getting closer every day.

Figure 1 Natural and mechanical water striders. a, An adult water strider Gerris remigis.

b, The static strider on the free surface, distortion of which generates the curvature force

per unit leg length 2j sin v that supports the strider’s weight. c, An adult water strider

facing its mechanical counterpart. Robostrider is 9 cm long, weighs 0.35 g, and has

proportions consistent with those of its natural counterpart. Its legs, composed of 0.2-mm

gauge stainless steel wire, are hydrophobic and its body was fashioned from lightweight

aluminium. Robostrider is powered by an elastic thread (spring constant 310 dynes cm21)

running the length of its body and coupled to its driving legs through a pulley. The resulting

force per unit length along the driving legs is 55 dynes cm21. Scale bars, 1 cm.

Figure 2 The relation between maximum curvature force Fs ¼ jP and body weight

Fg ¼ Mg for 342 species of water striders. j is the surface tension of either pond water

(67 dynes cm21) or sea water17 (78 dynes cm21) at 14 8C and P ¼ 4(L1 þ L2 þ L3) is

twice the combined lengths of the tarsal segments (see strider B). Anatomical

measurements were compiled from existing data20,26–29. Open symbols denote striders

observed in our laboratory. Insets show the adult Gerris remigis (B) and extremes in size:

the first-instar infant Gerris remigis (A) and the Gigantometra gigas20 (C). The solid line

represents Mc ¼ 1, the minimum requirement for static stability on the surface. The

surface tension force is more than adequate to support the water strider’s weight;

however, the margin of safety (the distance above Mc ¼ 1) decreases with increasing

body size. If the proportions of the water strider were independent of its characteristic size

L, one would expect P , L and hence Fs , L, and Fg , L 3: isometry would thus

suggest Fs , F g
1/3, a relation indicated by the dash-dotted line. The best fit to the data is

given by Fs ¼ 48F g
0.58 (dashed line). Characteristic error bars are shown.
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Figure 9: An adult water strider facing its larger mechanical counterpart. Robostrider
mimics the motion of a water strider by using both waves and vortices as means of propul-
sion. Scale bars, 1 cm. Adopted from [4]
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