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Abstract

Twisting a piece of string at some point causes the string to become buckled. Further twisting
that piece of string will eventually cause it to coil around itself, forming a helix-like structure. This
is something that all of us have observed at some point in our lives. However, finding an analytical
description of these everyday phenomena is the subject of this paper. Starting with Kirchhoff’s elastic
rod theory we are able to predict the point at which the piece of string will buckle. We are also able to
describe the post-buckled states with an approximate analytical description. Finally, an application
of this theory is represented in a DNA supercoiling experiment.
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1 Introduction

The study of elastic rods is a field of research that is interesting in itself because it gives rise to beau-
tiful and complex mathematical structures. Understanding elastic rods is however also important for
applications in different fields of research.

In engineering, they are used to study the behavior of submarine cables. Marine cables under low
tension and torsion on the sea floor undergo a buckling process during which torsional energy is converted
to flexural energy. The cable becomes highly contorted with loops and tangles [1]. This can permanently
damage the cable. Also, the study of multi-filament structures such as yarns is interesting for the textile
industry.

In biology, rod models are used to describe the supercoiling of DNA molecules. A supercoiled DNA
molecule resembles the shape of the buckled marine cable. Because the length of DNA can be thousands
of times that of a cell, packaging this genetic material into the cell or nucleus would be difficult if not for
supercoiling. Supercoiling of DNA reduces the space and allows for a lot more DNA to be packaged.

In physics, the study of twisted rods is useful in several applications, for example in hydrodynamics
for describing of the motion of vortex tubes, or in the study of polymers.

Kirchhoft’s theory of elastic rods is the basis for any further study of torsional instability. We know
from experience that twisting the rod causes it to buckle. The stability condition for twisted rods under
tension is derived through Love’s eigenvalue analysis of the solutions to Kirchhoff’s equations [2]. Further
twisting causes the rod to first come into self-contact and then gradually coil around itself. Coyne [3]
recently obtained the instability point at which the rod comes into self-contact. An analytical description
of the post-buckled states is also described in [4] [5] [6].

2 Kirchhoff’s theory of elastic rods

Kirchhoff’s theory describes bending and twisting of thin elastic rods. In Kirchhoff’s theory a rod is a
three-dimensional body with two dimensions that are considerably smaller then the third. The rod is
represented with a space curve r = r(l), where the parameter [ is the arc length of the curve. The unit
tangent vector is p
r .

= S =), 1)
The term ©(I) in a sense represents the velocity of propagation along the space curve (instead of propa-
gation in time).

Suppose the origin of a frame of three orthogonal axes &, 1, ¢ to move along the central line of a rod
with unit velocity. Let the ¢ axis have the direction of the tangent vector t and the £, n axes have the
direction of the principal axes of the cross section so that &, n, ¢ form a right handed system (figure 1).
At this point we assume that the cross section remains undistorted and normal to the center-line of the
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rod. We will consider only the case when the cross section is a simply connected region and the geometric
center lies within the cross section [7]. This excludes open or closed thin-walled cross sections.

N

Figure 1: The &n¢ frame moves along the length of the rod with unit velocity (left) [8]. The figure also
shows selected solutions to Euler-Kirchhoff’s equations that are important in the study of instability of
elastic rods (right) [8].

Let us consider the angular velocity € with which this frame rotates along the rod.

éc(l) ec(l)
e () | =) x| eyl |- (2)
éc(l) ec(l)

We may express the angular velocity with components directed along the instantaneous positions of the
principal axes &, 7, (. We denote these components by (1) = (k1(1), k2(1),7(1)), where x; and ko are
components of curvature of the central line along local £ and 7 axes, and 7 is the torsion of the rod.

We now wish to obtain equations of equilibrium of a thin rod. We will only consider the case where
a thin rod is held bent and twisted by forces and couples applied at it’s ends alone[2]. Starting with the
condition that an infinitesimal section of the rod is in equilibrium we arrive at the condition

M=F xt, (3)

where M is the internal torque and F is the external force applied at the rod’s ends. At this point we
need to incorporate some basic physical principles into our exact mathematical theory. The torque of a
rod in linear theory of elasticity can be written as

M = EIt x t + Crt, (4)

where [ is the area of the cross section (this expression is only valid for symmetrical cross sections), C is
the torsional rigidity of the rod, and F is Young’s modulus. The first summand in equation 4 represents
the torque that keeps the rod curved and is normal to the plane spanned by t and the normal n. The
second summand represents the torque that keeps the rod twisted and has the direction of t. Our theory
from this point onward is no longer exact, but rather an approximation of linear elasticity.

Expressing the internal torque and terminal force in the £n¢ frame gives a set of equations of equilib-
rium of a thin rod that has a symmetrical simply connected cross section

FlIkKq +(C—EI)K2T = F'Gn
Elks + (EI - C)IilT =—-F- € (5)
C1=0.

These equations are sometimes called Euler-Kirchhoff’s equations. Euler-Kirchhoff’s equations have many
solutions in theory, but not all solutions can be observed in reality. Figure 1 shows some solutions that
have a physical importance in the study of torsional instability. A trivial solution is a rod that is
internally twisted, but remains straight. A continuous helix as well as a localized helix-like deformation
also represent possible solutions.

2.1 Kirchhoff’s kinetic analogue

Equations of equilibrium of a thin rod, held bent and twisted by forces and couples applied at it’s ends
alone, can be identified with the equations of motion of a heavy rigid body about a fixed point [2]. A rod



with a symmetric cross section can therefore be identified with the motion of a symmetric top. Equations
of motion for a symmetric top are the same as equations 5, where EI and C' are replaced by the principal
moments of inertia J and J¢¢, and s1, ko, T are replaced by components of angular velocity.

In the case of the bent and twisted rod, the role of angular velocity is replaced by torsion and local
curvatures (elements of €2). Another difference is that there is no time parameter in Kirchhoft’s theory of
rods, the role of time is played by position along the central line of the rod I. Understanding the parallel
between the motion of a rigid body and the deformation of a rod will help us visualize the deformations
better. A spinning top can be compared to a twisted rod whereas precession of a spinning top can be
compared to a twisted rod bent into helical form [8].

2.2 Euler angle parametrization

According to Euler’s rotation theorem, any rotation in space may be described using three angles. This is
equivalent to saying that any rotation matrix can be decomposed as a product of three elemental rotation
matrices (rotations about a single axis). The three angles ¢, 0, ¢ are called Euler angles and give three
separate elemental rotation matrices. There are several ways of choosing Euler angles — we are interested
in the so-called zyz convention. As the name suggests, the first elemental rotation will be the rotation
of the reference zyz frame through an angle ¢ about the z axis. This rotates the first and second axis
in the xy plane. In particular, the second axis now points in the direction of y’. Next we rotate the
frame through an angle 6 about the new 3’ axis. This moves the third axis 2z in any assigned orientation
in space. Finally, we rotate the frame about 2” through whatever angle v is needed to bring the axes
into their final assigned directions [9]. The final rotation matrix R is a product of the following three
elemental rotation matrices

where indices z and y tell us about which axis the frame rotates.

Just as with motion of a rigid body, it is convenient to parameterize equilibrium equations of a rod
using Euler angles. We will represent the orientation of the £n¢ frame in terms of a reference zyz frame
with the help of Euler angles. The rotation matrix R is directly connected to the antisymmetric angular
velocity matrix Q (2 = RRT). We find the elements of Q to be

Q1 = K1 = Osiny — ¢sinb cos Y
Qo = ko =0 cosyy + ¢sinfsiny (7)
Q3 =7 =1+ ¢cosh.

The force applied at the rod’s ends expressed with Euler angles is F¢,e = R(¢,6,¢)F4,.. Finally we can
write equilibrium equations (5) with Euler angle parametrization

Coyp + (C — EINg?cosf = F ()

1 + ¢ cos = const.

There are only two equations because the first two of euations 7 yield the same result. )
Figure 2 shows Euler angles and their derivatives. It is evident, that (3 is the sum of ¢ and the

projection of ¢ onto the ¢ axis. With the help of figure 2, we could have in fact guessed all three elements

of Q.

Figure 2: Euler angles and their derivatives [10]. For precession of a spinning top or a rod bent into a
helix, the 6 angle is constant.



2.3 Rod bent into helical form

Rod bent into a helical form is an important solution of Euler-Kirchhoff’s equations. It is also important
for another reason. The post-buckled state of a rod, where a rod begins to coil around itself forming a
plectonemic region, can be described as two inter-winding helices. Let us consider precession of a spinning
top or a rod bent into a helix, where the angle 6§ is constant. We then find that 1/} and qb are constants of
‘motion’ and this gives us our specific solution. The procedure is pretty straight-forward. Putting 6=0
and introducing a new angle o = 7/2 — 6 gives us

K= —¢cosa
T:¢+ésina. 9)

The curvature of the center-line of the rod is constant. Torsion is composed of two parts internal twist
1/} and tortuosity 1/¥ = cz}sina [2]. Unlike internal twist, tortuosity is a property of the shape of the
center-line.

A helix is a curve of constant curvature and tortuosity. It is uniquely defined by two geometrical
quantities. These quantities may either be curvature x and tortuosity 1/% or pitch and radius of the
cylinder on which the helix lies. Let R be the radius of the cylinder. We already know that « is the angle
that the tangent makes with the zy plane at any point on the helix. The parametrization of a helix is

then
lcosa

R )
where h is a constant giving the vertical separation of the helix’s loops or the pitch and [ is the free

parameter that equals the length of the curve. On the other hand, the curvature and tortuosity of a helix
are given by

r(¢) = (Rcosqﬁ,Rsinqﬁ, 2};_(;5) , o= (10)

K = R _ cos®a
— R2+(h/2m)2 T R (11)
1 _ h/2m _ sinacosa
¥ 7 R24(h/2m)2 T R '

The geometric connection h = 2w Rsin o/ cos « was used to obtain the expressions on the right. We may
express all important physical quantities in terms of o and R

2
KJ. CO%(X
cos &
¢="g" (12)

i cos asin o
R

It is important to understand that in our case, 7 is determined with a boundary condition and is not a
variable. Let us not forget that a trivial solution to the Euler-Kirchhoff’s equations (r(l) = (0,0,1)) will
always exist. It represents a rod that experiences uniform internal twist and remains straight along the
z axis.

3 Stability of twisted rods subjected to tensile force

Finding a solution to Euler-Kirchhoff’s equations of equilibrium is not a sufficient description of elastic
rods. We need to study the stability properties of solutions to the Euler-Kirchhoff’s equations. Such a
study is fundamental because only stable solutions can be realized experimentally. Unstable solutions,
although existing in theory, can never be observed.

Consider initially a straight elastic rod of length L, loaded at it’s ends by a constant tensile force F'
(figure 3 a). We then start to twist the rod, slowly increasing 7. It is clear that at first the rod will
remain straight. But if we continue to further twist the rod, this trivial solution will become unstable
at a critical point (F.,7.) [4]. At this point the total energy of deformation reduces by decreasing the
torsional deformation and, according to Love [2], bending the rod into a helix. The helix at this point
is energetically more convenient then the straight rod. This continuous helix is not necessarily always
observed. Oftentimes this metastable state is replaced by an energetically more convenient localized helix
(figure 3 c).

If we further increase 7, the rod will first come into self-contact (figure 3 e) as described by Coyne
[3], and eventually writhe as shown in figure 3 f. It is a physical phenomena that we have all observed at
some point in our lives, but probably never thought twice about it.
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Figure 3: Elastic rod loaded at it’s ends by a constant tensile force F' and twisted with the torsion
coefficient 7 [4]. The constant force allows the ends of the rod to approach one another with increasing
7. The rod initially remains straight (a). When increasing 7, we can sometimes observe the formation
of a continuous helix (b). On the other hand, the localized helix as described by Coyne in [5] can always
be observed (c and d). The rod then comes into self contact (e) and finally coils around itself forming a
plectonemic region (e).

3.1 Linear eigenvalue analysis of Love

We can obtain the critical point (F,, 7.) of the helix formation as predicted by Love [2] through eigenvalue
analysis. Let us first have another look at equation of equilibrium for a thin elastic rod in the xyz reference
frame. We need to assume that the central-line of the rod is very nearly straight. The tangent vector
therefore reduces to approximately t = (&, y, 1). Equation of equilibrium with the condition that 7 = 0
translate to a set of equations

—EIY +Créi+Fy=0

Elt +Crj—Fi=0 (13)

Py —yi =0.

The third equation is nonlinear and seems to eliminate any nontrivial solution. This is why we will only
take into consideration the first two equations. We search for a more general solution of the approximated
Kirchoff’s equations in the form

x(l) = Acos(qil +e1) + B cos(gal + £2) (14)
y(l) = Asin(q1l + 1) + Bsin(gal + 2).

Both expressions share the same coefficients A and B. In the case of the spinning top this approximate
solution represents nutation. Taking this ansatz into equation 13 we find that

_Cr (Cr)2 F
W2 =5 T\ @B B (15)

The terminal force F' is positive for tension and negative for thrust. Taking into consideration the loading
conditions z(0) = y(0) = (L) = y(L) = 0 we obtain two sets of equations

COSE] COSEg AN 0 cos(uL +¢e1) cos(gaL + €2) A 0 (16)
sine; sines B | sin(g1L + 1)  sin(gaL + €2) B )7
In order to obtain nontrivial solutions the determinant of both systems must be 0. The first nontrivial

solution of the new equations gives the condition of stability |¢1 — g2| = 27. Using equation 15 we find
that a rod subjected to tension F' and torsion 7 is stable if

F (Ccr)?2  x?

EI - (2EI? 1% (17)

The more we twist our rod (increase 7) the greater the tensile force F' has to be in order to keep the rod
straight. We see that for zero force the critical torsion equals 7.9 = 27V EI/CL and is very small for



long rods. A long twisted rod almost instantly buckles if there is no tensile force to keep it straight. For
very long rods the right-most term of equation 17 may be neglected to obtain a simplified condition

(C1.)?

Fo=-zr. (18)

At this critical point the rod will buckle into a three-dimensional helix with axial wavelength A, = 27 /q =
27/ EI/F, (this can be easily obtained from (15) and (17)). An interesting consequence of this simplified
criticality condition is that the complete number of turns made by the end moment per incipient helical
wave is

A,  2EI
on /1.  C

We used the fact that the torsional rigidity equals C = JG = EI/(14+v), where G is the torsional stiffness
(G = E/2(1+4v)), J is the principal moment of inertia (for a circular cross-section J = 2I) and v is the
Poisson ratio. This is a delightfully general result, depending only on the Poisson ratio and independent
of the applied tension [4]. For soft rubber the Poisson ratio is approximately 1/2. This tells us that a
rubber rod will form a helix with 3 turns per wave at the critical point.

=2(1+). (19)

3.2 White’s theorem

White’s Theorem states [8] that the linking number Lk of a curve is the sum of it’s twist number Tw
and it’s writhe number Wr (figure 4)
Lk =Tw+ Wr, (20)

and that Lk is constant for a closed curve no matter what shape it takes. The linking number of a rod
measures the number of twists that have gone into it in order to create it [5]. It is usually associated
with closed rods, but can be applied to an open rod as well.

Here T'w represents the internal twist w The twisting number for a rod can be obtained with the
formula

1 .
Tw= /wdz. (21)

On the other hand, the writhe number Wr is a property of the shape of the curve. We shall not investigate
the writhe number in mathematical detail. Suffice it to say that Wr is the numberer of positive crossings
minus the number of negative crossings that a curve makes with a surface. Figure 4 should help us
visualize the writhe number better. The ribbon on the right has the twist number equal to 2.5 and the
writhe number equal to zero (Lk = Tw+ Wr = 2.5). The ribbon on the left has large Wr and very small
Tw.
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Figure 4: The writhe number of the ribbon on the left is large and the twist number is very small. On
the other hand, the ribbon on the right has Wr = 0 and Tw = 2.5 [11].

A good way to visualize White’s theorem is to imagine a telephone cord. Stretching the cord to it’s
maximum will result in increasing T'w so that Wr becomes 0. No matter whether the cord is stretched
or not, the linking number Lk does not change.

At first it might seem that White’s theorem is just a restatement of the expression for torsion 7
(equations 7, 9 and 12). As mentioned, Love’s torsion is a sum of two parts internal twist and tortuosity
(r = w + cosasina/R). Internal twist is directly proportional to the twist number. The tortuosity,
however, is not to be confused with the writhe number.

The condition that 7 is constant holds throughout the length of the rod. As soon as we change the
boundary conditions (for example stretch the rod), 7 will change it’s value but still remain constant along
the length of the rod. However, stretching will not cause the linking number to change.



3.3 Coyne’s localized solution

James Coyne [3] took a different approach to describing torsional instabilities when studying cable me-
chanics in undersea systems. His approach assumes that the solutions are localized, restricted to the
middle of the cable as depicted in figure 3 ¢ - e. Another important variable apart from torsion 7 and
tension F' is introduced — cable ends displacement B. Suppose initially a straight cable with twist 7p.
Letting the two ends approach one another changes the torsion and tension. A loop begins to form.
Coyne’s analysis gives this missing relation between torsion, tension and end displacement up to the
point when the cable comes into self-contact.

We need to first upgrade our understanding of Kirchoff’s theory. Let us try to find the ’constants of
motion’, or quantities that remain constant throughout the length of the rod, since no actual motion is
present. The first constant is easy enough to guess — energy or rather energy per unit length of the cable

h= %EI/-@2 + 3072 + Fcosf = %EI (92 + ¢? sin? 0) + %C’ (1/) + qi)cos@)z + F cos@. (22)
The first two summands represent flexural and torsional energies. It is a bit more difficult to justify
the last summand. In the kinetic analogue it represents the potential energy of the spinning top in a
gravitational field where F' = mg. For an elastic rod, it represents the potential energy because of the
force applied at the rod’s ends. Euler-Lagrange equations for the cyclic coordinates v and ¢ give another
two ’constants of motion’

py = C(¢ + pcos) = O, (23)
ps = EIpsin® 0 + C (¢ + ¢ cos ) cos . (24)

Equation 23 is no surprise. It states that the torsion (which is the sum of internal twist and tortuosity)
is the same at every cross section along the rod. Equation 24 expresses the condition that, at every cross
section, the moment about a line passing through the cable cross section parallel to the z axis is constant.

The cable is assumed to be long compared with the loop that forms. It is essentially straight at it’s
ends. We may assume that 6 and 6 vanish at cable ends. The constants at cable ends therefore equal
h = F+1/2C7? and p, = py = C7. Taking these expressions into equations 22 and 23 gives a set of
equation for 6 and gi)

%EI (6‘2 + ¢? sin? 0) — F(1—cosf) =0, (25)
El¢sin?6 — C7 (1 — cosf) = 0. (26)

In Love’s theory, the azimuth angle 6 remains constant along the rod, giving a continuous helix. In
Coyne’s analysis, there is no such condition. In order to obtain a localized solution, the ¢ angle must
change. Solving the equations for 6 and ¢ gives

. F 0 6 (Cr)?
— Z 22 _ 2
0 24/ Foli tan 5\ 5° 5 ~ 1mIE (27)
: Cr 50
¢ = E COS 5 (28)
We observe that 6 in a function of only # and can be integrated to obtain
0 A
sin - = ————— (29)

2 cosh(Al/N)’

where A is a dimensionless constant (42 = 1 — (C1)?/4EIF) and A the characteristic length (A =
VEI/F). We should emphasize here that [ = 0 in the middle of the cable. We observe that the right-
hand side of equation 29 is symmetrical about [ = 0. Therefore 6 decreases symmetrically to zero as [
goes from zero to plus or minus infinity (figure 5 right). Referring back to equations 25 and 7, we see
that curvature equals k2 = (2F/FI)(1 — cosf) = (4F/EI)sin?(/2). This means that the plot in figure
5 is also a plot of curvature versus [/\.

Up to now, nothing has been said about cable end displacement B. Since the cable is symmetric, the
end displacement on each side are the same and equal B/2 = (I — 2)cng. We know that the derivative of
(1 —2)is (1 — %) = 4sin?(A/2). Using equation 29 with relation coshz = (e® + e~%)/2 and integrating
gives the total end displacement

B:4A)\—1 8AA

+ eAL/\" (30)
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Figure 5: The picture on the right shows some equilibrium configurations of a twisted cable, obtained
by numerical integration for different parameters A [3]. The three-dimensional solutions are represented
as viewed from the top and from the side. Coordinates are normalized to A. The graph on the right
represents the curvature of a twisted cable versus z/\ for different A. The coefficient A is determined by
the boundary conditions for F' and 7

The constant of integration 4A\ is determined by the condition that [ = 0 when z = 0. Observe that
(I — z) is otherwise antisymmetric about [ = 0. The total displacement for a cable whose length is much
greater than the dimensions of the loop (AL/A >> 1) is B = 4A\.

With the cable initially straight with internal twist 79, the initial torsional energy FE; per unit length
equals 1/2C7Z. As the cable ends are allowed to approach one another some of this torsional energy is
converted into flexural energy F; and work done against end forces W. The cable ends are of course
restrained from rotating and so there is no torsional work. The energy conservation law states that
dE; +dEs +W = 0.

Letting the cable ends approach one another changes some of the quantities (F', 7, B) that were up
to now considered to be constant and determined by the static boundary conditions. Two independent
variables specify the boundary condition. In our case, these two variables will be torsion 7 and normalized
end displacement B/4\, with which we may express the energy conservation law.

The work done by the cable on the force F' as the cable ends displace is dW = FdB. Using the
approximate expression B = 4A\ and the expressions for A and A\ we get

= 20miB) -
1-(3x)

Since the torsion is constant along the cable, the change in torsional energy may be expressed by dFE; =
LC7dr. The flexural energy per unit length of the cable is 1/2EIx?. With equations 25 and 7 we may
express the specific flexural energy as F(1 — cos). But since F(1 — cosf)dl is just F(dl —dz) = FdB,
we observe that the flexural energy is exactly equal to the work done by the cable on the terminal forces
(dEf = dW). This is a consequence of equation 25. Taking these expressions into the energy conservation
law yields a new relationship between 7 and B

dr = __ ) (3) , (32)
L1 (£)?
which can be integrated to obtain
4 . (B
T =1To — T arcsin (4)\> . (33)

Observe that when B = 4), the right-hand side of 44 becomes 79 — 27 /L. One complete turn is removed
from the cable.
The relationship between the terminal force and non-dimensional end displacement is therefore

C? (7'0 — %arcsin (%))2

B (- ()

This is not an explicit formula for F' because the characteristic length is also a function of force A =
v/ EI/F. This formula is the principal solution of Coyne’s analysis. It relates the force to the displacement

F =

(34)



at the cable ends in terms of the initial twist and cable length. Observe that the force needed to keep the
cable straight (B = 0) is the same as that of Love’s analysis (equation 18). It seems that the two modes
of deformation are not succeeding one another but are rather competing with each other.
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Figure 6: Terminal force F' versus total end displacement B for 5, 10 and 15 initial twists [3]. The force
at B = 0 is given by the criticality condition that has already been obtained by Love. The ’knee’ of the
curve gives the instability point at which a loop will form.

Figure 6 shows a plot of F' versus B for 5, 10 and 15 initial twists. At B = 0 the force is given
by equation 18. As B increases, approaching the turning point, F' and dF/dB increase rapidly. At the
turning point dF/dB becomes infinite and B changes direction. The cable has flipped into a loop. The
upper branch of the curve represents the tightening of the loop (decreasing B) by applying force after
the loop has formed.

The point on the F(B) curve where dB/dF = 0 is the called instability point and it represents
the point where the cable comes into self-contact. Since B cannot be explicitly expressed, the dB/dF
derivative can be obtained with implicit differentiation of equation 34. This gives an equation for cable
end displacement B; at the looping instability point. These calculations are very messy. Fortunately, an
approximate solution for long cables exists. It determines the looping instability to be at

(CTi)Q C2 m

F = = (7= Iy2.
=551 “2Er 1) (35)

Notice that this equation is very similar to the criticality condition of Love (equation 18). It is important
to understand that this is the point at which the cable comes into self contact. Finding the point at which
the loop 'pops out’ requires a different approach. The ’pop out’ does not occur at the same instability
point as the formation of the loop. Our intuition tells us that once the loop has formed increasing the
tension will cause the loop to tighten before it pops out.

3.4 Experimental results

Experiments seem to support the theoretical predictions. Thompson and Champneys in [4] performed a
number of experiments on metallic wires and rubber rods. The qualitative behavior of both is similar. The
rods were loaded onto a testing machine that allowed rigid control of end rotation and end displacement.
On some occasions, they were able to observe well developed helices (figure 7 left). On other occasions,
there was a fairly continuous transition into the localized deformation of Coyne (figure 8).

Figure 7: Deformations of a rubber rod due to torsional instability — a continuous helix (left) and a
localized deformation of Coyne (right) [4].

Figure 8 shows a tracing of several photographs. A black circular rubber rod was painted half white
so that when untwisted it would appear as two parallel black and white strips. The end rotation was

10



increased in steps of 47 while the end displacements were rigid. Analysis of this figure allows us to
distinguish two types of deformation. In the early stages of the twisting process (87) there is a clearly
visible helical deformation H1 which has approximately one full turn per helical wave. This is not the
continuous helix that Love predicted. Later in the test (167) we see that the localized form (L3) has
roughly 3 = 2(1 + v) turns per wave. This is in agreement with the eigenvalue prediction of Love and
also the prediction of Coyne (both arrived at the same criticality condition). Thompson and Champneys
predicted that the localized mode L3 would be energetically more favorable one than the H3 that was
predicted by Love. And indeed, they were never able to observe the H3 helix in their experiments.

. R=0

—— e — [} = 41T
— e a— |} = {1
——
one turn per wave
e N e e R = 127
e e R = 16T

[ ——
3= 2(1 + V) turns per wave
R =20m
W R=24n
ﬂrmxﬁhnlm R=28n

Figure 8: The deformation sequence of one rubber specimen [4]. There is evidence of an initial helical
deformation H1. This is followed by a characteristic localization process L3 with approximately three
twists per helical wave.

Meanwhile it seems that the short-wave helix H1 either lies outside the domain of Kirchhoff’s theory
or is associated with the finite length and the boundary conditions. Many approximations were made up
to now and so there are many reasons why it might not give a complete description of rubber rods.

4 Formation of plectonemic regions

Twisting an elastic rod will eventually cause it to coil around itself forming a helix (as in figure 3 f). This
inter-wound region of the rod is sometimes called the plectonemic region and the straight ends are called
the tails. But this newly formed helix is not necessarily uniform. Twisting an elastic cord while keeping
the it’s ends fixed will result in a non-uniform helix as the one on the left in figure 9. On the other
hand, first twisting a cord and then letting the ends approach will result in formation of a non-uniform
helix as the one on the right in figure 9. Even though rods are made of very different materials, their
qualitative behavior is similar as long as the assumption of linear elasticity holds and there are no plastic
deformations.

Figure 9: Formation of non-uniform plectonemic regions [4]. The photograph on the right shows a rubber
rod that has been continually twisted while its ends were not allowed to approach one another. The
photograph on the right shows a cord that has been pre-twisted and then ends were allowed to approach
one another.

Any rope maker will tell you that the secret to a uniform tightly laid rope is keeping the plies at
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constant tension and letting them gradually coil around one another as we continually twist the seperate
plies. This is called compound twisting [12]. Pretwisting separate plies and then twisting them around
one another will not produce a tightly laid rope (this is called simple twisting). The reason for this is
friction along the contact line of the plies. Friction is also the reason why the non-uniform helices of
figure 9 do not redistribute their loops to form a more uniform structure.

Obtaining a nice uniform plectonemic region requires a constant force applied at the rods ends. From
now on we will only be interested uniform plectonemic regions. Adding twists will cause the plectonemic
region to increase and the tails to shorten. Let [, represent the length of the rod that makes up the
plectonemic region. Then (L —I,) represents the length of the rod that makes up the tails. A uniform
helix is uniquely defined by two parameters. We mentioned before that these two parameters may be the
radius R and pitch angle a. The fourth variable, that is significant in this type of twisting, is either the
torsion 7 or the linking number Lk. The fourth variable tells us how many turns were added into the
rod.

We wish to derive the the total energy of this post-buckled state as a function of the four geometrical
variables (I,, o, R and 7). The torsional energy is C72L/2, since 7 is constant along the entire length
of the rod. However, the flexural energy is nonzero only in the plectonemic region and therefore equals
EI/{zlp/Q. Using equation 11 we see that flexural energy translates to EI, cos* a/2R?. The potential
energy due to external force and torque equals —F (L — [,,) — 2rLkM, where the linking number is a
function of 7, « and R. We have to take into account the fact that the rod is in contact with itself.
We replace the actual interaction energy with a constraint term —A(R — a), where X is the Lagrange
multiplier and a the radius of the rod. The total potential energy is given by

COS4 «

E(a,R,7,1,) = %CT2L + %EI?lp —F(L—-1,)—M2rLk — AX(R — a). (36)
The potential energy in itself is not the end result we are interested in. Euler-Lagrange equations give
conditions for the mechanical equilibrium of the buckled rod. Differentiating E with respect to the four
variables gives four constitutive relations. We will skip these more or less simple calculations for now.
We first need to determine which quantities are of interest to us and which are the quantities that can
be measured or controlled. We will do this in the next section.

4.1 DNA supercoiling

Deoxyribonucleic acid or DNA is a molecule that is primarily described as a very long double helix. This
double helix model describes the local structure of DNA, but the global structure is far more complex.
When viewing DNA over long length-scales it may be modeled as a long rod. It is this global structure
of DNA that will be the subject of our interest.

In a stress-free configuration of a B-DNA double helix, the two strands twist around the axis once
every 10.5 base pairs or every 3.4 nm [13]. The atomic structure of DNA allows for two other possible
configurations alternative to the most common B-DNA — A-DNA and Z-DNA. Compared to B-DNA,
the A-DNA form is a wider right-handed spiral. In the case of the Z-DNA the strands turn about the
helical axis in a left-handed spiral, which is opposite to the more common B form. The radius of a
rod-like B-DNA molecule is approximately 1 nm. Adding or subtracting twists to the double helix, as
some enzymes can do, imposes strain. The molecule reduces it’s twist by coiling around itself as a twisted
cable would. The resulting structure is a supercoil.

Extra helical twists are said to be positive and lead to positive supercoiling, while subtractive twisting
causes negative supercoiling. DNA of most organisms is negatively supercoiled. Supercoiled DNA forms
two structures — a plectonemic or a toroidal (solenoidal) structure, or a combination of both.

This process of supercoiling is of course best described by the linking number. The stress-free con-
figuration of DNA might seem to be twisted. Because of this, White’s theorem is sometimes restated as
ALk = ATw+ Wr, where ATw and ALk represent the twists that were added to the initial once-every-
10.5-base-pairs twists. For example, a relaxed DNA molecule of monkey virus SV40 with about 5,250
base pairs has Lk = Tw =~ 500 and ALk = ATw = 0 [13].

Any deformation of DNA involves atomic displacements and should therefore be described at an
atomic level. The deformation energy of DNA is governed by base stacking energy, the water-DNA
surface interactions, electrostatic interactions along the charged phosphate groups along the DNA [14].
Oftentimes the mechanical properties of DNA can be be described surprisingly well with elastic rod
theory. This continuum description of DNA molecules as elastic rods and the corresponding bending and
torsional energies have their origin in the nanoscale inter-atomic forces [14].
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Studying mechanical properties of DNA became possible with the development of nanotechnology.
It is today possible to exert forces onto single DNA molecules. Clauvelin, Audoloy and Neukirch [6]
analyze an experiment where one end of the molecule is attached to a glass surface while the other end
is attached to a magnetic bead (figure 10). The pulling force and torque are applied with the use of a
magnet. The molecule could also have been held by optical tweezers. The linking number of the molecule
is increased by rotating the bead while maintaining a constant pulling force (the order of pN). Eventually
a plectonemic region forms. The plectonemic phase is not necessarily made up of a single plectonemic
structure, but the result is the same as if it were.

300
n [ob of turns)

Figure 10: Left: Experimental 'hat’ curves showing the vertical extension of the 48 kbp lambda phage
DNA molecule as a function of the number of turns imposed on the magnetic bead (salt concentration 10
mM) [6]. Each curve represents a fixed pulling force form 0.25 pN (bottom curve) to 2.95 pN (top curve).
The triangles represent the fit for the slope ¢ of the linear region. Right: Schematic representation of the
magnetic tweezers experiment [6].

Describing the behavior of DNA with theory of elastic rods is possible only if the radius of the DNA
tube-like molecule is not predetermined. The effective radius is defined as the radius of a chargeless,
impenetrable elastic tube that has the same mechanical response as the DNA molecule. This radius is
not given as a parameter of the model and is extracted from experimental data. The radius varies under
changing experimental condition (applied load, salinity, etc.) [6].

In this experiment the controllable quantities are force, number of turns made by the magnetic bead
n = ALk and vertical displacement of the bead z = L —[,. Pitch angle a and helix radius R are the
quantities that we are looking for. Euler-Lagrange equations with (36) give two relations that constitute
a set of equations for # and R. Firstly, 0E/9l, = 0 gives the expression 6]

EI 1 1
F="sin"0(= )
Rz b (2 + Cos 20) (87)

The other important relation is the connection between the vertical extension z and the number of turns
n imposed on the bead [6]

%
dn

4R
= = Pwlc— 5 38
q Pt sin 26 (38)

where p,c € [0,1]. The end-to-end distance is shorter than (L —[,) by a factor of py.. This factor
depends on temperature, bending stiffness, external force and can be determined experimentally through
z(n = 0) = puwicL. This factor along with the unspecified molecule radius buffer the inter-molecular
interactions that actually govern the behavior of DNA.

The graph in figure 10 represents experimental results presented in [6] and [15]. The data is obtained
on a 48 kbp (kilo base pair) lambda phage DNA molecule in a 10 mM phosphate buffer. Each curve in
the graph corresponds to a given value of the external force (from bottom to top F' = 0.25, 0.33, 0.44,
0.57, 0.74, 1.10, 1.31, 2.20, 2.95 pN). The linear part of the ’hat’ curve represents the region where the
plectoneme has already formed. The value of ¢ can be extrapolated from the linear parts of the curve.
with this value and the value for ', R and « can be extrapolated with (37) and (38). The calculated values
of R and « are graphically represented in figure 11. We see that the radius decreases with increasing
force. The pitch angle naturally increases with greater force, as would be expected.
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Figure 11: Reconstructions of the plectonemic radius R as a function of the pulling force F'. The angle
« is shown in the inset [6].

5 Conclusion

There is a relatively continuous transition of the twisted rod from being straight to coiling around itself.
We have seen that Coynne’s localized L3 solution is energetically more favorable than the continuous
helix H3 predicted by Love. However, oftentimes a clearly visible continuous helix H1 can be observed.
This helix has approximately one turn per helical wave for a soft rubber rod, whereas Love predicted that
it should have 3 turns per helical wave at the bifurcation point. The H1 type of deformation lies outside
Kirchhoft’s theory. It would seem that there is room for further research in this field of mechanics.

Studying post-buckled states required a new, elegantly simple approach. We simply divided the
elastic rod into two regions — the plectonemic region and the tails, disregarding the end loop and the part
between the tails and the plectoneme. This enabled us to put down an expression for the total energy
of the post-buckled rod. Considering the length of the rod that makes up the plectoneme as a variable
gives rise to new analytical solutions for various experimental setups.

In the end we touched on the currently very popular topic — mechanics of DNA molecules. The
magnetic tweezers experiment proves to be an indispensable application of the afore mentioned theory.
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