Charmonium-resonances from lattice QCD

Sasa Prelovsek

University of Ljubljana & Jozef Stefan Institute

Brda 2021 June 1st 2021

in collaboration with S. Collins, D. Mohler, M. Padmanath and S. Piemonte

[arxiv: 2011.02541 (accpeted to JHEP)] spins J=0 and 2 [arxiv: 074505, PRD 2019] spins J=1 and 3

Sasa Prelovsek, Charmonium resonances from lattice QCD

Motivation to study charmonium resonances

Experimentally discovered exotic hadrons

- Most of them contain <u>c</u>c
- All of them are resonances (decay strongly)

 $Z_c : \bar{c}c\bar{d}u$ $P_c : \bar{c}cuud$ $X(3872) : \bar{c}c\bar{q}q$

Current study: Charmonium(like) resonances with isospin=0 and J=0,1,2,3

The first extraction of the scattering matrix for coupled channels

- for me
- besides the Had. Spec. Colll

Only one previous lattice study took into account decaying nature of charmonium resonances and determined width Lang, Leskovec, Mohler, Prelovsek, JHEP (2015)

 $D\bar{D} - D_s\bar{D}_s$

Charmonium system: experimental status (PDG) and summary of our lattice results

Mass (MeV)

Lattice details

CLS ensebmles with u/d, s dynamical quarks (Regesnburg)

 $a \simeq 0.086 \text{ fm}$ N₁=24, 32

Charmonium resonances with J^{PC}=1⁻⁻,3⁻⁻ in one-channel <u>D</u>D scattering

Resonances with J^{PC}=1⁻⁻,3⁻⁻ in one-channel <u>D</u>D scattering

$$C_{ij}(t) = \left\langle 0 \right| \mathcal{Q}_{i}(t) \mathcal{Q}_{j}^{+}(0) \left| 0 \right\rangle = \sum_{n} Z_{i}^{n} Z_{j}^{n*} e^{-E_{n} t}$$

Operators

$$\mathcal{O}^{\overline{c}c} = \left(\overline{c}\,\Gamma c\right)_{\vec{P}}$$

$$\mathcal{O}^{\overline{D}D} = \left(\overline{c}\,\Gamma_1 q\right)_{\vec{p}_1} \left(\overline{q}\,\Gamma_2 c\right)_{\vec{p}_2} \\ = \overline{D}(\vec{p}_1)D(\vec{p}_2)$$

 $\vec{P} = \vec{p}_1 + \vec{p}_2$ P: 0 (0,0,1) $2\pi/N_L$ (1,1,0) $2\pi/N_L$

known function for each irrep and L

Sasa Prelovsek, Charmonium resonances from lattice QCD

at Ecm=Ecm^{lat}

Extracted scattering amplitude t(E) in complex energy planepartial wave l=1 J^{PC}=1⁻⁻

Charmonium resonances with J^{PC}=1⁻⁻,3⁻⁻: results for masses and widths

$$D\bar{D} - D_s\bar{D}_s$$

Charmonium resonances with $J^{PC}=0^{++}$, 2^{++} in coupled <u>DD</u> – <u>D</u>_s D_s scattering

these resonances appear at higher energies and both decay channels need to be taken into account

Sasa Prelovsek, Charmonium resonances from lattice QCD

Energies of eigen-states E_n in irreps that contain J^{PC}=0⁺⁺,2⁺⁺

for m_D=1927 MeV

J^{PC}=0⁺⁺ : some expected and unexpected states found

 $D\bar{D} - D_s\bar{D}_s$

near pole

Sasa Prelovsek, Charmonium resonances from lattice QCD

J^{PC}=2⁺⁺: conventional resonance found

D-wave (L=2, J^{PC}=2⁺⁺)

• 2++ resonance

$$\Gamma \equiv g^2 p_D^{2l+1}/m^2$$

$$lat: m = 3973^{+14}_{-22} \text{ MeV} \quad g = 4.5^{+0.7}_{-1.5} \text{ GeV}^{-1}$$

$$\chi_{c2}(3930): m = 3923 \pm 1 \text{ MeV} \quad g = 2.65 \pm 0.12 \text{ GeV}^{-1}$$
PDG

Charmonium resonances with J^{PC}=0⁺⁺, 2⁺⁺: results for masses

Challenges

- accurate determination of highly excited E_n
- several J^P contribute to each irrep
- extraction of scattering matrices for coupled-channel scattering

Simplifications / assumptions

- $J^{PC}=0^{++}$: assuming that channels $\eta_c \eta$ and $J/\psi \omega$ are decoupled from <u>DD</u>, <u>DSD</u>s
- further assumptions: see section 5 of 2011.02541, JHEP

Kind of a summary ... again a look at the charmonium system

Mass (MeV)

Backup

$\mathbf{p} = (0, 0, 1), Dic_4$		
Λ (dim)	$ \lambda ^{\tilde{\eta}}$	J^P (at rest)
A_1 (1)	0+	$0^+, 1^-, 2^+, 3^-$
A_2 (1)	0-	$0^-,\ 1^+,\ 2^-,\ 3^+$
E(2)	1	$1^{\pm}, \ 2^{\pm}, \ 3^{\pm}$
	3	3^{\pm}
B_1 (1)	2	$2^{\pm}, \ 3^{\pm}$
B_2 (1)	2	$2^{\pm}, 3^{\pm}$

FIG. 11. J^P -identified charmonium spectrum in the moving frame with $\mathbf{p} = (0, 0, 1)$. Irreps Λ^C of group Dic_4 are presented. The colors indicate J^P of states according to the color-coding (21).

T(E) near poles

$$t_{ij} \sim \frac{c_i \ c_j}{(E_{cm}^p)^2 - E_{cm}^2}$$
 for $E_{cm} \simeq E_{cm}^p$, $i = 1 \ (D\bar{D}), \ 2 \ (D_s\bar{D}_s)$

