[•]Hadronic resonances in Lattice QCD

Sarajevo, 6. October 2013

Excited QCD

Sasa Prelovsek University of Ljubljana & Jozef Stefan Institute, Slovenia

In collaboration with:Christian B. Lang,Luka Leskovec,Daniel Mohler,Richard WoloshynGrazLjubljanaTRIUMF/FermilabTRIUMF

Outline

□ Motivation

□ mass and width of hadronic resonance from lattice

□ Results from lattice simulation:

- ρ resonance
- charm resonances
- strange resonances

□ Conclusions

Almost all hadrons are hadronic resonances (decay strongly)

<u>u</u> u	$\overline{s}u$	$\overline{c}u$	uud	
r^{\pm} r^{0} η $t_{0}(500)$ or q was $t_{0}(600)$	$ \begin{array}{c} \mathcal{K}^{\pm} \\ \mathcal{K}^{0} \\ \mathcal{K}_{S}^{0} \end{array} $	D^{\pm} D^{0} $D^{(2007)^{0}}$	р п N(1440) 1/2 ⁺	stable on strong decay: ab-initio OK
$ \begin{array}{c} \rho(300) \text{ or } 0 \text{ was } r_0(300) \\ \rho(770) \\ \omega(782) \\ \eta'(958) \\ f_0(980) \\ a_0(980) \\ \phi(1020) \\ h_1(1170) \\ b_1(1235) \\ a_1(1260) \\ f_2(1270) \\ f_1(1285) \\ \eta(1295) \\ \eta(1295) \\ \eta(1295) \\ \eta(1295) \\ \eta(1295) \\ \eta(1370) \\ a_2(1320) \\ f_0(1370) \\ h_1(1380) \\ \eta(1405) \\ f_1(1420) \\ \omega(1420) \\ (01420) \end{array} $	K_{1}^{0} $K_{0}^{*}(800) \text{ or } K$ $K_{0}^{*}(892)$ $K_{1}(1270)$ $K_{1}(1400)$ $K_{1}(1400)$ $K_{0}^{*}(1430)$ $K_{2}^{*}(1430)$ $K_{2}(1430)$ $K_{2}(1580)$ $K_{1}(1650)$ $K_{1}(1650)$ $K_{1}(1650)$ $K_{2}(1770)$ $K_{3}^{*}(1780)$ $K_{2}(1820)$ K(1830)	$D^{(2010) \pm} \\ D_{0}^{(2400)^{0}} \\ D_{0}^{(2400) \pm} \\ D_{1}^{(2420)^{0}} \\ D_{1}^{(2420) \pm} \\ D_{1}^{(2420) \pm} \\ D_{1}^{(2430)^{0}} \\ D_{2}^{(2460)^{0}} \\ D_{2}^{(2460)^{0}} \\ D_{2}^{(2460) \pm} \\ D^{(2550)^{0}} \\ D^{(2600)} \\ D^{(2640) \pm} \\ D^{(2750)} \\ D^{(2750)} \\ D^{(2750)} \\ D^{(2600)} \\ D^{(2750)} \\ D^{(2750)} \\ D^{(2750)} \\ D^{(2750)} \\ D^{(2600)} \\ D^{(2750)} \\ D^{(2750)$	N(1520) 3/2° N(1535) 1/2° N(1650) 1/2° N(1650) 5/2° N(1680) 5/2+ N(1685) ?° N(1700) 3/2° N(1710) 1/2+ N(1720) 3/2+ N(1860) 5/2+ N(1880) 1/2+ N(1880) 1/2+ N(1895) 1/2° N(1895) 1/2° N(1900) 3/2+ N(1900) 5/2+ N(1900) 5/2+ N(1900) 5/2+ N(1900) 5/2+ N(2000) 5/2+ N(2000) 5/2+ N(2000) 5/2+ N(2000) 5/2+ N(2000) 5/2+ N(2000) 5/2+	 others decay strongly; <u>hadronic</u> <u>resonances</u> up tp now ab intio (first simulation: CP-PACS 2007) our coll. (Lang et al) (2011,2012) Verduci, Lang (2012)
 f₂(1430) a₀(1450) ρ(1450) 	,	Resonan	N(2100) 1/2 ⁺	Prelovsek 3

Hadronic resonances appear in scattering

Decay quickly through strong int.

Resonances in scattering on the lattice

- numerically demanding to evaluate such C(t)
- therefore mostly unexplored ab-initio till now
- our advantage: so-called "distillation method" (Peardon et al. 2009)

$$C_{ij}(t) = \sum_{n} A_{n}^{ij} e^{-E_{n}t} \qquad E(L) = \sqrt{m_{1}^{2} + \vec{p}_{1}^{2}} + \sqrt{m_{2}^{2} + \vec{p}_{2}^{2}} + \Delta E$$

due to
strong int.
$$\vec{p}_{1} = \frac{2\pi}{L} \vec{n}_{1} \qquad \vec{p}_{2} = \frac{2\pi}{L} \vec{n}_{2}$$

Examples of energy spectra

Energy shift ΔE renders $\delta(E)$

$$E(L) = \sqrt{m_1^2 + \vec{p}_1^2} + \sqrt{m_2^2 + \vec{p}_2^2} + \Delta E$$

E(L) → δ (E) [Luscher 1986] , for p1+p2=0 E(L) → δ (E) [Leskovec, S.P., PRD 2012] , for p1+p2≠0, m1≠m2

What is $\delta(E)$?

Lattice simulation

• 280 gauge config with dynamical u,d quarks (generated by A. Hasenfratz)

 $N_f = 2$ $a = 0.1239 \pm 0.0013 \ fm$ $a^{-1} = 1.58 \pm 0.02 \ GeV$

 $N_L^3 \times N_T = 16^3 \times 32$ $L \approx 2 \ fm$ $T = 4 \ fm$ $m_\pi \approx 266 \ MeV$

dynamical u, d , valence u,d,s : Improved Wilson Clover
 valence c: Fermilab method [EI-Khadra et al. 1997]

a set using r0 m_s set using ϕ m_c set using $\frac{1}{4}[M_2(\eta_c) + 3M_2(J/\psi)]_{tat} = \frac{1}{4}[M(\eta_c) + 3M(J/\psi)]_{exp}$

 heavy quark treatment tested on <u>charmonium</u> with satisfactory results thanks !!

ρ resonance @ m_{π}~266 MeV

[Lang, Mohler, S. P., Vidmar, PRD 2011

 π π scattering with L=I (p-wave) and isospin I=I

our final result

lat (m_{π} = 266*MeV*)

 $m_{\rho} \approx 792 \pm 12 \text{ MeV}$

 $g_{\rho\pi\pi} = 5.13 \pm 0.20$

 $a = \frac{-\sqrt{s}\Gamma(s)}{s - m^2 + i\sqrt{s}\Gamma(s)} = \frac{1}{2i}\left(e^{2i\delta} - 1\right)$

equivalent to real equation

$$\sqrt{s} \Gamma(s) \cot \delta(s) = m_{\rho}^{2} - s$$

$$\Gamma(s) = \frac{p^{3}}{s} \frac{g_{\rho \pi \pi}^{2}}{6\pi}$$

The final relation has two parameters: m(ρ) and g($\rho \pi \pi$)

$$L_{\text{eff}} = g_{\rho\pi\pi} \sum_{abc} \epsilon_{abc} (k_1 - k_2)_{\mu} \rho_{\mu}^{a}(p) \pi^{b}(k_1) \pi^{c}(k_2)$$

$$exp \ (m_{\pi} = 140 \, MeV)$$

$$m_{\rho} = 775 \, \text{MeV}$$

$$g_{\rho\pi\pi} = 5.97$$

-0.2

0.3

0.35

0.4

[HSC: Dudek, Edwards, Thomas, 2013]

ρ resonance @ m_{π}~400 MeV

[thanks to D. Mohler for the plot]

Compilation of rho simulations

Why the following results have less points on phase-shift curve ?

previous result : $\delta(s)$ at relatively many s

 $\pi \pi \rightarrow \rho \rightarrow \pi \pi$ $s = E_{cms}^2 = E^2 - P^2$ several $P = p_1 + p_2$ simulated

the following results: $\delta(s)$ at few s $K\pi \rightarrow K^* \rightarrow K\pi$ $D\pi \rightarrow D^* \rightarrow D\pi$ $s = E_{cms}^2 = E^2$ only P = 0 simulated

 $m_1 \neq m_2 \& P \neq 0$: even and odd L mix [Leskovec, S.P., PRD 2012]

D-meson resonances: brief introduction

- only <u>IS and IP</u> CU states well established in exp for m_c=∞ [lsgur & Wise, 1991]:
 - two IP states decay only in S-wave → broad
 we treat those two as resonances
 - two IP states decay only in D-wave -> narrow in exp

→ "stable" on our lat

below D-wave th. $D(1)\pi(-1)$ we treat those as stable: M=E(L)

taken from Belle PRD(2004)

 <u>radial and orbital excitations [Babar 2010]</u>: poorly known in exp (need confirmation), O=quark-antiquark

DT scattering : I=1/2, s-wave, $J^P=0^+$

 $D^{*}_{0}(2400) \text{ exp}: M \approx 2318 \text{ MeV} \quad \Gamma \approx 267 \text{ MeV} \quad \overline{c}u \qquad ?$ $\overline{cs}su \pm \overline{c}\overline{d}du \qquad ?$

 D_{s0} (2317) exp: M ≈ 2318 MeV Γ≈0 MeV $\bar{c}s$? $\bar{c}\bar{u}us \pm \bar{c}\bar{d}ds$?

degeneracy between non-strange and strange partners not naively expected for conventional quark-antiquark

interesting to see if lattice QCD reproduces correct masses and widths of these two states

[Mohler, S. P., Woloshyn, arXiv:1208.4059]

DT scattering: I=1/2, s-wave, $J^P=0^+$ $D_0^*(2400)$

interpolators : 4 quark-antiquark, 2 meson-meson

D π scattering: resulting levels and phase shifts (P=pD+p π =0)

For comparison, our result for rho: there one can check linear behavior.

$$s = E^{2}$$

$$a = \frac{-\sqrt{s} \Gamma(s)}{s - m^{2} + i\sqrt{s} \Gamma(s)} = \frac{1}{2i} \left(e^{2i\delta} - 1 \right)$$

$$\sqrt{s} \Gamma(s) \cot \delta(s) = m^{2} - s, \quad \Gamma(s) = \frac{p}{s} g^{2}$$

$$\frac{p}{\sqrt{s}} \cot \delta = \frac{1}{g^{2}} (m^{2} - s)$$

	m - I/4(mD+3 mD*)	g
lat	351 ± 21 MeV	2.55 ± 0.21 GeV
ехр	347 ± 29 MeV	1.92 ± 0.14 GeV

it would be great to have δ at more values of s, but I will speak about challenges concerning this at the end of my talk

[Mohler, S. P., Woloshyn, arXiv:1208.4059]

DT scattering :
$$I=1/2$$
, s-wave, $J^P=0^+$

 $D^{*}_{0}(2400) \text{ exp}: M \approx 2318 \text{ MeV} \quad \Gamma \approx 267 \text{ MeV} \quad \overline{c}u \qquad ?$ $\overline{cs}su \pm \overline{c}\overline{d}du \qquad ?$

D_{s0}(2317) exp:
$$M \approx 2318 \ MeV$$
 Γ≈0 MeV \overline{cs} ?
 $\overline{cuus} \pm \overline{cdds}$?

Our resulting D0*(2400) mass is in favorable agreement with exp without Valence **SS** pair.

[Mohler, S. P., Woloshyn, arXiv: 1208.4059]

exp: $D_1(2430)$ broad $D_1(2420)$ narrow

interpolators : 8 quark-antiquark, 2 meson-meson

$$egin{split} \mathcal{O}_9 &= \sqrt{rac{2}{3}} D^{*-}(0) \pi^+(0) + \sqrt{rac{1}{3}} ar{D}^{*0}(0) \pi^0(0) \;, \ \mathcal{O}_{10} &= \sum_i \sqrt{rac{2}{3}} D^{-*}(\mathbf{e}_i) \pi^+(-\mathbf{e}_i) + \sqrt{rac{1}{3}} ar{D}^{0*}(\mathbf{e}_i) \pi^0(-\mathbf{e}_i) \end{split}$$

analysis/approximation inspired by m_c=∞ limit

0.2

0

0.2 -0.2 φ. -0.4 φ. -0.6 φ. -

-0.8

-1_i

1.2 1.4 1.6 1.8 2

2.2

2.4 2.6

[Isgur & Wise, 1991]

 \bullet Blue expected to decay only in S-wave since present only when D(0)pi(0) in the basis.

• Then red expected to decay only in D-wave: stable on our lattice (in HQ limit) as below D-wave threshold

We assume that narrow red state does not affect phase shift of other three levels: BW fit through those three:

blue level: broad $D_1(2430)$ red level: "stable" $D_1(2420)$

results for $D_1(2430)$

	m - I/4(mD+3 mD*)	g
lat	381 ± 20 MeV	2.01 ± 0.15 GeV
ехр	456 ± 40 MeV	2.50 ± 0.40 GeV

resulting D-meson spectrum

red diamonds: our lat results for resonance masses from scattering study blue crosses: our lattice results for other resonances: m=E(L), O= qbar q

[Mohler, S. P., Woloshyn, arXiv: 1208.4059, PRD 2013]

For those interested in charmonium (widths not determined in this case)

Kπ scattering & strange resonances

K π : energy levels below inelastic threshold

cautionary remarks on K₀^{*}(800) or K

- we do not see any other level below I GeV except for K(0)pi(0)
- so we do not see additional level related to kappa
- this is expected for our lattice L~2 fm assuming experimental δ , since experimental δ does not reach 90° below 1 GeV
- conclusion: we qualitatively agree with experimental phase shift but we can not conclude whether kappa pole exists or not

$$a_0 = \lim_{p \to 0} \frac{\tan \delta(p)}{p}$$

s-wave scattering lengths a₀ for

Κπ, **D**π, **D***π

[Lang, Leskovec, Mohler, S. P., arXiv:1207.3204, PRD 86]

[Mohler, S. P., Woloshyn, arXiv:1208.4059]

Conclusions

- We simulated QCD based on fundamental theory (L_{QCD}): lattice QCD
- stable hadrons:
 well explored, good agreement with exp.
- hadronic resonances (most of hadrons) almost unexplored we presented pioneering, exploratory results

(I) $\pi \pi$ scattering and ρ resonance (only one simulated up to now)

D_0^* (2400) resonance	
J ^P =0 ⁺	

	m - I/4(mD+3 mD*)	g
lat	351 ± 21 MeV	2.55 ± 0.21 GeV
ехр	347 ± 29 MeV	1.92 ± 0.14 GeV

$D_1(2430)$	resonance
J ^P =1+	

	m - I/4(mD+3 mD*)	g
lat	381 ± 20 MeV	2.01 ± 0.15 GeV
ехр	456 ± 40 MeV	2.50 ± 0.40 GeV

Resonances on the Lattice, Sasa Prelovsek 33

Conclusions (continued)

Iots of resonances remain to be studied looking forward to simulate exotic resonances that have been observed

Backup slides

Comparison with other lattice studies

Previous simulations: - Michael & McNeil [PLB 2003]:ρ→ππ amp; not Luscher m. - CP-PACS [PRD 2007]: first study with Luscher method

- QCDSF [Latt proc 2008]
- BMW [Latt proc 2010]

Recent simulations:

	authors	ref	date	Nf	mπ [MeV]	L [fm]	Quark a.	interp.
[1]	ETMC (Feng et al.)	PRD	Nov 10	2	290 - 480	1.9 , 2.5	Twisted m.	2
[2]	Lang, Mohler, S.P.	1103.5506	May 11	2	266	2	Clover	16
[3]	PACS-CS	1106.5356	June II	2+1	300,410	2.9	Wilson	2

Extracting $\delta(p)$ from E_n at $p_1+p_2=0$ [Luscher]

• extract $E_n(L)$

• E_n renders p in "outside" region via

$$E = \sqrt{s} = \sqrt{m_1^2 + p^2} + \sqrt{m_2^2 + p^2}$$

• p contains info on $\delta(p)$

$$\tan \delta(s) = \frac{\pi^{3/2} q}{Z_{00}(1;q^2)} \qquad q = \frac{L}{2\pi} p$$
$$Z_{00}(1;q^2) = \sum_{\vec{n} \in N^3} \frac{1}{\vec{n}^2 - q^2}$$

effective range for K-pi I=3/2 s-wave

$$p \cot(\delta) = \frac{1}{a_{\ell}^{I}} + \frac{1}{2}r_{\ell}^{I}p^{*2} + \mathcal{O}(p^{*4})$$

from ground state

$$a_0^{I=3/2} = -1.13 \pm 0.15 \, a = -0.140 \pm 0.018 \, \text{fm}$$
 (18)
 $\frac{a_0^{I=3/2}}{\mu_{K\pi}} = -3.94 \pm 0.52 \, \text{GeV}^{-2}$ at $m_\pi \simeq 266 \, \text{MeV}$.

from two states

 $\begin{aligned} a_0^{3/2} &= -1.12 \pm 0.15 \, a = -0.139 \pm 0.018 \ \text{fm} \\ r_0^{I=3/2} &= 1.5 \pm 2.0 \, a = 0.19 \pm 0.25 \ \text{fm} \end{aligned}$

[Lang, Leskovec, Mohler, S. P., arXiv: 1207.3204, PRD 86]

$$a_0 = \lim_{p \to 0} \frac{\tan \delta(p)}{p}$$

at our mpi=266 MeV, mK, mD

$$\mu = \frac{m_1 m_2}{m_1 + m_2}$$

our lat. sim.	a ₀ [fm]	a ₀ / μ [GeV ⁻²]	
Kπ, I=3/2	-0.140 ± 0.018	-3.94 ± 0.52	→ r _{eff} ~ C
Kπ, I=1/2	0.636 ± 0.090	17.9 ± 2.5	
Dπ, I=I/2	0.81 ± 0.14	17.7 ± 3.1	
D*π, I=1/2	0.81 ± 0.17	17.6 ± 3.6	

[Weinberg's current algebra 1966] scattering of pion on any particle

$$\frac{a_0^{I=1/2}}{\mu} = \frac{1}{2\pi F_\pi^2} \approx 10 \ GeV^{-2}$$
$$\frac{a_0^{I=3/2}}{\mu} = -\frac{1}{2} \times \frac{a_0^{I=1/2}}{\mu}$$

a₀ : comparison with others

 a_0/μ compared as not dependent of mpi in LOChPT

 $\frac{a_0^{I=1/2}}{\mu} = \frac{1}{2\pi F_{\pi}^2} \approx 10 \, GeV^{-2} \qquad [Weinberg's current algebra 1966] \\ scattering of pion on any particle$

 DT only indirect lattice
 determination from D→π semileptonic form factors [Flynn, Nieves 2007]

I=1/2	our result	Flynn & Nieves
a ₀ / μ [GeV ⁻²]	17.7 ± 3.1	15.9 ± 2.2

$\pi\,\pi$ scattering : energies for three different P

 $s=E^2-P^2$

6 different values of s from one L !

