Lattice QCD study

of Zb tetraquark channel

+ two other quarkonium(like) channels

Sasa Prelovsek
University of Ljubljana, Slovenia
Jozef Stefan Institute, Slovenia
Regensburg University
\section*{Excited QCD 2020}
3-7 February, Krynica Zdrój, Poland

Zb: S. Prelovsek, H. Bahtiyar, J. Petkovic, 1912.02656
charmonium resonances: S. Piemonte, S. Collins, M. Padmanath, D. Mohler, S.P. : 1905.03506, PRD 2019
Pc: U. Skerbis, S. Prelovsek, 1811.02285, PRD 2019

Outline

Lattice QCD study of

1) conventional charmonium resonances above $\underline{D D}$ threshold $\bar{c} c$

$$
\begin{array}{ll}
J^{P C}=1^{-}-\Psi(3770) & \text { know for long time } \\
J^{P C}=3^{--X}(3842) & \text { discovered at LHCb } 2019
\end{array}
$$

2) pentquark P_{c} channel discovered at LHCb 2015,2019
3) tetraquark Z_{b} channe discovered at Belle $2011 \quad \bar{b} b \bar{d} u$

Lattice QCD

$L_{Q C D}=-\frac{1}{4} G_{\mu \nu}^{a} G_{a}^{\mu \nu}+\sum_{q=u, d, s, c, b, t} \bar{q} i \gamma_{\mu}\left(\partial^{\mu}+i g_{s} G_{a}^{\mu} T^{a}\right) q-m_{q} \bar{q} q$
C \bar{u}
input: $\mathrm{g}_{\mathrm{s}}, m_{q}$
Numerical evaluation of QFT Feynman path integrals on discretized Eucledian space-time

$\int D G D q D \bar{q} e^{-S} Q C D^{/ \hbar}$

$$
\begin{gathered}
J^{P C} \quad \mathcal{O}=\bar{q} \Gamma q, \quad\left(\bar{q} \Gamma_{1} q\right)\left(\bar{q} \Gamma_{2} q\right), \quad\left[\bar{q} \Gamma_{3} \bar{q}\right]\left[q \Gamma_{4} q\right], \ldots \\
C_{i j}(t)=\langle 0| \mathscr{O}_{i}(t) \mathscr{O}_{j}^{+}(0)|0\rangle=\sum_{n}\langle 0| \mathcal{O}_{i}|n\rangle e^{-E_{n} t}\langle n| \mathscr{O}_{j}^{+}|0\rangle
\end{gathered}
$$

Extracted quantity: E_{n} = energy of QCD eigenstate with given quantum numbers

$$
\mathrm{E}_{1}\left(\mathrm{p}=0, \mathrm{~J}^{\mathrm{P}}=0^{-}\right)=\mathrm{m}_{\mathrm{D}}
$$

$\bar{c} c$

(1) Conventional charmonia

S. Piemonte, S. Collins, M. Padmanath, D. Mohler, S.P. : 1905.03506, PRD 2019
M. Padmanath, S. Collins, D. Mohler, S. Piemonte, S.P., A. Schafer, S. Weishaeupl : 1811.04116, PRD 2019
(Regensburg group)

m and $J^{P C}$ omitting strong decays

$\bar{c} c$ $\bar{c} \Gamma_{i} c, \bar{c} \Gamma_{i} D_{j} c, \ldots$

Lattice: 1811.04116, PRD 2019: $N f=2+1, m_{\pi} \approx 280 \mathrm{MeV}, \mathrm{N}_{\mathrm{L}}=24$

Next: strong decays of resonances to DD

Lattice: 1811.04116, PRD 2019: $\mathrm{Nf}=2+1, \mathrm{~m}_{\pi} \approx 280 \mathrm{MeV}, \mathrm{N}_{\mathrm{L}}=24$

First exp. discovery of a charmonium with spin J=3

LHCb 2019
1903.12240

JHEP 2019
${ }^{\mathrm{PC}}$ not experimentally measured
LHCb paper:
"The narrow natural width and the mass of the $X(3842)$ state suggest the interpretation
as charmonium state with JPC $=3-$-"

Quark model quantum numbers:

$$
n^{2 s+1} l_{J}=1{ }^{3} D_{3}
$$

$\bar{c} c \rightarrow \bar{D} D$

Charmonia with $J^{P C}=1^{-\cdots}$ and 3^{-}

- simulated DD scattering on the lattice
- determined scattering amplitude

$$
\begin{aligned}
& S_{l}(E)=\exp \left[2 i \delta_{l}(E)\right], \quad l=1,3 \\
& \sigma(E) \propto|S(E)-1|^{2} \propto|t(E)|^{2}
\end{aligned}
$$

of charmonium resonances (0^{++}and 1^{--})
Lang, Leskovec, Mohler, S.P. , 1503.05363, JHEP 2015

- m_{R} and Γ_{R} from Breit-Wigner type fits

Lattice results for charmonium resonances

1905.03506, PRD 2019
$m_{\pi}, m_{K}, m_{D} \simeq$
280, 467, 1762 MeV

widths of resonances:

- $\psi(3770)$

$$
\Gamma=\frac{g^{2} p^{3}}{6 \pi s}
$$

	g
lat	$16.0_{-0.2}^{+2.1}$
exp	18.7 ± 0.9

- X(3842)
to narrow to
resolve in this lat. sim.
\bar{c} cuud

(2) P_{c} pentaquark channel

U. Skerbis, S.P., 1811.02285, PRD 2019

Lattice study of P_{c} pentaquark channel

$$
P_{c}=\text { uud } \overline{\mathrm{c}} \mathrm{c} \rightarrow \underset{\text { light-baryon charmonium }}{(\text { uud })(\overline{\mathrm{c}})}
$$

$$
\rightarrow(\text { uuc })(\bar{c} d)
$$

charmed-baryon charmed-meson
Question we address:
Do Pc resonances appear in one-channel pJ/ ψ scattering on the lattice (in approximation where this channel is decoupled from other channels)

$$
p J / \psi \rightarrow P_{c} \rightarrow p J / \psi
$$

We simulate this scattering and cover also the energy region of P_{c} for the first time.
U. Skerbis, S.P., 1811.02285, PRD 2019

The answer from our lattice simulation : No.

This indicates that the coupling of pJ / ψ channel with other two-hadron channels is likely responsible for Pc resonances in experiment.

This is in line with LHCb results, where Pc's are found near other thresholds. This by itself indicates that other channels are important.
$\bar{b} b \bar{d} u$

(3) $\mathrm{Z}_{\mathrm{b}}{ }^{+}$tetraquark channel

S.P., H. Bahtiyar, J. Petkovic, 1912.02656

Zb in experiment

discovered by Belle in 2011 [PRL 108 (2012) 122001]
$\mathrm{Z}_{\mathrm{b}}{ }^{+}(10610), \mathrm{Z}_{\mathrm{b}}{ }^{+}(10650)$
$\mathrm{I}=1, \mathrm{~J}^{\mathrm{PC}}=1^{+-}$
$Z_{b}^{+} \rightarrow \Upsilon \pi^{+}$
$\bar{b} b \bar{d} u$
Z_{b} observed in decays $\mathrm{Y}(1 \mathrm{~S}) \pi, \mathrm{Y}(2 \mathrm{~S}) \pi, \mathrm{Y}(3 \mathrm{~S}) \pi$ $h_{b}(1 S) \pi, h_{b}(2 S) \pi$ B $\underline{B}^{*}, B^{*} \underline{B}^{*}$

Belle PRD 91 (2015) 072003

Z_{b} on the lattice with static b and \underline{b}

Only previous lat study
Bicudo, Cichy, Peters, Wagner [proceedings Lat16: 1602.07621
proceedings Lat17: 1709.03306]
Born-Oppenheimer approach
Fock components incorporated for $S_{\bar{b} b}=1$

- main aim: extract static potential $V(r)$ between B and \underline{B}^{*} momentum of light degrees of freedom not conserved in presence of static quarks

Eigen-energies of Z_{b} system

Sasa Prelovsek, Lattice studies of quarkonium(like) states

Static potential V(r) for interaction between B and B*

We assume that $B \underline{B}^{*}$ eigenstate is decoupled from other channels (overlaps support that).

Need for theory input!

- analytic form of potential
- behavior at very small r

$$
V(r<1)=?
$$

$$
\left[-\frac{\hbar^{2}}{2 \mu} \frac{d^{2}}{d r^{2}}+\frac{\hbar^{2} L(L+1)}{2 \mu r^{2}}+V(r)\right] u(r)=E u(r)
$$

$$
V(r)=E_{n}(r)-m_{B}-m_{B^{*}} \quad\left(m_{B^{*}}=m_{B}\right)
$$

$$
\text { parametrizing } V(r) \text { by }
$$

$$
\mu=\frac{1}{2} m_{B}^{\exp }, \quad \psi \propto \frac{u}{r} Y_{L M}
$$

$$
V(r)=-A \exp \left[-\left(\frac{r}{d}\right)^{F}\right]
$$

We focus on most relevant : s-wave ($\mathrm{L}=0$)

Results on Zb based on extracted V (r)

$$
V(r)=-A \exp \left[-\left(\frac{r}{d}\right)^{F}\right] \quad \text { for } \mathrm{F}=1.3
$$

Zb found to be virtual bound state (pole of S-matrix for $\mathrm{k}=-\mathrm{i}|\mathrm{k}|$)

$$
M_{Z b}=m_{B}+m_{B^{*}}-13 \pm 10 \mathrm{MeV}
$$

Zb peak is a consequence of virtual bound state

$$
M \approx m_{B}+m_{B^{*}}-400 \mathrm{MeV} \quad M_{Z b} \approx m_{B}+m_{B^{*}}-13 \mathrm{MeV}
$$

lattice
experiment
Belle PRD 91 (2015) 072003

Relating lattice results to Belle experiment

LHCb: try to look for Zb in BB * final state (exclusive or inclusive)

A possible deep bound state !?
If it exist: it could be perhaps visible virtual bound state only in $\Upsilon(1 S) \pi$, since it is located below all other thresholds.

Conclusions

Backup

Charmonium resonances in DD scattering fits of phase shifts for $l=1,3$

$$
\begin{gathered}
E_{c m}=\sqrt{s}=2 \sqrt{m_{D}^{2}+p^{2}} \\
\mathrm{p}=\text { relative momenta of D-mesons in CMF } \\
\frac{p^{2 l+1} \cot \left(\delta_{l}\right)}{\sqrt{s}}=\frac{m^{2}-s}{G^{2}} \quad \begin{array}{c}
\text { Breit-Wigner } \\
\delta_{1}\left(\mathrm{~m}_{\mathrm{R}}\right)=90^{\circ}
\end{array}
\end{gathered}
$$

Fit forms:

$$
\begin{aligned}
& \mathrm{l}=1 \quad \frac{p^{3} \cot \left(\delta_{1}\right)}{\sqrt{s}}=\left(\frac{G_{1}^{2}}{m_{1}^{2}-s}+\frac{G_{2}^{2}}{m_{2}^{2}-s}\right)^{-1} \\
& \mathrm{l}=3 \quad \frac{p^{7} \cot \left(\delta_{3}\right)}{\sqrt{s}}=\frac{m_{3}^{2}-s}{g_{3}^{2}} \\
& \text { Result: }
\end{aligned}
$$

$$
\frac{p^{2 l+1} \cot (\delta)}{\sqrt{s}}= \begin{cases}\left(\frac{[0.63(33)]^{2}}{[1.4966(30)]^{2}-s}+\frac{[3.69(37)]^{2}}{[1.5457(32)]^{2}-s}\right)^{-1} & l=1 \\ \frac{[1.568(11)]^{2}-s}{[0.07(3)]^{2}} & l=3\end{cases}
$$

Scattering amplitude $t(E)$ in complex energy plane

proton J/ Ψ scattering in lattice QCD in Pc channels

Zb with static $\mathrm{b} \underline{\mathrm{b}}$

Good symmetries and quantum numbers:

$\mathrm{I}=1 \quad \mathrm{I}_{3}=0$ (consider neutral Z_{b})
$S_{\text {heavy }}=1 \quad(\mathrm{Sz})_{\text {heavy }}=0 \quad \bar{b}(\uparrow) b(\downarrow)-\bar{b}(\downarrow) b(\uparrow) \quad$ heavy quark can not flip spin via gluon exchange note: transition is not possible to final states with $S_{\text {heary }}=0\left(\eta _b, h _b\right)$
$(\mathrm{Jz})_{\text {light }}=0 \quad[\mathrm{Jx}$ and Jy not conserved]
$C \cdot P=-1 \quad(P=$ inversion over midpoint between b and $\underline{b})$
$R_{\text {light }}=$ reflection over yz plane $=P_{\text {light }} * R_{\text {light }}(y, \pi): \varepsilon=-1$
momentum of light degrees of freedom: not conserved

Masses of bound states in Zb channel

V(r)

(a) $V_{r e g}+V_{1 / r}, r / a=[1,4]$

(b) $V_{r e g}+V_{1 / r}, r / a=[2,4]$

(d) $V_{\text {reg }}, r / a=[2,4]$

