Exotic and conventional hadrons from lattice QCD

Sasa Prelovsek

University of Ljubljana & Jozef Stefan Institute, Slovenia

sasa.prelovsek@ijs.si

HICforFAIR colloquium , JL University Giessen , 28th January 2016

in collaboration with

C.B. Lang, D. Mohler, L. Leskovec, R. Woloshyn, M. Padmanath

Sasa Prelovsek, Giessen 2016

Outline

- Experimental appetizer concerning exotic hadrons:
 pentaquarks & tetraquarks
- Theoretical approach to study conventional and exotic hadrons based directly on QCD – lattice QCD

Hadrons

Conventional

Normal meson

Exotic

minimal valence content

 $\bar{q} \ \bar{q} \ q \ q$ tetraquarks

 $\bar{q} q q q q q$ pentaquarks

. . . .

hybrids

glueballs

Terminology in this talk: tetra(penta) quarks indicate just the number of valence quarks in the state; it is not meant to say anything on how quarks are clustered in them

. . . .

Sasa Prelovsek, Giessen 2016

Two pentaquark candidates from LHCb

 $P_c(4380): M_1 = 4380 \pm 8 \pm 29 \text{ MeV}$ $\Gamma_1 = 205 \pm 18 \pm 86 \text{ MeV}$ $J^P = 3/2^+ \text{ or } 5/2^+$ $P_c(4450): M_2 = 4449.8 \pm 1.7 \pm 2.5 \text{ MeV}$ $\Gamma_2 = 39 \pm 5 \pm 19 \text{ MeV}$ $J^P = 5/2^- \text{ or } 3/2^-$

Tetraquarks Z_c

BESIII, Belle, Cleo-c 2013

Example: $Z_{c}^{+}(3900)$

[BESIII, 2013, 1303.5949, PRL]

state confirmed by Belle, Cleo-c

 $Z_c^+(3900) \rightarrow J/\psi \pi^+$

 $\bar{c}c$ $\bar{d}u$

flavor content of the hadron:

 $M = 3888 \pm 3 \text{ MeV}$, $\Gamma = 35 \pm 7 \text{ MeV}$

- both: $I^{G}(J^{P})=1^{+}(1^{+})$
- both: observed only by Belle 2011 [1105.4583]

$$Z_b^+ \to \Upsilon(nS) \ \pi^+$$

the hadron: $\overline{b}b \ \overline{d}u$

flavor content of the hadron:

.

Belle 2011

Sasa Prelovsek, Giessen 2016

A very recent review

The hidden-charm pentaquark and tetraquark states

Hua-Xing Chen^{1a,b}, Wei Chen^{1c}, Xiang Liu^{d,e,*}, Shi-Lin Zhu^{a,f,g,**}

Review submitted to **Physics Reports**, 150 pages arXiv:1601.02092 exp + theory

Theoretical problem

• Fundamental theory of strong interaction between **quarks** and **gluons** is known and reliable: chromodynamics (QCD)

$$L_{QCD} = -\frac{1}{4}G_{\mu\nu}^{a}G_{a}^{\mu\nu} + \sum_{q=u,d,s,c,b,l} \overline{q}i\gamma_{\mu}(\partial^{\mu} + ig_{s}G_{a}^{\mu}T^{a})q - m_{q}\overline{q}q$$

$$G_{\mu\nu}^{a} = \partial_{\mu}G_{\nu}^{a} - \partial_{\nu}G_{\mu}^{a} - g_{s}f^{abc}G_{b}^{\mu}G_{c}^{\nu}$$

$$G_{\mu\nu}^{a} = \partial_{\mu}G_{\nu}^{a} - \partial_{\nu}G_{\mu}^{a} - g_{s}f^{abc}G_{\mu}^{\mu}G_{\nu}^{\mu}$$

$$G_{\mu\nu}^{a} = \partial_{\mu}G_{\nu}^{a} - \partial_{\nu}G_{\mu}^{a} - g_{s}f^{abc}G_{\mu}^{\mu}G_{\nu}^{\mu}$$

$$G_{\mu\nu}^{a} = \partial_{\mu}G_{\nu}^{a} - \partial_{\nu}G_{\mu}^{a} - g_{s}f^{abc}G_{\mu}^{\mu}G_{\nu}^{\mu}$$

$$G_{\mu\nu}^{a} = \partial_{\mu}G_{\nu}^{a} - \partial_{\mu}G_{\mu}^{a} - g_{s}f^{abc}G_{\mu}^{\mu}G_{\nu}^{\mu}$$

$$G_{\mu\nu}^{a} = \partial_{\mu}G_{\nu}^{a} - \partial_{\mu}G_{\mu}^{a} - g_{\mu}G_{\nu}^{a} - g_{\mu}G_{\mu}G_{\nu}^{a} - g_{\mu}G_{\nu}^{a} - g_{$$

- non-perturbative method needed !

6

Phenomenological approaches

q

0

q

Approaches that support new exotic hadrons

- compact tetraquark: diquark antidiquark
- meson molecules
- Approaches that do not contain new exotic hadrons, and explain bumps in experimental cross sections via
- kinematical effects due to nearby threshold
- coupled channel effects
- kinematics interplay in triangle diagrams
- ...

۲

. . .

I will try to address the question whether observed exotic and conventional hadrons arise directly from QCD.

Non-perturbative method: QCD on lattice

Evaluation of Feynman path integrals in discretized space-time

quantum mechanics

 $\int Dx \ e^{i S/\hbar}$

 $S = \int dt \, L[x(t)]$

quantum field theory in Euclidian space-time

$$\int DG Dq D\overline{q} e^{-S_{QCD}/\hbar}$$

$$S_{QCD} = \int d^4 x \, L_{QCD}[G(x), q(x), \overline{q}(x)]$$

x,t (Minkovsky) \rightarrow x, it (Euclidean)

Sasa Prelovsek, Giessen 2016

- <u>Hadrons well bellow threshold:</u> "*easy*" Unfortunately none of exotic experimental candidates is found well below threshold.
- <u>Hadron resonances</u> above threshold and <u>states slightly below threshold</u>: *challenging*
 - until recently: so-called single-hadron approximation
 - now: rigorous treatment by determining scattering matrix for two hadrons H₁H₂
- lattice searches for manifestly exotic hadrons (usually above several thresholds): very challenging

$$\mathbf{Discrete energies of eigenstates: E_n}$$

$$J^{PC} \quad \mathcal{O} = \overline{q} \Gamma q, \quad (\overline{q} \Gamma_1 q)_{\overline{p}_1} (\overline{q} \Gamma_2 q)_{\overline{p}_2}, \quad [\overline{q} \Gamma_3 \overline{q}] [q \Gamma_4 q], \dots$$

$$\rho(770), 1^{--}: \quad \overline{d}u, \quad (\overline{d}d)(\overline{d}u) = \pi \pi$$

$$X(3872), 1^{++}: \quad \overline{c}c, \quad (\overline{c}u)(\overline{u}c) = D\overline{D}^*, \quad [\overline{c}\overline{u}][cu]$$

$$p \qquad 1/2^+: \quad uud, \quad (uud)(\overline{u}c) = p\pi$$

$$C_{ij}(t) = \left\langle 0 | \mathcal{Q}(t) | \mathcal{Q}_j^+(0) | 0 \right\rangle = \sum_n \left\langle 0 | \mathcal{Q}_i | n \right\rangle e^{-E_n t} \left\langle n | \mathcal{Q}_j^+ | 0 \right\rangle = \sum_n Z_i^n Z_j^{n^*} e^{-E_n t}$$

All eigenstates with given J^{PC} appear in principle (example: proton channel $\frac{1}{2}$)

 $m_p = E_1$

- <u>single hadron states</u> **P**=proton
- <u>two-hadron states</u> $p \pi$

Sasa Prelovsek, Giessen 2016

 E_n rigorously render two-hadron scattering matrix (for example $p\pi$ scattering matrix) 13

for P=0 (after extrapolation)

States well below threshold: "easy" precision spectrum

• $m=E_n$ for P=0 a \rightarrow 0, L $\rightarrow\infty$, $m_q \rightarrow m_q^{phy}$

Å	7	4	4	Æ
	Í	Í		
				HV

- Available from a number of lattice QCD collaborations for a number of years
- Only few examples shown

Proton and neutron

constitute more than 99% of the bright side of universe

Higgs mechanism provides tiny contribution, the rest of visible mass in universe is due to the strong interaction in hadrons

Bottomonium spectrum below threshold

... is rich

The most complete spectrum has been recently published:

[Wurtz, Lewis, Woloshyn, 0505.04410, PRD 2015] (see talk of Lewis at KEK 2014 meeting)

Valuable and reliable predictions for 1D and 2D states that have not been observed in exp yet !!

Hadrons near or above strong decay threshold challenging

- Single-hadron approximation used until few years ago: ignores strong decays of resonances and effects of thresholds
- I will concentrate on "Rigorous approach" which addresses scattering of two hadrons in experiment or theory

<u>cc spectrum: single-hadron approximation</u> ignores strong decays of resonances and effects of thresholds

"Rigorous approach" to hadrons near or above threshold which addresses scattering of two hadrons in experiment or theory

challenging

1

scattering matrix T(E) from $\delta(E)$ for elastic scat: $S(E) = 1 + 2 i T(E) = e^{2 i \delta(E)}$

$$T = \frac{e^{2i\delta} - 1}{2i} = \sin \delta \ e^{i\delta} = \frac{1}{\cot \delta - i}$$
$$\sigma \propto |T|^2 = \sin^2 \delta$$

Sasa Prelovsek, Giessen 2016

Rigorous treatment: scattering info from spectrum

Relation between E and $\delta(E)$

analytic proposal: Luscher 1991

Scattering of two hadrons

elastic scattering with total momentum P=0: E=E_{cm}

Scattering matrix for partial wave *l*:

$$S(E) = e^{2i\delta(E)}, \quad S(E) = 1 + 2iT(E), \quad T(E) = \frac{1}{\cot \delta(E) - i}$$

ρ resonance: lattice results

from T. Yamazaki [lat14 plenary, 1503.0867]

Other resonances simulated on the lattice

well below open charm decay th.

well below strong decay th.

pioneering simulations of resonances with rigorous treatment 2012-2015

cu [Mohler, S.P., Woloshyn: PRD 2013] su [S.P., Lang, Leskovec, Mohler, PRD 2013; Wilson, Dudek, Edwards, Thomas, PRL 20114, PRD 2015] cc [Lang, Leskovec, Mohler, S.P., 1503.05363] a1,b1 [Lang, Leskovec, Mohler, S.P., JHEP 2014]

General result: m_R and Γ (or coupling) close to experimental values.

Exception: $\chi_{c0}(2P)$ - puzzling state

Resonance $\psi(3770)$ and bound st. $\psi(2S)$ from DD scattering in p-wave

$\mathcal{O}: \overline{c} c,$	$D\overline{D},$	$J^{PC} = 1$	l		$\eta_c(1S)$
D <u>D</u> scat. in p-wave is simulated				$J/\psi(1S)$	
T-matrix is determined from E _n				$\chi_{c0}(1P) \\ \chi_{c1}(1P)$	
Fit of T-matrix gives:				$h_c(1P)$	
					$egin{array}{l} \chi_{c2}(1P) \ \eta_c(2S) \end{array}$
BW resonance ψ(3770):				7 m	$\widetilde{\psi(2S)}$
m_{R} (magenta diamonds) $2m_{D}$				$\psi(3770)$	
Γ (given below)			X(3872) $\chi_{c0}(2P)$ wa		
Bound s m _B (n	tate ψ(nagetna	2S) fror a triangl	n pole i es)	n T:	$egin{aligned} \chi_{c2}(2P) \ X(3940) \ \psi(4040) \ X(4050)^{\pm} \end{aligned}$
unit) 4	Ι	$\Gamma = \frac{g^2}{6\tau}$	$\frac{p^2}{\tau} \frac{p^3}{s}$		$egin{aligned} & X(4140) \ & \psi(4160) \ & X(4160) \ & X(4250)^{\pm} \end{aligned}$

ψ(3770)	Mass [MeV]	g (no unit)
Lat (m _{π} =266 MeV)	3774 ±6±10	19.7 ±1.4
Lat (m _{π} =156 MeV)	3789 ±68±10	28 ± 21
Exp.	3773.15± 0.33	18.7 ± 1.4

Sasa Prelovsek, Giessen 2016

Lang, Leskovec, Mohler, S.P.,

1503.05363

Other resonances simulated on the lattice

- scalar charmonium resonances from <u>D</u>D scattering in s-wave:
 - It is still not commonly accepted which exp state corresponds to first exc. scalar charmonium
 - lattice data on DD indicate bound state $\chi_{c0}(1P)$ [mass agrees with experiment]
 - yet unobserved narrow scalar resonance with m_R =3.9-4.0 GeV Γ <100 MeV

Lang, Leskovec, Mohler, S.P., 1503.05363, JHEP 2015

States slightly below threshold

 $p\eta_{c}$ pentaquark D_{s0}^{*} , $D_{s1}^{}$, B_{s0}^{*} , $B_{s1}^{}$, X(3872)

deuterium-like systems

Scalar meson D_{s0} below DK threshold

$$\mathcal{O} = \bar{s}c, \ DK$$

• phase shift for DK scattering

 $E \rightarrow \delta(E)$

- interpolation of $\delta(E)$ near th. using effective range expansion $p \cot \delta(p) = \frac{1}{a_0} + \frac{1}{2} r_0 p^2$ $a_0 = -1.33(20) \text{ fm}$ $r_0 = 0.27(17) \text{ fm}$
- This renders scattering matrix in all region near threshold
- pole in T(E) found slightly below th.

$$T \propto \frac{1}{\cot \delta - i} = \infty$$

attributed to D_{s0}(2317)

D_s scalar meson from DK scattering

$$\mathcal{O} = \bar{s}c \ , \ DK$$

Taking into account the effect of DK threshold for the first time:

Simulation of DK scattering; pole in T matrix found slightly below DK threshold

Sasa Prelovsek, Giessen 2016

[[]C. Lang, L. Leskovec, D. Mohler, S.P., R. Woloshyn: PRL 2013, PRD 2014]

Mass prediction for missing B_{s0} and B_{s1}

Quantities shown: for two bound states : $m_B = (m_B - E_{th})^{lat} + E_{th}^{exp}$ for other states : $m = (m - \bar{m})^{lat} + \bar{m}^{lat}$ for dotted lattice thresholds : $E_{th} = (E_{th} - \bar{m})^{lat} + \bar{m}^{lat}$

$$\bar{m} \equiv \frac{1}{4}(m_{Bs} + 3m_{Bs^*})$$

• B_{s1}' and B_{s2} agree well with exp

Predictions:

- B_{s0} bound state below BK th.
- B_{s1} bound state below B*K th.

[[]C. Lang, D. Mohler, S.P., R. Woloshyn: 1501.0164]

Evidence for X(3872) : J^{PC}=1⁺⁺, I=0

[S.P. and L. Leskovec : 1307.5172, Phys. Rev. Lett. 2013] $m_{\pi} \approx 266 \text{ MeV}, L \approx 2 \text{ fm}, \text{Nf=2}$

Overlaps normalized to $<0|O_1^{cc}|X(3872)>$

X(3872)	m - (m _{D0} +m _{D0*})		
lat	- 11 ± 7 MeV		
exp	- 0.14 ± 0.22 MeV		

S. Prelovsek, Hadron Spectrum

X(3872) as bound state from DD* scattering, JPC=1++, I=0

X(3872)	m - (m _{D0} +m _{D0*})
lat (m _{π} =310 MeV)	-13 ±6 MeV
lat (m _π =266 MeV)	- 11 ± 7 MeV
exp	- 0.14 ± 0.22 MeV

 $\mathcal{O}: \overline{c} c, D\overline{D}^*$

- ground state: $\chi_{c1}(1P)$
- D<u>D</u>* scattering matrix near th. determined $T \propto \frac{1}{\cot \delta - i} = \infty$ • A pole of found just

- The pole attributed to X(3872), which is a shallow bound state in both simulations
- Position of DD* threshold depends on $m_{u/d_{,}}$ and may be affected by discretization effects related to charm quark

Lattice evidence for X(3872):

• $m_{\pi} \approx 266 \text{ MeV}$, a=0.124 fm, L= 2 fm

[S.P. and Leskovec: 1307.5172, PRL 2013]

• $m_{\pi} \approx 310$ MeV, a=0.15 fm, L=2.4 fm , HISQ [Lee, DeTar, Na, Mohler , update of proc 1411.1389]

below th. (violet star)

Bound state of a η_c and p from lattice

[NPLQCD, 1410.7069, PRD, m_π~800 MeV]

 $\eta_c p$ ~ 20 MeV below th. $m_{nc} + m_{p}$ $\bar{c}c \ uud$

0

-50

-100

ΔE (MeV)

Two pentaquark resonances in J/ψ and p from exp

LHCb: 1507.03414

~ 400 MeV above th. $m_{J/\Psi} + m_p$

Searches for hadrons with exotic flavor very challenging

$$Z_c = \overline{c}c\overline{d}u, \quad Z_b = \overline{b}b\overline{d}u, \quad P_c = \overline{c}cuud$$

few searches

challenging

challenging and recent

Even more challenging since most of experimental exotic states

- are above several thresholds and decay to several two-meson final states
- require simulation of coupled-channels

Coupled-channel scattering matrix extracted on lattice so far only in

• a-la Luscher: Kπ, Kη system [Willson, Dudek, Edward, Thomas, HSC, PRL 2014]

Lattice:

Horizontal lines represent energies of 13 two-meson states in non-interacting case $E = E[M_1(p_1)] + E[M_2(p_2)]$

Extracting 13 two-meson states is a challenge

 $\mathcal{O}: (\bar{c}u)(\bar{d}c), \ (\bar{c}c)(\bar{d}u), \ [\bar{c}\bar{d}][cu]$

[S.P., Lang, Leskovec, Mohler, 1405.7612, PRD 2015] Ensemble (2), m_{π} ≈266 MeV, L≈2 fm, Nf=2

Sasa Prelovsek, Giessen 2016

[S.P., Lang, Leskovec, Mohler, 1405.7612, PRD 2015] similar conclusion [S.-H. Lee, C. DeTar, H. Na, 1411.1389]

$$\mathcal{O}: (\bar{c}u)(\bar{d}c), \ (\bar{c}c)(\bar{d}u), \ [\bar{c}\bar{d}][cu]$$

Lattice results:

- 13 expected two-meson eigenstates found as expected (black circles)
- no additional eigenstate below 4.2 GeV
- no candidate for Z_c⁺ below 4.2 GeV

Exp:

• Z_c⁺(3900) confirmed by three exp

Puzzle:

- why no eigenstate for Zc(3900)?
- it would be naively expected if Zc(3900) related to a resonance pole
- is Zc(3900) of a different origin?
- perhaps coupled channel effect?

Z_{c}^{+} channel : $I^{G}=1^{+}, J^{PC}=1^{+-}$

HALQCD method [application on H-dibaryon: HALQCD, 1504.01717] ullet

J/Ψ

medium

weak

strong

D*

Z_{c}^{+} channel : $I^{G}=1^{+}, J^{PC}=1^{+-}$

HALQCD coll, Ikeda et al $m_{\pi} \approx 410$ MeV, Nf=2+1+1 [private communication with Y. Ikeda] Sasa Prelovsek, Giessen 2016

Lineshapes resemble

experimental Zc(3900).

- exp: $Z_c^+(3900)$ peak appears above DD* th.
- HALQCD: poles found BELOW DD* th.

pole NOT interpreted as a resonance (such a pole would be expected above DD*)

- Remains to be seen if HALQCD result is consistent with absence of Zc eigenstate in S.P. et al, PRD 2015
- Scattering matrix has not yet been extracted from Luscher approach

HALQCD coll, Ikeda et al m_π≈410 MeV, Nf=2+1+1 [private communication with Y. Ikeda] Sasa Prelovsek, Giessen 2016

charged partner of X(3872); channel I^G=1⁻, J^{PC}=1⁺⁺, <u>ccd</u>u

[M. Padmanath, C.B. Lang, S.P., 1503.03257]

$$\mathcal{D}(-\mathbf{p}) \qquad \mathbf{D}^{*}(\mathbf{p}) \qquad p = n \frac{2\pi}{L}$$
$$\mathcal{O}: (\bar{c}u)(\bar{d}c), \ (\bar{c}c)(\bar{d}u), \ [\bar{c}\bar{d}][cu]$$

- Horizontal lines: energies of expected two-meson states in limit of no interaction:
 E = E[M₁(p₁)] + E[M₂(p₂)]
- Circles: energies of eigenstates from latt
- Only expected two-meson states observed.
- No lattice candidate for charged X(3872). In agreement with absence of such state in exp.
- No lattice candidate for other charged state. Two Belle 2008 states are exp. unconfirmed.

Y(4140), J^{PC}=?^{?+}, <u>ccs</u>s

Experiment:

peak in J/ ψ Φ just above J/ ψ Φ threshold found: CDF 2009, CMS 2012, D0 2013, Babar 2015 not found: Belle 2010, LHCb 2012

Lattice:

- S. Ozaki and S. Sasaki, 1211.5512, PRD strange quark annihilation neglected no resonant structure found for
- M. Padmanath, C.B. Lang, S.P., 1503.03257
 O: *c̄c*, (*c̄s*)(*s̄c*), (*c̄c*)(*s̄s*), [*c̄s*][*cs*]
 channel J^P=1⁺ considered only: expected two-particle
 eigenstates found and χ_{c1}, X(3872) but not Y(4140)

Sasa Prelovsek, Giessen 201

$$Y(4140) \to J/\psi \phi$$
$$\bar{c}c \ \bar{s}s$$

Conclusions

• **Experiment** (in brief): exciting tetraquark and pentaquark candidates

Phenomenology: many many interpretations of exotic experimental "bumps", some of them do not need to introduce exotic hadrons to explain experimental data

• Lattice QCD (in brief):

Evidence found for many hadrons with **<u>non-exotic</u>** flavor:

- states well below th. : charmonium , D, π , K ... and all the others
- shallow bound states $: D_{s0}, D_{s1}, B_{s0}, B_{s1}, X(3872)$ with I=0
- resonances via BW : ρ , K*, K₀^{*}(1430), K₂, D₀^{*}, D₁, a₁, b₁, $\Psi(3770)$

□ Hadrons with <u>exotic</u> flavor

- if exotic hadrons were below strong decay threshold, they would be easy to (dis)prove in LQCD
- unfortunately, most of exotic hadrons can decay into several channels via strong interaction
- therefore lattice has not given yet a final answer which (if any) exotic hadrons arise from QCD
- I have (hopefully) given you some flavor in which direction progress is going
- this is an exciting topic at present and I am looking forward to face further challenges it poses ...

Backup slides

⁶ m²_{Kp} [GeV²] LHCb: 1507.03414 14th July 2015

 $P_c^+ \to J/\psi \ p$ $\bar{c}c$ uud

Figure 1: Feynman diagrams for (a) $\Lambda_b^0 \to J/\psi \Lambda^*$ and (b) $\Lambda_b^0 \to P_c^+ K^-$ decay.

State	J^P	$M_0~({ m MeV})$	$\Gamma_0 (MeV)$
$\Lambda(1405)$	$1/2^{-}$	$1405.1^{+1.3}_{-1.0}$	50.5 ± 2.0
$\Lambda(1520)$	$3/2^{-}$	1519.5 ± 1.0	15.6 ± 1.0
$\Lambda(1600)$	$1/2^{+}$	1600	150
$\Lambda(1670)$	$1/2^{-}$	1670	35
$\Lambda(1690)$	$3/2^{-}$	1690	60
$\Lambda(1800)$	$1/2^{-}$	1800	300
$\Lambda(1810)$	$1/2^{+}$	1810	150
$\Lambda(1820)$	$5/2^{+}$	1820	80
$\Lambda(1830)$	$5/2^{-}$	1830	95
$\Lambda(1890)$	$3/2^{+}$	1890	100
$\Lambda(2100)$	$7/2^{-}$	2100	200
$\Lambda(2110)$	$5/2^{+}$	2110	200
$\Lambda(2350)$	$9/2^{+}$	2350	150
$\Lambda(2585)$?	≈ 2585	200

Resonances in Kπ, Kη coupled channels

1200 1

 δ_0

 δ_1/GeV^3

m -0.0

910 920 930

- <u>q</u>q, Kπ, Kη interpolators
- a number of different 0<P≤2
- for each E_n: one determinant equation for many unknowns
- T-matrix parametrized to get around this problem
- the location of poles of T-matrix in complex given below
- K*(892) and κ are below threshold for this m
- K_0^* , K_2^* are resonances
- m_π=391 MeV, N_L=16, 20, 24
 [Dudek, Edwards, Thomas, Wilson, HSC, 1406.4158, PRL 2014]

$$\det\left[\delta_{ij}\delta_{JJ'} + i\rho_i t_{ij}^{(J)}(E_{\mathsf{cm}})\left(\delta_{JJ'} + i\mathcal{M}_{JJ'}^{\vec{P}\Lambda}(p_iL)\right)\right] = 0$$

/MeV

960

940 950

location of poles in T matrix in complex plane

 $\Gamma = 2 \operatorname{Im} \sqrt{s_0} / \operatorname{MeV}$

D_s and **D** scalar meson puzzle

