Doubly charm tetraquark and charmonium-like resonances

Sasa Prelovsek University of Ljubljana & Jozef Stefan Institute, Slovenia

Karl-Franzens Universität Graz, 5th October, 2022

in collaboration with

M. Padmanath

2202.101101 Phys. Rev. Lett. 2022

S. Collins, D. Mohler, M. Padmanath, S. Piemonte (Regensburg) 2011.02541 JHEP 2021 1905.03506 Phys. Rev. D 2111.02934 (proceedins)

Motivation

11000

https://www.nikhef.nl/~pkoppenb/particles.html

Outline and main lattice QCD results

Doubly charm tetraquark (T_{cc})

- T_{cc} found as a virtual bound state $\approx 10 \text{ MeV}$ below DD* threshold
- likely related to *T_{cc}* discovered by LHCb

q=u,d,s $\overline{cc}, \overline{cqqc}$ I=0, J^{PC}=0⁺⁺,1⁻⁻,2⁺⁺,3⁻

Charmonium(like) states

- masses and decay widths of conventional charmonia roughly confirmed
- two additional exotic charmonium-like states with J^{PC}=0⁺⁺ found just below thresholds

seen in dispersive re-analysis of exp.

[Danilkin et al 2111.15033]

likely related to X(3915) / $\chi_{c0}(3930)$ / X(3960)

LHCb2020 LHCb2022

Lattice details

CLS ensembles with u/d, s dynamical quarks $a \simeq 0.086 \text{ fm}, m_{\pi} = 280(3) \text{ MeV}$ L = 2.1 fm, 2.7 fm relativistic charm quarks

lat exp $m_{u/d} > m_{u/d}^{exp}$ $m_s < m_s^{exp}$ $m_u + m_d + m_s = m_u^{exp} + m_d^{exp} + m_s^{exp}$

only qualitative comparison to exp !!

Extract resonances and (virtual) bound states from H₁ H₂ scattering

$$S = 1 + i\frac{4p}{E}T = e^{2i\delta} \qquad T = \frac{E}{2}\frac{1}{p\cot\delta - ip}$$

Doubly heavy tetraquarks

$$J^P = 1^+$$

Two strongly stable tetraquarks

not found in exp, difficult to find

 $bbar{s}ar{u}$ $J^P = 1^+$

 $bb\overline{s}\overline{u}$ $bbd\bar{u}$ references from left to right models (many more references): BB^* BB_{s}^{*} threshold: Eichten and Quigg (2017) 1707.09575 PRL Karliner and Rosner (2017) 1707.07666 PRL Ebert et al. (2007) 0706.3853 Silvestre-Brac and Semay (1993) -50 Janc and Rosina (2004) hep-ph/0405208 ē $m - E_{th}$ [MeV] lattice: most updated results Leskovec, Meinel, Pflaumer, Wagner (2019) 1904.04197 -100 Junnarkar, Mathur, Padmanth (2018) 1810.12285 Frances, Colquhoun, Hudspith, Maltman (2021) preliminary Bicudo, Wagner et al. 1612.02758 static potentials -150 models (many more references) Eichten and Quigg (2017) 1707.09575 PRL -200 Parket al. (2018) 1809.05257 Ebert et al. (2007) 0706.3853 Silvestre-Brac and Semay (1993) -250 models lattice models lattice lattice: most updated results

Pflaumer, Leskovec, Meinel, Wagner (2021) 2108.10704 Junnarkar, Mathur, Padmanth (2018) 1810.12285 Frances, Colguhoun, Hudspith, Maltman (2021) preliminary

$bc\bar{d}\bar{u}$ $cc\bar{d}\bar{u}$

Theoretically expected near or above threshold

States near or above threshold have to be identified as poles in scattering T(E)

Theoretical PREdictions before 2021

for T_{cc} mass (I=0, J^P=1^+)

[compilation by Polyakov]

The longest lived exotic hadron ever discovered

LHCb July 2021, 2109.01038, 2109.01056, Nature Physics

The doubly charmed tetraquark T_{cc}^+ , I = 0 and favours $J^P = 1^+$. No states observed in $D^0D^+\pi^+$: eliminates possibility of I = 1. Near-threshold state: Demands pole identification to confirm existence.

Omitting $D^* \to D\pi$, $T_{cc} \to DD\pi$ T_{cc} would be a bound state

$$\begin{split} \delta m_{\rm pole} &= -360 \pm 40 \,{}^{+4}_{-0} \,\, {\rm keV}/c^2 \,, \\ \Gamma_{\rm pole} &= 48 \pm 2 \,{}^{+0}_{-14} \,\, {\rm keV} \,, \end{split}$$

Lattice study of *T_{cc}*

Padmanath, S.P.: 2202.101101, Phys.Rev.Lett. 129 (2022) 3, 032002 & subsequent studies with S. Collins

This is the first lattice extraction of the scattering amplitude T(E):

Previous lattice studies: Had. Spec. JHEP11(2017)033, Junnarkar, Matur, Padmanath (2019) PRD.99.034507

Subsequent study: Shi et al, Physics Letters B 833 (2022) 137391 (previous talk)

ā

ā

d 📩

d 📩

 $E_{DD*} \equiv m_D + m_{D*}$

Eigen-energies on the lattice

at $m_{\pi} \approx 280 \ MeV$

D*(p₂)

 $E_{DD^*} \equiv m_D + m_{D^*}$

Eigen-energies and scattering amplitude

at $m_{\pi} \approx 280 \ MeV$

Luscher's relation E -> T(E), $\delta(E)$

$$T = \frac{E}{2} \frac{1}{p \cot \delta - ip}$$

 $ho \cot \delta$ (for partial wave 1=0)

L = 2.1 fm, 2.7 fm

D*(p₂)

$$p \cot \delta_0 = \frac{1}{a_0} + \frac{1}{2} r_0 p^2$$

 $a_0 = 1.04(0.29) \text{ fm \& } r_0 = 0.96(^{+0.18}_{-0.20}) \text{ fm}$

D(p₁)

Scattering amplitude for 1=0

at $m_{\pi} \approx 280 \ MeV$

$$T = \frac{E}{2} \frac{1}{p \cot \delta - ip}$$

Lattice: virtual bound st. pole Binding energy: $\delta m_{T_{cc}} = -9.9(^{+3.6}_{-7.2})$ MeV.

LHCb: bound st. pole

omitting $D^* \to D\pi, \ T_{cc} \to DD\pi$

Possible binding mechanisms of T_{cc}

molecular likely dominant [e.g. Janc, Rosina 2003]

"molecular"

Molecular component in simplest toy model: dependence on mu/d

exchanged particles: light mesons $\pi, \rho, ...$

increasing m_{u/d} increasing m_{ex} decreasing R or decreasing attraction |V| Yukava-like potential

SP=0+

SP=1+

 $|ar{u}d|$

|cc|

$$V(r) \propto -\frac{e^{-m_{ex}r}}{r}$$

analogous conclusion for any fully attractive

$$V(r) = -V_0 f(r/R)$$

$$f = e^{-r/R}, e^{-r^2/R^2}, \theta(R-r), \dots$$

subsequent lattice study: CLQCD, Chen et al. 2206.06185 comparison of I=0,1 : attraction in I=0 channel arises mainly from *Q* exchange

Simplest Example: scattering in square-well potential in QM

Simplest Example: scattering in square-well potential in QM

increasing $m_{u/d}$, decreasing attraction V_0 (or decreasing R)

All fully attractive potentials lead to analogous conclusions

Conclusions on T_{cc}

 $ccd\bar{u}$

	$m_D [{ m MeV}]$	$\delta m_{T_{cc}}$ [MeV]	T_{cc}		
$n_{\pi} = 280 \text{ MeV}, m_c^{(h)}$	1927(1)	$-9.9^{+3.6}_{-7.2}$	virtual bound st.		
lat. $(m_{\pi} \simeq 280 \text{ MeV}, m_c^{(l)})$	1762(1)	$-15.0(^{+4.6}_{-9.3})$	virtual bound st.		
exp.	1864.85(5)	-0.36(4)	bound st. 🧠		
		7	$T_{cc} \rightarrow DD\pi$		
closer-to physical m _c		1	$D^* ightarrow D\pi^{-}$ omitting		

Simple arguments within molecular picture:

 $|\delta m_{T_{cc}}|$ increases for virtual bound st.

Both in agreement with the lattice result

Hypothesis to be verified by future simulations

S.P., Collins, Padmanath, Mohler, Piemonte 2011.02541 JHEP, 1905.03506 PRD, 2111.02934

This is the first coupled-channel extraction of T(E) in the charmonium system with I=0.

The only earlier scattering lattice study: Lang, Leskovec, Mohler, SP, JHEP(2015)

Charmonium system: experimental status (PDG) and summary of our lattice results

Mass (MeV)

23

u D

 $D\bar{D} - D_s\bar{D}_s$

Operators

$$\mathcal{O}^{\overline{c}c} = \left(\overline{c}\,\Gamma c\right)_{\vec{P}}$$

$$\mathcal{O}^{\overline{D}D} = \left(\overline{c}\,\Gamma_1 q\right)_{\vec{p}_1} \left(\overline{q}\,\Gamma_2 c\right)_{\vec{p}_2} \\ = \overline{D}(\vec{p}_1)D(\vec{p}_2)$$

Coupled-channel scattering

 $C_{ij}(t) = \left\langle 0 \right| \mathcal{Q}_{i}(t) \mathcal{Q}_{j}^{+}(0) \left| 0 \right\rangle = \sum Z_{i}^{n} Z_{j}^{n*} e^{-E_{n} t}$

 $\vec{P} = \vec{p}_1 + \vec{p}_2$ P: 0 (0,0,1) 2π/N_L $(1,1,0) 2\pi/N_1$

Energies of eigen-states E_n in irreps that contain J^{PC}=0⁺⁺,2⁺⁺

sheet I: $\text{Im}(\rho_D) > 0, \text{Im}(\rho_{D_s}) > 0$, sheet II: $\text{Im}(\rho_D) < 0, \text{Im}(\rho_{D_s}) > 0$, $(\rho_i = 2p_i/E_{\text{cm}})$ sheet III: $\text{Im}(\rho_D) < 0, \text{Im}(\rho_{D_s}) < 0$, sheet IV: $\text{Im}(\rho_D) > 0, \text{Im}(\rho_{D_s}) < 0$.

J^{PC}=2⁺⁺ : conventional resonance

D-wave (L=2, J^{PC}=2⁺⁺) $D\bar{D} \rightarrow D\bar{D}$ $\bar{D} \rightarrow D\bar{D}$

• 2++ resonance

$$\Gamma \equiv g^2 p_D^{2l+1}/m^2$$

$$lat: m = 3973^{+14}_{-22} \text{ MeV} \quad g = 4.5^{+0.7}_{-1.5} \text{ GeV}^{-1}$$

$$\chi_{c2}(3930): m = 3923 \pm 1 \text{ MeV} \quad g = 2.65 \pm 0.12 \text{ GeV}^{-1}$$
PDG

J^{PC}=0⁺⁺ : some expected and unexpected states found

$D\bar{D} - D_s\bar{D}_s$

 $lat: m = 3949^{+28}_{-20} \text{ MeV} \quad g = 1.35^{+0.04}_{-0.08} \text{ GeV}$ X(3860): $m = 3862^{+48}_{-35} \text{ MeV} \quad g = 2.5^{+1.2}_{-0.9} \text{ GeV} \quad \Gamma \equiv g^2 p_D^{2l+1} / m^2$ Belle 2017

• state near D_sD_s threshold coupling mostly to D_sD_s

 $\frac{|c_{D\bar{D}}^2|}{|c_{D_s\bar{D}_s}^2|} = 0.02 \ _{-0.01}^{+0.02}$

 $\begin{array}{rl} {\sf lat} & : \ m-2m_{D_s}=-0.2 \ ^{+0.16}_{-4.9} \ {\rm MeV} \ , & \ g=0.10 \ ^{+0.21}_{-0.03} \ {\rm GeV} \\ \chi_{c0}(3930): & \ m-2m_{D_s}=-12.9 \pm 1.6 \ {\rm MeV} \ , \ \ \Gamma=17 \pm 5 \ {\rm MeV} \ , \ \ g=0.67 \pm 0.10 \ {\rm GeV} \\ {\sf LHCb} \end{array}$

state near DD threshold

near pole
$$t_{ij} \sim \frac{c_i \; c_j}{(E^p_{cm})^2 - E^2_{cm}}$$

Charmonium(like) resonances and bound states

near the pole

likely related to X(3915) / $\chi_{c0}(3930)$ / X(3960) $\overline{c}s\overline{s}c$

J^{PC}=0++

lat: $\frac{|c_{D\bar{D}}^2|}{|c_{D_s\bar{D}_s}^2|} = 0.02 \ ^{+0.02}_{-0.01}$

all three likely the same state currently named $\chi_{c0}(3914)$ in PDG

Possible interpretation of some near-threshold states:

currently to challenging for lattice

4250 4300 4350

 $m(J/\psi p)$ [MeV]

4200

a number of pheno studies

Doubly charm tetraquark (T_{cc})

- T_{cc} found as a virtual bound state \approx 10 MeV below DD* threshold

- likely related to T_{cc} discovered by LHCb

Charmonium(like) states

- masses and decay widths of conventional charmonia confirmed : ground states (bound states)

first excitations (resonances)

- two additional exotic charmonium-like states with J^{PC}=0⁺⁺ found just below thresholds

seen in dispersive re-analysis of exp.

[Danilkin et al 2111.15033]

likely related to X(3915) / $\chi_{c0}(3930)$ / X(3960)

LHCb2020 LHCb2022

Backup

Details on Tcc

\vec{P}	LG	Λ^P	J^P	l	interpolators: $M_1(\vec{p_1}^2)M_2(\vec{p_2}^2)$
(0, 0, 0)	O_h	T_1^+	1+	0, 2	$D(0)D^*(0), \ D(1)D^*(1) \ [2], \ D^*(0)D^*(0)$
(0,0,0)	O_h	A_1^-	0-	1	$D(1)D^*(1)$
$(0,0,1)\frac{2\pi}{L}$	Dic_4	A_2	$0^{-}, 1^{+}, 2^{-}$	0, 1, 2	$D(0)D^*(1), \; D(1)D^*(0)$
$(1,1,0)\frac{2\pi}{L}$	Dic_2	A_2	$0^{-}, 1^{+}, 2^{-}, 2^{+}$	0, 1, 2	$D(0)D^{*}(2), D(1)D^{*}(1)$ [2], $D(2)D^{*}(1)$
$(0,0,2)\frac{2\pi}{L}$	Dic_4	A_2	$0^{-}, 1^{+}, 2^{-}$	0, 1, 2	$D(1)D^*(1)$

	$m_D [{ m MeV}]$	m_{D^*} [MeV]	M_{av} [MeV]	$a_{l=0}^{(J=1)}$ [fm]	$r_{l=0}^{(J=1)}~[{ m fm}]$	$\delta m_{T_{cc}} [{ m MeV}]$	T_{cc}
lat. $(m_{\pi} \simeq 280 \text{ MeV}, m_c^{(h)})$	1927(1)	2049(2)	3103(3)	1.04(29)	$0.96(^{+0.18}_{-0.20})$	$-9.9^{+3.6}_{-7.2}$	virtual bound st.
lat. $(m_{\pi} \simeq 280 \text{ MeV}, m_c^{(l)})$	1762(1)	1898(2)	2820(3)	0.86(0.22)	$0.92(^{+0.17}_{-0.19})$	$-15.0(^{+4.6}_{-9.3})$	virtual bound st.
exp. 2 , 37	1864.85(5)	2010.26(5)	3068.6(1)	-7.15(51)	[-11.9(16.9),0]	-0.36(4)	bound st.

$$\chi^{2}(\{a\}) = \sum_{L} \sum_{\vec{P} \Lambda n} \sum_{\vec{P}' \Lambda' n'} dE_{cm}(L, \vec{P} \Lambda n; \{a\})$$
(1)
$$\mathcal{C}^{-1}(L; \vec{P} \Lambda n; \vec{P}' \Lambda' n') dE_{cm}(L, \vec{P}' \Lambda' n'; \{a\}) .$$

Here

$$dE_{cm}(L,\vec{P}\Lambda n;\{a\}) = E_{cm}(L,\vec{P}\Lambda n) - E_{cm}^{an}(L,\vec{P}\Lambda n;\{a\})$$

$$(t_l^{(J)})^{-1} = \frac{2(\tilde{K}_l^{(J)})^{-1}}{E_{cm}p^{2l}} - i\frac{2p}{E_{cm}}, \quad (\tilde{K}_l^{(J)})^{-1} = p^{2l+1}\cot\delta_l^{(J)}$$
(5)

We parametrize it with the effective range expansion

$$\tilde{K}^{-1} = \begin{bmatrix} \frac{1}{a_0^{(1)}} + \frac{r_0^{(1)}p^2}{2} & 0 & 0\\ 0 & \frac{1}{a_1^{(0)}} + \frac{r_1^{(0)}p^2}{2} & 0\\ 0 & 0 & \frac{1}{a_1^{(2)}} \end{bmatrix}.$$
 (6)

s-wave scattering on spherical potential well

lattice results

Sasa Prelovsek

Tcc and charmonium-like states from lattice

Subsequent lattice QCD study of T_{cc} channel

CLQCD, Chen et al. 2206.06185

comparison of I=0,1 : attraction in I=0 channel arises mainly from *q* exchange

 $C^{(I)}(p,t) = D - C_1(\pi/\rho) + (-)^{I+1} \left(D' - C_2(\rho) \right)$