Lattice studies of charmonia and exotics

Sasa Prelovsek

University of Ljubljana, Slovenia
Jozef Stefan Institute, Slovenia
University of Regensburg, Germany

Hadron 2017
25.9-29.9.2017, Salamanca, Spain
in collaboration with:
C. B. Lang, D. Mohler, L. Leskovec
G. Bali, S. Collins, D. Mohler, M. Padmanath, S. Piemonte, S. Wieshaeupl

Outline

- this is not a review talk
(1) Lattice search for exotic $X(5568)$ in $B_{s} \pi^{+}$scattering [Lang, Mohler, S.P., PRD 2016]
(2) "conventional" chamonium resonances above open charm threshold
in particular vector $\psi(2 \mathrm{~S})$ and scalar " $\chi_{c 0}(2 \mathrm{P})$ "
- lattice post-diction of $\psi(2 \mathrm{~S})$ and pre-diction of " $\chi_{c 0}(2 \mathrm{P})$ " [Lang, Leskovec, Mohler, S.P., JHEP 2015]
- Belle observation of alternative candidate for " $\chi_{c 0}(2 P)$ " [Belle, PRD 2017]
- ongoing lattice simulation of vector and scalar resonances
[Regensburg QCD, G. Bali, S. Collins, D. Mohler, M. Padmanath, S. Piemonte, S.P., S. Wieshaeupl]

Rigorous treatment of hadrons near or above threshold:

scattering of two mesons in elastic channel

Search for resonance $X(5568)$ in $B_{s} \pi^{+}$scattering

DO coll. found resonance $X(5568)$ in $B_{s} \pi^{+}$scattering

DO collaboration
february 2016: 1602.07588,
july 2016: PRL

- 「=22 MeV
- JP not measured
- The only hadron with 4 different flavors ?!

$$
B_{s} \pi^{+}
$$

$\bar{b} s \bar{d} u$

Search for $X(5568)$ in $B_{s} \pi^{+}$scattering

- soon after DO result, several phenomenological studies appeared
- those who could find support, suggested it has $\mathrm{J}^{\mathrm{P}}=\mathrm{O}^{+}$
- if $X(5568)$ is $J^{P}=0^{+}$:
- the only strong decay channel is $B_{s} \pi^{+}$
- the next threshold is BK and it is 210 MeV above $\mathrm{X}(5568)$!
- exotic resonance in one-channel scattering !? This is something lattice QCD can do!
- note: all other exotic candidates $\left(Z_{c}, Z_{b}, \ldots.\right)$ are resonances but lie
- next to a higher threshold
- above several thresholds
this is much more challenging that is why it is difficult to establish those exotic states on lattice

Employed operators: $\mathrm{B}_{\mathrm{s}} \pi^{+}$and BK

$$
\begin{aligned}
& O_{1,2}^{B_{s}(0) \pi(0)}=\left[\bar{b} \Gamma_{1,2} s\right](\mathbf{p}=0)\left[\bar{d} \Gamma_{1,2} u\right](\mathbf{p}=0) \\
& O_{1,2}^{B_{s}(1) \pi(-1)}=\sum_{\mathbf{p}}= \pm \mathbf{e}_{\mathbf{x}, \mathbf{y}, \mathbf{z}} \\
& {\left[\bar{b} \Gamma_{1,2} s\right](\mathbf{p})\left[\bar{d} \Gamma_{1,2} u\right](-\mathbf{p}) } \\
& O_{1,2}^{B(0) K(0)}=\left[\bar{b} \Gamma_{1,2} u\right](\mathbf{p}=0)\left[\bar{d} \Gamma_{1,2} s\right](\mathbf{p}=0) \\
& \Gamma_{1}=\gamma_{5} \text { and } \Gamma_{2}=\gamma_{5} \gamma_{t}
\end{aligned}
$$

BK threshold 210 MeV higher;
the interpolators are employed just for completeness
[Lang, Mohler, S.P., 1607.03185, PRD 2016]

Analytic expectation for E_{n} if $\mathrm{X}(5568)$ exists

based on m_{x} and Γ_{X} as measured by DO exp

Results of E_{n} from actual lattice simulation

PACS-CS ens.

$\mathrm{m}_{\pi} \approx 156 \mathrm{MeV} \quad$ Lattice $\mathrm{Nf}=2+1$

Lattice result (obtained before march 22nd 2016 - see next slide):

- no indication of $X(5568)$
- interactions in $B_{s} \pi^{+}$and $B K$ system are small

Analytic expectation for E_{n} if $\mathrm{X}(5568)$ exists

based on m_{x} and Γ_{x} as measured by D0 exp

$$
\delta_{B_{s} \pi}(p)=\operatorname{atan}\left[\frac{E \Gamma(E)}{m_{X}^{2}-E^{2}}\right], \quad \Gamma(E)=\Gamma_{X} \frac{p(E) m_{X}^{2}}{p\left(m_{X}\right) E^{2}}
$$

$$
\delta_{B_{s} \pi}(p)=\operatorname{atan}\left[\frac{\sqrt{\pi} p L}{2 Z_{00}\left(1 ;(p L / 2 \pi)^{2}\right)}\right]
$$

LHCb, march 2017

CMS Physics Analysis Summary

Search for the $X(5568)$ state in $B_{s}^{0} \pi^{ \pm}$decays

The CMS Collaboration
CMS, august 2017

LHCb data published in

Charmonium resonances above open-charm threshold

before 2015
all charmonium resonances above open charm threshold were treated on the lattice as strongly stable
[Charmonium spectrum PDG 2016]

Vector resonance $\psi(3770)$ and bound st. $\psi(2 S)$ from DD scattering in p-wave

$\boldsymbol{\Psi}(3770)$	Mass $[\mathrm{MeV}]$	g (no unit)
Lat $\left(m_{\pi}=266 \mathrm{MeV}\right)$	$3774 \pm 6 \pm 10$	19.7 ± 1.4
Lat $\left(m_{\pi}=156 \mathrm{MeV}\right)$	$3789 \pm 68 \pm 10$	28 ± 21
Exp.	3773.15 ± 0.33	18.7 ± 1.4

© $: \bar{c} c, D \bar{D}, \quad J^{P C}=1^{--}$
D \underline{D} scat. in p-wave is simulated

$$
E_{n} \rightarrow \delta\left(E_{n}\right)
$$

T-matrix is determined from E_{n}
and interpolated near threshold:

Bound state $\psi(2 S)$ from pole in T :
$\cot \delta\left(p_{B}\right)=i$
m_{B} (triangles) $\quad{ }^{T \propto \frac{1}{\cot \delta-i}}$

Resonance $\psi(3770): \delta\left(m_{R}\right)=90^{\circ}$
m_{R} (diamonds), Γ (given below)
18.7 ± 1.4
$\Gamma=\frac{g^{2}}{6 \pi} \frac{p^{3}}{s} \quad \begin{aligned} & X(4050)^{ \pm} \\ & X(4140) \\ & \psi(4160) \\ & X(4160) \\ & X(4250)^{ \pm}\end{aligned}$
Lang, Leskovec, Mohler, S.P., 1503.05363, JHEP 2015] ${ }^{11}$

Scalar charmonium resonances above open-charm threshold

- still not settled which exp candidate corresponds to first excited scalar charmonium $\chi_{c 0}(2 P)$
- $X(3915)$ as $\chi_{c 0}(2 P)$ not supported:
- since $X(3915) \rightarrow$ DD not observed although this is expected to be dominant decay mode of $\chi_{c 0}(2 P)$ [Meissner \& Guo 1208.1134] , Olsen 1410.6534]
- instead $\mathrm{X}(3915) \rightarrow \mathrm{J} / \Psi \omega$ observed
- $\Gamma_{\text {(3915) }} \approx 20 \mathrm{MeV}, \quad \chi_{c 0}(2 P)$ expected to be wide
- reanalysis [Zhou et al, PRL 2015] of BaBar data shows that JPC $=2^{++}$assignment for $X(3915)$ could be possible
- mass difference $\chi_{c 2}(2 P)-\chi_{c 0}(2 P)$ would be much smaller than in potential models and smaller than for bottomonium

I will present :

- our lattice "pre-diction" of $\chi_{c 0}(2 P)$ [JHEP 2015]
- discovery of an alternative candidate for $\chi_{c 0}(2 P)$ by Belle [april, PRD 2017]
- our ongoing lattice simulations of this channel [RQCD, 2017]

Lattice simulation [lang et al, 2015]: scalar charmonia from D scattering in s-wave, $\int^{P C}=0^{++}$

- $m_{\pi}=266 \mathrm{MeV}, \mathrm{V}=16^{3} \times 32, \mathrm{Nf}=2$, only total momentum $\mathrm{P}=0$
- $\delta=$ phase shift for DD scattering in s-wave
- δ from lattice only for few energy points
- $p \cot \delta$ shown, which can be presented also below threshold
resonance:
- comparison of lattice results (black points) to several hypothesis made

$$
\delta=90 \rightarrow \quad \cot \delta=0
$$

$\mathcal{O}: \bar{c} c, D \bar{D}$

Lang, Leskovec, Mohler, S.P.,
 does not describe our results near or below threshold

Lattice simulation [Lang et al, 2015] cont'd

$\mathscr{O}: \bar{c} c, D \bar{D}$

- various hypothesis versus lattice results
- one of the conclusions: more detailed DD lineshape needed from lattice

Hypothesis:

Hypothesis:

not supported by lat. data near and above th.

Hypothesis:

one narrowish resononance \&

supported by lat.
narrow resonance in DD:
$m_{R}=4002 \pm 24 \mathrm{MeV}$
$\Gamma^{\text {predict }}=32 \pm 48 \mathrm{MeV}$

Belle experiment [Chilikin et al, 2017] Observation of alternative $\chi_{c 0}(2 P)$ candidate

double charm production

$$
e^{+} e^{-} \rightarrow J / \psi D \bar{D}
$$

New charmoniumlike state observed

X*(3860)

- significance 6.5σ

$$
\begin{gathered}
m=3862_{-32-13}^{+26+40} \mathrm{MeV} \\
\Gamma=201_{-67-82}^{+154+88} \mathrm{MeV}
\end{gathered}
$$

- decays to D \underline{D}
- $\quad J^{P C}=0^{++}$hypothesis favored over 2^{++}hypothesis at the level 2.5σ

FIG. 6. Projections of the signal fit results in the default model onto $M_{D \bar{D}}$ and angular variables. The points with error bars are the data, the hatched histograms are the background, the blue solid line is the fit with a new X^{*} resonance $\left(J^{P C}=0^{++}\right)$ and the red dashed line is the fit with nonresonant amplitude only.

Compatibility of

$X^{*}(3860)$ [Belle 2017]

lattice [Lang et al, 2015] ?
$\chi_{c 0}(2 P)$ provided in Ref. [41]. The parameters $M=$ $3966 \pm 20 \mathrm{MeV} / c^{2}$ and $\Gamma=67 \pm 18 \mathrm{MeV}$ are used. The comparison is performed in the same way as those for the experimentally known states with $J^{P C}=0^{++}$; the results are shown in Table III. The difference of the $X^{*}(3860)$ and predicted $\chi_{c 0}(2 P)$ parameters is at 2.7σ level. Note that the systematic errors have not been determined in Ref. [41]; thus, the actual level of disagreement should be less than 2.7σ.
[41] C. B. Lang, L. Leskovec, D. Mohler, and S. Prelovsek, J. High Energy Phys. 09 (2015) 089.

$$
\begin{aligned}
m & =3862_{-32-13}^{+26+40} \mathrm{MeV} \\
\Gamma & =201_{-67-82}^{+154+88} \mathrm{MeV}
\end{aligned}
$$

Chilikin et al, Belle,
1704.01872, PRD 2017

Hypothesis: one "narowish" resonance

- BW fit in vicinity of the resonance
- omitting the points away from it
- does not describe our results near threshold

Lang, Leskovec, Mohler, S.P.,
1503.05363, JHEP 2015, $\mathrm{m}_{\pi} \approx 266 \mathrm{MeV}$

Ongoing lattice simul, [RQCD 2017] vs, previous simul. [Lang et al, 2015]

 \section*{$\mathrm{R}^{\mathrm{QCD}}$
 \section*{$\mathrm{R}^{\mathrm{QCD}}$
 Regensburg acd Ron}
G. Bali, S. Collins, D. Mohler, M. Padmanath,
S. Piemonte, S.P., S. Wieshaeupl

Ongoing lattice simul, [RQCD 2017] vs, previous simul, [Lang et al, 2015]

$\mathrm{R}_{\mathrm{O}}^{\mathrm{OCD}}$

$$
\vec{p}_{1}=\frac{2 \pi}{L} \vec{n}_{1}
$$

using more P and L
ρ_{1}

renders values of $\delta\left(\mathrm{E}_{\mathrm{cms}}\right)$
$\mathrm{P}-\mathrm{p}_{1}$
at more values of $\mathrm{E}_{\mathrm{cms}}$
incorporated
channels for JPC=1 -- $\quad D \bar{D}$
incorporated
channels for JPC $=0^{++} \quad D \bar{D}, \quad J / \psi \omega, \quad D_{s} \bar{D}_{s}, \quad D^{*} \bar{D}^{*}$

Ongoing lattice simul, [RQCD 2017] vs, previous simul. [Lang et al, 2015]

Wick contractions

- coupled channels; interpolators: $\bar{c} c, \quad D \bar{D}, \quad D^{*} \bar{D}^{*}, \quad J / \psi \omega, \quad D_{s} \bar{D}_{s}$
- charm annihilation omitted
- the Figure shows just a part of the Wick contractions (without C C S S)
C quark

Some intermediate results for eigen-energies: $J^{P C}=1$ channel

- Presented at Lattice 2017 (Piemonte, Weishaeupl)
- V=243x128 (U101 CLS ensemble)
- just total momentum $\mathrm{P}=0$
- Iow statistics

two values of m_{c}

Some intermediate results for eigen-energies: $J^{P C}=0^{++}$channel

- Presented at Lattice 2017 (Piemonte, Weishaeupl)
- $V=24^{3} \times 128$ (U101 CLS ensemble)
- just total momentum $\mathrm{P}=0$
- C $\mathbf{C} \mathbf{S} \underline{\mathbf{s}}$ not yet coupled to the rest (meanwhile this has been done)

Ongoing lattice simul. [RQCD 2017] cont"d

- meanwhile we have significantly increased the statistics
- have some results also for $\mathrm{P} \neq 0$
- have coupled c $\underline{c} s \underline{s}$ to the rest
- have calculated quark props also $32^{3} \times 96$ (H105)

- scattering phase shifts and scattering matrices have not been extracted yet
- therefore physics conclusions can not be drawn yet

One of the challenges for total mom, $\mathrm{P} \neq 0$

- J is not good quantum number on lattice
- parity is not good quantum number; only helicity is
- example: irrep=A A_{1} that contains $J=0$ states
contains also J=2 states
- general: given irrep contains a number of different JPC
- particularly challenging for dense charmonium spectrum

Conclusions

- if exotic hadrons were
- strongly stable or
- resonances that can strongly decay only to one final state $\mathrm{H}_{1} \mathrm{H}_{2}$ then lattice QCD could reliably establish them

D0 exotic $X(5568)$ in one-channel $B_{s} \pi^{+}$scattering ? Our lattice simulation did not find evidence for it

- experimental exotic candidates can decay to more $\mathrm{H}_{1} \mathrm{H}_{2}$.. more challenging
- charmonium resonances above open charm threshold were (roughly) extracted for the first time together with their decay width [2015]
- alternative candidate for first excited scalar charmonium resonance was discovered this year difference with respect to our "pre-diction" at 2.7 σ level (agreement not ideal, but not completely incompatible)
- much more detailed extraction of scattering matrix is needed and is on the way ..

