Lattice studies of charmonia and exotics

Sasa Prelovsek

University of Ljubljana, Slovenia Jozef Stefan Institute, Slovenia University of Regensburg, Germany

Hadron 2017 25.9-29.9.2017, Salamanca, Spain

in collaboration with: C. B. Lang, D. Mohler, L. Leskovec G. Bali, S. Collins, D. Mohler, M. Padmanath, S. Piemonte, S. Wieshaeupl

S. Prelovsek, Hadron 2017

Outline

- this is not a review talk
- (1) Lattice search for exotic X(5568) in $B_s \pi^+$ scattering [Lang, Mohler, S.P., PRD 2016]

(2) "conventional" chamonium resonances above open charm threshold

in particular vector $\psi(2S)$ and scalar " $\chi_{c0}(2P)$ "

- lattice post-diction of $\psi(2S)$ and pre-diction of " $\chi_{c0}(2P)$ " [Lang, Leskovec, Mohler, S.P., JHEP 2015]
- Belle observation of alternative candidate for " $\chi_{c0}(2P)$ " [Belle, PRD 2017]
- ongoing lattice simulation of vector and scalar resonances [Regensburg QCD, G. Bali, S. Collins, D. Mohler, M. Padmanath, S. Piemonte, S.P., S. Wieshaeupl]

Search for resonance X(5568) in $B_s \pi^+$ scattering

D0 coll. found resonance X(5568) in $B_s \pi^+$ scattering

D0 collaboration february 2016: 1602.07588, july 2016: PRL

- Γ=22 MeV
- J^P not measured
- The only hadron with 4 different flavors ?!

$$B_s \pi^+ \\ \bar{b}s \bar{d}u$$

S. Prelovsek, Hadron 2017

Search for X(5568) in $B_s \pi^+$ scattering

 $B_s \pi^+ \\ \bar{b}s \bar{d}u$

- soon after D0 result, several phenomenological studies appeared
- those who could find support, suggested it has J^P=0⁺
- if X(5568) is J^P=0⁺:
 - the only strong decay channel is $B_{_S}\,\pi^{\scriptscriptstyle +}$
 - the next threshold is BK and it is 210 MeV above X(5568) !
 - exotic resonance in one-channel scattering !? This is something lattice QCD can do!
- note: all other exotic candidates (Z_c, Z_b,) are resonances but lie
 - next to a higher threshold
 - above several thresholds

this is much more challengingthat is why it is difficult to establishthose exotic states on lattice

Employed operators: $B_s \pi^+$ and BK

$$O_{1,2}^{B_s(0)\pi(0)} = \left[\bar{b}\Gamma_{1,2}s\right](\mathbf{p}=0) \left[\bar{d}\Gamma_{1,2}u\right](\mathbf{p}=0)$$
$$O_{1,2}^{B_s(1)\pi(-1)} = \sum_{\mathbf{p}=\pm\mathbf{e}_{\mathbf{x},\mathbf{y},\mathbf{z}}} \left[\bar{b}\Gamma_{1,2}s\right](\mathbf{p}) \left[\bar{d}\Gamma_{1,2}u\right](-\mathbf{p})$$
$$O_{1,2}^{B(0)K(0)} = \left[\bar{b}\Gamma_{1,2}u\right](\mathbf{p}=0) \left[\bar{d}\Gamma_{1,2}s\right](\mathbf{p}=0)$$

$$\Gamma_1 = \gamma_5 \text{ and } \Gamma_2 = \gamma_5 \gamma_t$$

BK threshold 210 MeV higher;

the interpolators are employed just for completeness

[Lang, Mohler, S.P., 1607.03185, PRD 2016]

Analytic expectation for E_n if X(5568) exists

based on m_{χ} and Γ_{χ} as measured by D0 exp

Results of E_n from actual lattice simulation

Lattice result (obtained before march 22nd 2016 – see next slide):

- no indication of X(5568)
- interactions in $B_s \pi^+$ and BK system are small

[Lang, Mohler, S.P., 1607.03185, PRD 2016] S. Prelovsek, Hadron 2017

Analytic expectation for _ E_n if X(5568) exists

based on m_{χ} and Γ_{χ} as measured by D0 exp

 $B_s \pi^+$ invariant mass

1608.00435: PRL 2016

LHCb data published in

Charmonium resonances above open-charm threshold

before 2015 all charmonium resonances above open charm threshold were treated on the lattice as strongly stable

Vector resonance $\psi(3770)$ and bound st. $\psi(2S)$ from DD scattering in p-wave

$\mathcal{O}: \overline{c} c, D $	$\bar{D}, J^{PC} = 1^{}$		$\eta_c(1S)$
DD scat. in p-wa	ve is simulated		$J/\psi(1S)$
$E \rightarrow \delta(I)$			$\chi_{c0}(1P)$
$E_n \rightarrow 0(I)$	(2n)		$\chi_{c1}(1P)$
T-matrix is determ	ined from E _n		$h_c(1P)$
and interpolated n	ear threshold:		$\chi_{c2}(1P)$
			$\eta_c(2S)$
Bound state $\Psi(2)$	S) from pole in T:	\rightarrow	$\psi(2S)$
cot δ(p _B) = i		2m _D	$\psi(3770)$
m (triangles)	$T \propto \frac{1}{\cot \delta - i}$		X(3872)
m _B (thangies)			$\chi_{c0}(2P)$ wa
			$\chi_{c2}(2P)$
<u>Resonance</u> ψ(3	770): δ(m _R)=90°	-	X(3940)
m _R (diamonds)), Г (given below)		$\psi(4040)$
			$X(4050)^{\pm}$
			X(4140)
			$\psi(4160)$
g (no unit)		3	X(4160)
).7 ±1.4	$\Gamma = \frac{g^2}{a} \frac{p}{a}$		X(4250) [±]
3 ± 21	6π s	8	

Lang, Leskovec, Mohler, S.P., 1503.05363, JHEP 2015] ¹¹

. ,		
ψ(3770)	Mass [MeV]	g (no unit)
Lat (m _{π} =266 MeV)	3774 ±6±10	19.7 ±1.4
Lat (m _{π} =156 MeV)	3789 ±68±10	28 ± 21
Exp.	3773.15± 0.33	18.7 ± 1.4
S. Prelovsek, Hadron 2017		

Scalar charmonium resonances above open-charm threshold

- still not settled which exp candidate corresponds to first excited scalar charmonium $\chi_{c0}(2P)$
- **X(3915)** as χ_{c0}(2P) not supported:

- since X(3915) \rightarrow <u>D</u>D not observed although this is expected to be dominant decay mode of $\chi_{c0}(2P)$ [Meissner & Guo 1208.1134], Olsen 1410.6534]

- instead X(3915) \rightarrow J/ $\Psi \omega$ observed
- $\Gamma^{exp}_{X(3915)} \approx 20$ MeV, $\chi_{c0}(2P)$ expected to be wide
- reanalysis [Zhou et al, PRL 2015] of BaBar data shows that J^{PC}=2⁺⁺ assignment for X(3915) could be possible
- mass difference $\chi_{c2}(2P)-\chi_{c0}(2P)$ would be much smaller than in potential models and smaller than for bottomonium

I will present :

- our lattice "pre-diction" of $\chi_{c0}(2P)$ [JHEP 2015]
- discovery of an alternative candidate for $\chi_{c0}(2P)$ by Belle [april, PRD 2017]
- our ongoing lattice simulations of this channel [RQCD, 2017]

Lattice simulation [Lang et al, 2015]: scalar charmonia from D<u>D</u> scattering in s-wave, J^{PC}=0⁺⁺

- m_{π} =266 MeV, V=16³x 32, Nf=2, only total momentum P=0
- δ = phase shift for D<u>D</u> scattering in s-wave
- δ from lattice only for few energy points
- p cot δ shown, which can be presented also below threshold
- comparison of lattice results (black points) to several hypothesis made

resonance:

$$\delta = 90 \rightarrow \cot \delta = 0$$

-0.2 0.0

p²[GeV²]

0.2

0.4

cotô//s

Q

-0.20

-0.40

1503.05363, JHEP 2015, m_π=266, 156 MeV

-0.4

-0.6

Lang, Leskovec, Mohler, S.P.,

S. Prelovsek, Hadron 2017

Lattice simulation [Lang et al, 2015] cont'd

 $\mathcal{O}: \overline{c} c, D\overline{D}$

- various hypothesis versus lattice results
- one of the conclusions: more detailed DD lineshape needed from lattice

Hypothesis:

Lang, Leskovec, Mohler, S.P.,

1503.05363, JHEP 2015, m_π=266, 156 MeV

S. Prelovsek, Hadron 2017

Belle experiment [Chilikin et al, 2017] Observation of alternative $\chi_{c0}(2P)$ candidate

double charm production $e^+e^- \rightarrow J/\psi D \,\overline{D}$

New charmoniumlike state observed

X*(3860)

• significance 6.5 σ

 $m = 3862_{-32-13}^{+26+40} \text{ MeV}$

 $\Gamma = 201_{-67-82}^{+154+88} \text{ MeV}$

- decays to D D
- $J^{PC}=0^{++}$ hypothesis favored over 2^{++} hypothesis at the level 2.5 σ

FIG. 6. Projections of the signal fit results in the default model onto $M_{D\bar{D}}$ and angular variables. The points with error bars are the data, the hatched histograms are the background, the blue solid line is the fit with a new X^* resonance $(J^{PC} = 0^{++})$ and the red dashed line is the fit with nonresonant amplitude only.

Compatibility of

&

X*(3860) [Belle 2017]

lattice [Lang et al, 2015] ?

 $\chi_{c0}(2P)$ provided in Ref. [41]. The parameters $M = 3966 \pm 20 \text{ MeV}/c^2$ and $\Gamma = 67 \pm 18 \text{ MeV}$ are used. The comparison is performed in the same way as those for the experimentally known states with $J^{PC} = 0^{++}$; the results are shown in Table III. The difference of the $X^*(3860)$ and predicted $\chi_{c0}(2P)$ parameters is at 2.7σ level. Note that the systematic errors have not been determined in Ref. [41]; thus, the actual level of disagreement should be less than 2.7σ .

[41] C. B. Lang, L. Leskovec, D. Mohler, and S. Prelovsek, J. High Energy Phys. 09 (2015) 089.

$$m = 3862_{-32-13}^{+26+40} \text{ MeV}$$

$$\Gamma = 201_{-67-82}^{+154+88} \text{ MeV}$$

Chilikin et al, Belle,

1704.01872, PRD 2017

agreement not ideal, but not completely incompatible clearly more work needed, at least on ab-inito theory side

Ongoing lattice simul. [RQCD 2017] vs. previous simul. [Lang et al, 2015]

G. Bali, S. Collins, D. Mohler, M. Padmanath,

S. Piemonte, S.P., S. Wieshaeupl

CLS ensembles 2015 simulation was done also on PACS-CS ensemble with $m_{\pi} \approx 156 \text{ MeV}$ dyn flavors: u/d, s dyn flavors: u/d but the results were (much) noisier m_π≈ 266 MeV m_π≈ 280 MeV than for m_π≈ 266 MeV a ≈ 0.0854 fm a ≈ 0.124 fm E_{cms}(L) currently two m_c one m_c $^{180}[\delta]$ 150 120 on total mom. P=0 and P≠0 only P=0 E_{cms} V=16³ x 32 V=24³ x 128, 32³ x 96 δ(E_{cms}) E_{cms}(L) incorporated $D\overline{D}$ $D\overline{D}$ $\mathbf{E}_{cms}^{non-int} = \sqrt{\vec{p}_1^2 + m_1^2} + \sqrt{(\vec{P} - \vec{p}_1)^2 + m_2^2}$ channels for J^{PC}=1⁻⁻ incorporated p_1 $D\overline{D}, J/\psi \omega, D_{\circ}\overline{D}_{\circ}, D^*\overline{D}^*$ $D\overline{D}, J/\psi \omega$ channels for $J^{PC}=0^{++}$ $\vec{p}_1 = \frac{2\pi}{L}\vec{n}_1$ using more P and L P - p₁ renders values of δ (E_{cms}) at more values of E_{cms} **Regensburg QCD**

Ongoing lattice simul. [RQCD 2017] vs. previous simul. [Lang et al, 2015]

G. Bali, S. Collins, D. Mohler, M. Padmanath,

S. Piemonte, S.P., S. Wieshaeupl

Ongoing lattice simul. [RQCD 2017] vs. previous simul. [Lang et al, 2015]

G. Bali, S. Collins, D. Mohler, M. Padmanath,

S. Piemonte, S.P., S. Wieshaeupl

S. Prelovsek, Hadron 2017

Wick contractions

- coupled channels; interpolators: $\overline{c}c$, $D\overline{D}$, $D^*\overline{D}^*$, $J/\psi \omega$, $D_s\overline{D}_s$
- charm annihilation omitted
- the Figure shows just a part of the Wick contractions (without C C S S)

Some intermediate results for eigen-energies: J^{PC}=1⁻⁻ channel

- Presented at Lattice 2017 (Piemonte, Weishaeupl)
- V=24³x128 (U101 CLS ensemble)
- just total momentum P=0
- low statistics

Some intermediate results for eigen-energies: J^{PC}=0⁺⁺ channel

- Presented at Lattice 2017 (Piemonte, Weishaeupl)
- V=24³x128 (U101 CLS ensemble)
- just total momentum P=0
- c c s s not yet coupled to the rest (meanwhile this has been done)

Ongoing lattice simul. [RQCD 2017] cont'd

- meanwhile we have significantly increased the statistics
- have some results also for P≠0
- have coupled c <u>c</u> s <u>s</u> to the rest
- have calculated quark props also 32³ x 96 (H105)
- scattering phase shifts and scattering matrices have not been extracted yet
- therefore physics conclusions can not be drawn yet

One of the challenges for total mom. P≠0

- J is not good quantum number on lattice
- parity is not good quantum number; only helicity is
- example: irrep=A₁ that contains J=0 states contains also J=2 states
- general: given irrep contains a number of different J^{PC}
- particularly challenging for dense charmonium spectrum

Conclusions

- if exotic hadrons were
 - strongly stable or
 - resonances that can strongly decay only to one final state H_1H_2
 - then lattice QCD could reliably establish them

D0 exotic X(5568) in one-channel $B_s \pi^+$ scattering ? Our lattice simulation did not find evidence for it

- experimental exotic candidates can decay to more H_1H_2 .. more challenging
- charmonium resonances above open charm threshold were (roughly) extracted for the first time together with their decay width [2015]
- alternative candidate for first excited scalar charmonium resonance was discovered this year difference with respect to our "pre-diction" at 2.7 σ level (agreement not ideal, but not completely incompatible)
- much more detailed extraction of scattering matrix is needed and is on the way ...