Doubly charm tetraquark and its quark mass dependence

Sasa Prelovsek University of Ljubljana & Jozef Stefan Institute, Slovenia

M. Padmanath

Sara Collins

Lattice 2022, Bonn, August 2022

both on N_f=2+1, CLS ensembles, $m_\pi pprox 280~{
m MeV}$

$$ccd\bar{u} = T_{cc}$$

Padmanath, S.P.: 2202.101101, Phys.Rev.Lett. 129 (2022) 3, 032002 & subsequent studies with S. Collins

The longest lived exotic hadron ever discovered

LHCb July 2021, 2109.01038, 2109.01056

The doubly charmed tetraquark T_{cc}^+ , I = 0 and favours $J^P = 1^+$. No states observed in $D^0D^+\pi^+$: eliminates possibility of I = 1. Near-threshold state: Demands pole identification to confirm existence.

Omitting $D^* \to D\pi$, $T_{cc} \to DD\pi$ T_{cc} would be a bound state

$$\begin{split} \delta m_{\rm pole} &= -360 \pm 40^{+4}_{-0} \,\, {\rm keV}/c^2 \,, \\ \Gamma_{\rm pole} &= 48 \pm 2^{+0}_{-14} \,\, {\rm keV} \,, \end{split}$$

Sasa Prelovsek Doubly charm tetraquark and its quark mass dependence

closer-to physical m_c

Sasa Prelovsek

 $D^* \to D\pi$ omitting

 $T_{cc} \rightarrow DD\pi$

Definitions: bound state, virtual bound state & resonance

$$T(E) \propto \frac{1}{E^2 - m^2}$$
 $T(E) \propto \frac{1}{E^2 - m^2 + iE\Gamma}$

$$E = \sqrt{m_1^2 + p^2} + \sqrt{m_2^2 + (-p)^2} < m_1 + m_2$$

Possible binding mechanisms of T_{cc}

molecular likely dominant [e.g. Janc, Rosina 2003]

"molecular"

Molecular component: dependence on m_{u/d}

exchanged particles: light mesons $\pi, \rho, ...$

increasing m_{u/d} increasing m_{ex} decreasing R or decreasing attraction |V| Yukava-like potential

SP=0+

SP=1+

 $|ar{u}d|$

|cc|

$$V(r) \propto -\frac{e^{-m_{ex}r}}{r}$$

analogous conclusion for any fully attractive

$$V(r) = -V_0 f(r/R)$$

$$f = e^{-r/R}, e^{-r^2/R^2}, \theta(R-r), \dots$$

subsequent lattice study: CLQCD, Chen et al. 2206.06185 comparison of I=0,1 : attraction in I=0 channel arises mainly from *Q* exchange

Simplest Example: scattering in square-well potential in QM

Simplest Example: scattering in square-well potential in QM

Simplest Example: scattering in square-well potential in QM

increasing $m_{u/d}$, decreasing attraction V_0 (or decreasing R)

Sasa Prelovsek Doubly charm tetraquark and its quark mass dependence

All fully attractive potentials lead to analogous conclusions

Sasa Prelovsek Doubly charm tetraquark and its quark mass dependence

Molecular component: dependence on m_c

V(r) independent on m_c ,

m_c decreases : reduced mass m_r of D,D* system decreases

decreasing m_c and m_r

lattice results

Sasa Prelovsek

Doubly charm tetraquark and its quark mass dependence

[QQ][ud] dominated state: dependence on m_Q and $m_{u,d}$ known only for a bound state well bellow threshold

 $bbd\bar{u}$

 $I = 0, J^P = 1^+$

Conclusion on the doubly charm tetraquark

- The longest lived exotic hadron ever discovered
- It lies very close to DD* threshold: t(E) has to be extracted
- virtual bound state pole slightly below DD* at m_{u/d}>m_{u/d}^{phy}
 virtual bound state pole further below th. as m_c is decreased:

consistent with expectations from dominant molecular Fock comp. (this alone does not rule out the presence of other Fock components or other binding mechanisms)

Conclusion on the doubly charm tetraquark

- The longest lived exotic hadron ever discovered •
- It lies very close to DD* threshold: t(E) has to be extracted •
- virtual bound state pole slightly below DD* at m_{u/d}>m_{u/d}^{phy} virtual bound state pole further below th. as m_c is decreased:

consistent with expectations from dominant molecular Fock comp. (this alone does not rule out the presence of other Fock components or other binding mechanisms)

current study: **

 $m_{\pi} \simeq 280 \text{ MeV}$: $D^* \not\rightarrow D\pi, \ T_{cc} \not\rightarrow DD\pi$ $DD\pi$ above analyzed region

one of the future challenges •

 m_{π}^{phy} : $D^* \to D\pi, T_{cc} \to DD\pi$

[Blanton, Sharpe, Lopez,

Three-particle finite-volume formalism for $\pi^+\pi^+K^+$ and related systems

formalisms developed by three groups, particularly suitable for $DD\pi$:

2105.12094, 2111.12734, talk by S. Sharpe]

Implementing the three-particle quantization condition for $\pi^+\pi^+K^+$ and related systems

S.P., Collins, Padmanath, Mohler, Piemonte 2011.02541 JHEP, 1905.03506 PRD, 2111.02934

Sasa Prelovsek Doubly charm tetraquark and its quark mass dependence

Charmonium(like) resonances and bound states

32

L/a

Charmonium(like) resonances and bound states

q=u,d,s I=0

θ

θ

 $\chi_{c2}(1P)$

 2^{++}

 $\chi_{c2}(3930)$

4.0

3.9

3.8

3.7

-3.6

-3.5

3.4

θ

X(3842)

3⁻⁻

 $m(D_s^+D_s^-)$ [GeV]

12

 $2m_{Ds}$

 $2m_D$

Exp

θ

 $\Theta \ \psi(28)$

1

july 2022

φ

θ

LHCb X(3960) 9 fb⁻¹ preliminary 4.2 4.4 4.8

indico.cern.ch/event/1176505/

Backup

Sasa Prelovsek Doubly charm tetraquark and its quark mass dependence

Lattice details

CLS ensembles with u/d, s dynamical quarks $a \simeq 0.086 \text{ fm}$ N_L=24, 32

lat exp $m_{u/d} > m_{u/d}^{exp}$ $m_s < m_s^{exp}$ $m_u + m_d + m_s = m_u^{exp} + m_d^{exp} + m_s^{exp}$

$$m_c \gtrsim m_c^{exp}$$

m [MeV]	lat	ехр
mπ	280(3)	137
m _D	1927(2)	1867
m _{Ds}	1981(1)	1968
M _{av}	3103(3)	3068

separation between DD and DsDs threshols smaller than in exp

Wick contractions evaluated with distillation or stochastic distillation method.

Lattice results

	$m_D [{ m MeV}]$	m_{D^*} [MeV]	M_{av} [MeV]	$a_{l=0}^{(J=1)}$ [fm]	$r_{l=0}^{(J=1)}~[{ m fm}]$	$\delta m_{T_{cc}}$ [MeV]	T_{cc}
lat. $(m_{\pi} \simeq 280 \text{ MeV}, m_c^{(h)})$	1927(1)	2049(2)	3103(3)	1.04(29)	$0.96(^{+0.18}_{-0.20})$	$-9.9^{+3.6}_{-7.2}$	virtual bound st.
lat. $(m_{\pi} \simeq 280 \text{ MeV}, m_c^{(l)})$	1762(1)	1898(2)	2820(3)	0.86(0.22)	$0.92(^{+0.17}_{-0.19})$	$-15.0(^{+4.6}_{-9.3})$	virtual bound st.
exp. 2, 37	1864.85(5)	2010.26(5)	3068.6(1)	-7.15(51)	[-11.9(16.9),0]	-0.36(4)	bound st.

Interpolators

Example: P=0

 $J^{P}=1^{+}$ -> cubic irrep T_{1}^{+}

$$\begin{split} O^{l=0} &= P(\{0,0,0\})V_z(\{0,0,0\})\\ O^{l=0} &= P(\{1,0,0\})V_z(\{-1,0,0\}) + P(\{-1,0,0\})V_z(\{1,0,0\})\\ &+ P(\{0,1,0\})V_z(\{0,-1,0\}) + P(\{0,-1,0\})V_z(\{0,1,0\})\\ &+ P(\{0,0,1\})V_z(\{0,0,-1\}) + P(\{0,0,-1\})V_z(\{0,0,1\})]\\ O^{l=2} &= P(\{1,0,0\})V_z(\{-1,0,0\}) + P(\{-1,0,0\})V_z(\{1,0,0\})\\ &+ P(\{0,1,0\})V_z(\{0,-1,0\}) + P(\{0,-1,0\})V_z(\{0,1,0\})\\ &- 2[P(\{0,0,1\})V_z(\{0,0,-1\}) + P(\{0,0,-1\})V_z(\{0,0,1\})]\\ O^{l=0} &= V_{1x}[0,0,0]V_{2y}[0,0,0] - V_{1y}[0,0,0]V_{2x}[0,0,0] \end{split}$$

s-wave scattering on spherical potential well

$$\chi^{2}(\{a\}) = \sum_{L} \sum_{\vec{P} \Lambda n} \sum_{\vec{P}' \Lambda' n'} dE_{cm}(L, \vec{P} \Lambda n; \{a\})$$
(1)
$$\mathcal{C}^{-1}(L; \vec{P} \Lambda n; \vec{P}' \Lambda' n') dE_{cm}(L, \vec{P}' \Lambda' n'; \{a\}) .$$

Here

$$dE_{cm}(L, \vec{P}\Lambda n; \{a\}) = E_{cm}(L, \vec{P}\Lambda n) - E_{cm}^{an}(L, \vec{P}\Lambda n; \{a\})$$

$$(t_l^{(J)})^{-1} = \frac{2(\tilde{K}_l^{(J)})^{-1}}{E_{cm}p^{2l}} - i\frac{2p}{E_{cm}}, \quad (\tilde{K}_l^{(J)})^{-1} = p^{2l+1}\cot\delta_l^{(J)}$$
(5)

We parametrize it with the effective range expansion

$$\tilde{K}^{-1} = \begin{bmatrix} \frac{1}{a_0^{(1)}} + \frac{r_0^{(1)}p^2}{2} & 0 & 0\\ 0 & \frac{1}{a_1^{(0)}} + \frac{r_1^{(0)}p^2}{2} & 0\\ 0 & 0 & \frac{1}{a_1^{(2)}} \end{bmatrix}.$$
 (6)

other lattice studies of Tcc

Previous lattice QCD study of T_{cc} channel

Junnarkar, Mathur, Padmanath, PRD 99, 034507 (2019), 1810.12285

lowest finite-volume eigen-energy for P=0, J^P=1⁺, I=0

- Study performed on LQCD ensembles with different lattice spacings. Single volume and only rest frame finite-volume irreps considered.
- Including a meson-meson and diquark-antidiquark interpolator. Diquark-antidiquark interpolators do not influence the low energy spectrum.
- **t** The ground state energy subjected to chiral and continuum extrapolations.
- ✿ A finite-volume energy level 23(11) MeV below DD* threshold.
 No rigorous scattering analysis and no pole structure determined.

- Single volume rest frame study on a relatively coarse lattice $(a_s \sim 0.12 \text{ fm})$.
- Large basis of meson-meson and diquark-antidiquark interpolators.
- Diquark-antidiquark interpolators do not influence the low energy spectrum.
- ✿ No statistically significant energy shifts observed near DD^* threshold.
 ⇒ No scattering amplitude extraction.

Subsequent lattice QCD study of T_{cc} channel

CLQCD, Chen et al. 2206.06185

comparison of I=0,1 : attraction in I=0 channel arises mainly from *e* exchange

 $C^{(I)}(p,t) = D - C_1(\pi/\rho) + (-)^{I+1} \left(D' - C_2(\rho) \right)$

Phenomenological theoretical predictions

- ✤ Phenomenological approaches →
 - * Janc & Rosina , Few Body Syst. 35, 175 (2004), hep-ph/0405208

one of the most sophisticated quark model predictions:

V_{ii} between all pairs of quarks, ground state energy of four-body problem

 $\delta m = -1.6 \pm 1.0 \text{ MeV}$

(references at the back)

Resonances from coupled-channel scattering

most results by HadSpec. coll.: mostly light meson sector

slide by Mikhashenko, Hadron Spectrum in Confinement, aug 2022

- Assuming to be the same, $\mathcal{B}(\chi_{c0} \to D^+D^-)/\mathcal{B}(\chi_{c0} \to D_s^+D_s^-P) \sim 0.3$ large molecular component, or large tetraquark component, $T_{\psi\phi}$
- [JHEP 06 (2021) 035] finds a state coupled to $D_s^+D_s^-$ on the lattice

Mishe Mildesonles (ODICING Cluster) Tetranucula and Daste such 2000	- nd	
Misha Mikhasenko (ORIGINS Cluster)	August 2 nd	13/21

slide by Mikhashenko, Hadron Spectrum in Confinement, aug 2022

• Belle sees a clean state in $J/\psi\omega$ with $J^P = 0^+$ • The $D_s^+ D_s^-$ signal might be a tail of the $\chi_{c0}(3915)$ state Misha Mikhasenko (ORIGINS Cluster) Tetraquarks and Pentaguarks 2022 August 2nd 14/21