Lattice results on exotics with hidden charm and bottom

Sasa Prelovsek

Faculty of Mathematics and Physics, University of Ljubljana

Department of Theoretical Physics, Jozef Stefan Institute, Ljubljana

University of Regensburg

Implications of LHCb measurements and future prospects 16.10.2019

Hadrons with hidden charm and bottom; focus on exotic and lattice results:

- states well below strong decay threshold or treated as strongly stable "doable"
- states above or just below one threshold "more difficult, but doable"
- state above several threshold (Z_c, Z_b, P_c,...) "challenging"
- > lattice predictions of yet undiscovered exotic hadrons (but with different flavor than indicated above)

Lattice QCD

$$L_{QCD} = -\frac{1}{4}G^a_{\mu\nu}G^{\mu\nu}_a + \sum_{q=u,d,s,c,b,t}\overline{q}i\gamma_\mu(\partial^\mu + ig_s G^\mu_a T^a)q - m_q\overline{q}q$$

$$\langle C \rangle = \int DG \, Dq \, D\overline{q} \, C \, e^{-S_{QCD}/\hbar}$$

discretized finite Eucledian space-time

Determine energies of eigenstates E_n and overlaps

charmonium: J^{PC} : $\overline{c}\Gamma c$, $(\overline{c}\Gamma_1 u)(\overline{u}\Gamma_2 c) = D\overline{D}$, $[\overline{c}\Gamma_3 \overline{u}][c\Gamma_4 u]$

$$C_{ij}(t) = \left\langle 0 \middle| \mathcal{Q}_{i}(t) \mathcal{Q}_{j}^{+}(0) \middle| 0 \right\rangle = \sum_{n} \left\langle 0 \middle| \mathcal{Q}_{i} \middle| n \right\rangle \begin{array}{c} e^{-E_{n}t} \left\langle n \middle| \mathcal{Q}_{j}^{+} \middle| 0 \right\rangle \\ \downarrow \\ \text{overlap} \end{array}$$

C C

$$J^{PC} = 1^{--}: \quad E_1(\vec{p} = 0) = m_{J/\psi}$$

cc and bb annihilation omitted for all result in this talk. Then hadrons below $\underline{D}D$ or $\underline{B}B$ are strongly stable

$$E_n(\vec{p}=0) = m_n$$

States well below thresholds or treated as strongly stable

"doable"

S. Ryan & D. Wilson, Hadron Spectrum Coll, private communication details in Lattice2019 talk (to appear)

lattice QCD: m_π≈400 MeV relativistic b-quark: main challenge a m_h errors

states above BB threshold treated as strongly stable

most of states below B B experimentally discovered

previous lattice results on excited <u>b</u>b spectrum [Wurtz, Lewis, Woloshyn, 1505.04410, PRD]

EFT+lattice prediction of hybrids [Brambilla, Lai, Segovia, Castella, Vario, 1805.07713, PRD 2019]

charmonium hybrids: backup slides

Non-existence of strongly stable fully beautiful tetraquark

Lattice QCD: No indication for strongly stable state (below threshold) with

 $J^{PC} = 0^{++} , 1^{+-} , 2^{++}$ threshold $\eta_b \eta_b \eta_b \Upsilon \Upsilon \Upsilon$

[Hughes, Eichten, Davies, HPQCD, 1710.03236, PRD 2018]

Sasa Prelovsek

Lattice results on exotics with hidden bottom and charm

States above or slightly below one threshold

"more difficult, but doable"

χ_{c1}(2P) aka X(3872)

[Belle, 2003]

Aim: look for poles in DD* scattering matrix

- Lattice QCD
- first evidence [S.P.,Leskovec, 1307.5172, PRL 2013]
- Fock components: [Padmanath, Lang, S.P., 1503.03257, PRD 2015]

CC

+

D*

crucial: $D\overline{D}^*$, $\overline{c}c$, less important: $(\overline{cq})(cq)$ no charged partner found up to m=4.2 GeV (in agreement with exp) unfortunately, no other published lattice paper on X(3872) till now

- Dyson-Schwinger / Bethe-Salpeter approach
 [Wallbott, Eichmann, Fischer, 1905.02615, PRD 2019]
 location of pole in the scattering matrix
- pole for X found although
 <u>cc Fock component omitted, qq annihilation omitted</u> (in contrary: lattice studies find that <u>cc</u> is crucial for getting pole related to X)

ideal combination of I=0,1 (molecule) would lead to completely dominant rate to $J/\Psi \rho$

exp evidence that X is not completely molecular:

(since J/ $\Psi \omega$ is 7 MeV above and ω is very narrow), while exp rates are comparable $\overline{c}c: (I = 0)$ molecule: (I = 0) + (I = 1) $X \rightarrow J/\psi \omega, J/\psi \rho$

$$M_{1^{++}}^{cq\bar{q}\bar{c}} = 3916(74)\,\mathrm{MeV}$$

mass not accurate enough to determine whether below or above $D\underline{D}^*$ threshold

Sasa Prelovsek

Lattice results on exotics with hidden bottom and charm

Hadrons that strongly decay to several final states

Scattering in two or more channels

"challenging"

examples: all experimentally discovered Zc, Zb, Pc

Extracting scattering matrix from lattice

Resonance above one threshold

$$R \rightarrow H_1 H_2$$
 $T(E) \underset{\text{Luscher's method}}{\leftarrow} E_n$

Lattice simulation of one-channel scattering via Luscher's method: doable

Resonance above two or more thresholds

most of exotic hadrons are above more than one threshold, for example Zc(4430)

$$R \rightarrow H_1 H_2, \ H_1' H_2'$$

$$Channel a: \ H_1 H_2 \\ Channel b: \ H_1' H_2'$$

$$T(E) = \begin{bmatrix} a \rightarrow a & a \rightarrow b \\ T_{aa}(E) & T_{ab}(E) \\ T_{ab}(E) & T_{bb}(E) \\ b \rightarrow a & b \rightarrow b \end{bmatrix}$$

Lattice simulation of coupled-channel scattering via Luscher's method: challenging

- several coupled channels studied in the light-quark sector (Hadron Spectrum collaboration)
- only simulations for hadrons with heavy quarks excited D mesons [Moir, Peardon, Ryan, Thomas, Wilson, 1607.07093, JHEP 2016] Z_c channel [Chen et al., CLQCD, 1907.03371]
- final conclusions on many interesting states therefore not available (yet)

$$\rightarrow$$
 (udc) ($\overline{c}u$): $\Sigma_c^+ \overline{D}^0,...$

Indications that $\Sigma_{c}^{+} D^{(*)}$ molecular component is important:

- **experiment** finds them slightly below those thresholds •
- supported by **phenomenological models** with ρ/ω exchange ۰ predicted 2010-2012 [Wu, Molina, Oset, Zou, 1007.0573, PRL; Wu et al., 1202.1036. PRC, Yang et al, 1105.2901, Wang et al, 1101.0453, PRC]

Lattice QCD addressed simplified question: Do Pc resonances appear in one-channel

 $p J/\psi \rightarrow P_c \rightarrow p J/\psi$

scattering if it is decoupled from other channels? Answer: No [Skerbis, S. P., 1811.02285, PRD 2019]

T(E)≈0 within large errors, small interaction, no resonance

 J^{P} not determined from exp.

Expected J^P for molecule in s-wave:

 $\Sigma_{c}(\frac{1}{2}^{+})\overline{D}(0^{-}) \rightarrow J^{P} = \frac{1}{2}^{-} \qquad \Sigma_{c}(\frac{1}{2}^{+})\overline{D}^{*}(1^{-}) \rightarrow J^{P} = \frac{1}{2}^{-}, \frac{3}{2}^{-}$

This indicates that coupling of p J/ ψ channel with other two-hadron channels is likely responsible for Pc in experiment (in line with LHCb result)

PRL1

Consensus on the nature of Zc(3900) has not been achieved

- re-analysis of all experimental data is compatible with several scenaria resonance pole above th., bound state, virtual bound state, kinematical enhancement via triangular diagram
 [Pilloni et al, 1612.06490, PLB 2017]
- Lattice QCD :

extract scattering matrix for coupled channel scattering $J/\psi~\pi$, $D\overline{D}$ *

[Ikeda et al., HALQCD, 1602.03465, PRL]

HALQCD method (which was not verified yet on any conventional resonance)

- $Z_c^*(3900)$ coupled-channel effect due to sizable J/ $\Psi \pi$ and DD* coupling, not genuine resonances (i.e. pole on the unphysical sheet above DD* th.)
- [Chen et al., CLQCD, 1907.03371]
- Luscher's method : T(E) ≈ small, small interaction no narrow resonance behavior found near D<u>D</u>* th.
- in line with previous lattice study that did not extract the scattering matrix [S.P. et al, 1401.7623, PRD 2015 & HSC, 1709.01417, JHEP 2017]

[Ikeda et al., HALQCD, 1602.03465, PRL]

this makes it natural that Z_b decays comparably to Υ (S_{bb} =1) and h_b (S_{bb} =0)

M_B+m_{B∗}

• Exploratory (!) lattice study of $(S_{\bar{b}b} = 1) \otimes (S_{\bar{q}q} = 0)$ component with static b-quarks [S.P., Bahtiyar, Petkovic, 1909.02356], inspired by [Peters, Bicudo, Wagner, 1602.07621]

Solving Schrodinger equation for $B\underline{B}^*$ system with this V(r). Observed attraction leads to virtual B \underline{B}^* bound state slightly below threshold

 $\text{Re}[E_{7b}] = -32^{+29}_{-5} \text{MeV}$

This pole leads to peak in N_{BB*} above threshold (similar to exp) \longrightarrow

- Virtual bound state consistent with reanalysis of exp data • [Wang, Baru, Filin, Hanhart, Nefediev, Wynen, 1805.07453, PRD 2018]
- So far Z_b found only by Belle
- Could LHCb search for Zb in inclusive final state with $B\overline{B}^*$?

 $\sin^2 \delta \, / \, k$

2

Preliminary

Lattice predictions of yet unobserved hadrons

- there are no reliable lattice PREdictions for yet-unobserved $\overline{Q}Q\overline{q}q$, $\overline{Q}Qqqq$ (Q = c,b) since these states likely lie above several thresholds (very challenging)
- Instead, I list predictions of interesting states with different quark content that lie below strong threshold (doable)

lattice QCD, taking into account effects of BK^(*) threshold [C. Lang, D. Mohler, S.P., R. Woloshyn: 1501.0164, PLB2015]

Strongly and EM stable di-baryons

lattice QCD: Junnarkar, Mathur, [1906.06054, PRL 2019]

Conclusions

- Compliments to experimental colleagues for discovering a number of conventional and unconventional hadrons !
- Masses of ground and excited hadrons: lattice results and exp agree well
- Lattice QCD can extract scattering matrices for scattering of hadrons: their poles give information on resonances, bound states and virtual bound states
- predictions for many yet undiscovered hadrons
- understanding conventional and exotic states above several thresholds requires extraction of coupled-channel scattering matrices from lattice ... Challenging, but hopefully forthcoming

Backup

Charmonium resonances in DD from LHCb: first discovery of charmonium with J=3

Sasa Prelovsek Lattice results on exotics with hidden bottom and charm

Z_b⁺(10610), Z_b⁺(10650)

Lattice study, continued
 [S.P., Bahtiyar, Petkovic, 1909.02356]

b b d u

Solving Schrodinger equation for BB* system with this V(r). Observed attraction leads to

a virtual bound state just below threshold $\text{Re}[E_{Zb}] = -32^{+29}_{-5} \text{MeV}$

and also to a deep bound state $\operatorname{Re}[E_{Zb}] = -403 \pm 70 \text{ MeV}$

• Could LHCb search for Zb in inclusive final state with $B\overline{B}*$?

Excited charmonia, charmonium hybrids