Exotic and conventional mesons from lattice QCD

Sasa Prelovsek

University of Ljubljana & Jozef Stefan Institute, Ljubljana, Slovenia sasa.prelovsek@ij.si

KRAKÓW, POLAND 29th May - 3rd June 2014

Outline

Spectrum from lattice QCD

- States well below strong decay threshold: <u>c</u>c
- Excited states: single-hadron approximation <u>c</u>c, D, D_s, isoscalar mesons <u>u</u>u & <u>d</u>d & <u>s</u>s
- Near-threshold states: rigorous treatment
 - ★ first evidence for Z_c^+ from lattice QCD
 - ★ D_{s0}*(2317) near DK, D_{s1}(2460) near D*K
 - ★ first evidence for X(3872) from lattice QCD
- Resonance above threshold: rigorous treatment
 ρ, K*, a₁, b₁, D₀^{*}(2400), D₁(2430)

Lattice status:

Straightforward procedure, many precision results

extensive results completed recently highly excited states, many J ^{PC}

Only few pioneering results available

Only few resonances have been studied rigorously

 $\overline{c} \ \underline{u}$ $c \ d$

QCD on lattice: ab initio non-perturbative metod

$$L_{QCD} = -\frac{1}{4}G^a_{\mu\nu}G^{\mu\nu}_a + \sum_{q=u,d,s,c,b,t} \overline{q}i\gamma_\mu(\partial^\mu + ig_sG^\mu_aT^a)q - m_q\overline{q}q$$

input : g_s , m_q

Evaluation of Feynman path integrals in discretized space-time

$$\langle \mathbf{C} \rangle = \int DG \ Dq \ D\overline{q} \ C \ e^{-S_{QCD}}$$

 $S_{QCD} = \int d^4 x L_{QCD}[G(x), q(x), \overline{q}(x)]$ $S = \int dt L[x(t)]$

"Precision" spectrum: States well below strong decay threshold

States well below threshold

Lattice QCD already determined masses of these states very reliably and precisely O(10 MeV):

- m=E (for P=0)
- extrapolation

- : a→0, L→∞
- extrapolation or interpolation : $m_q \rightarrow m_q^{phy}$
- particular care needed for am_c and am_b discretization errors: several complementary methods give compatible results

Many precision lattice results available for a number of years!

States well below threshold example: charmonium

S. Prelovsek, MESON 14, Lattice spectrum

Many results available, only few examples shown

[HPQCD/MILC, 2014: Knecht, Galloway, Koponen, Davies and DeTar]

[Briceno, Lin, Bolton, 1207.3536, PRD]

"Non-precision" spectrum: states near or above threshold

only one or two a, L, m_{u/d}

limits $a \rightarrow 0$, $L \rightarrow \infty$, $m_{u/d} \rightarrow m_{u/d}^{phy}$ usually not performed

Excited states: single-hadron approximation

only interpolating fields Ø≈q q
assumptions: all energy levels correspond to "one-particle" states
m=E (for P=0)
these are strong assumptions ...

D spectrum: single hadron approximation

[G. Moir et al, HSC (Hadron Spectrum Coll.): 1301.7670, JHEP]

- m_π≈400 MeV, L≈2.9 fm, Nf=2+1
- reliable J^P determination; many excited states
- identification with $n^{2S+1}L_{J}$ multiplets using < O | n >
- green: lat, black: exp

S. Prelovsek, MESON 14, Lattice spectrum

Hybrids:

large overlap with $O = \underline{\mathbf{q}} \mathbf{F}_{ij} \mathbf{q}$ gluonic tensor $\mathbf{F}_{ij} = [\mathbf{D}_i, \mathbf{D}_j]$ $(\overline{q} q)$

D_s **spectrum:** single hadron approximation

[G. Moir et al., HSC : 1301.7670, JHEP]

- $m_{\pi} \approx 400$ MeV, L ≈ 2.9 fm, Nf=2+1
- reliable J^{PC} determination
- identification with $n^{2S+1}L_{J}$ multiplets using $\langle O | n \rangle$
- green: lat, black: exp

S. Prelovsek, MESON 14, Lattice spectrum

Hybrids:

large overlap with $O=\underline{q} F_{ij} q$

gluonic tensor $F_{ij} = [D_i, D_j]$

<u>cc</u> spectrum: single hadron approximation

[HSC, L. Liu et al: 1204.5425, JHEP]

- m_π≈400 MeV, L≈2.9 fm, Nf=2+1
- \bullet reliable J^{PC} determination
- identification with n^{2S+1}L_J multiplets using <*O*|n>
- green: lat, black: exp

S. Prelovsek, MESON 14, Lattice spectrum

Hybrids:

some of them have exotic J^{PC}

large overlap with $O = \underline{q} F_{ij} q$

Isoscalar mesons: single hadron approximation

[HSC : Dudek, Edward, Guo, Thomas: 1309.2608, PRD]

Isoscalar mesons: mixing angle

[HSC : Dudek, Edward, Guo, Thomas: 1309.2608, PRD]

States near threshold: rigorous treatment

note: most of interesting states are found near threshold: $D_{s0}^{*}(2317), X(3872), Z_{c}^{+}, Z_{b}^{+}$

Discrete energy spectrum from correlators

$$\langle C \rangle \propto \int DG Dq D\overline{q} \ C(q,\overline{q},G) \ e^{i S_{QCD}/\hbar}, \ S_{QCD} = \int d^4x \ L_{QCD}$$

Example: meson channel with given **J^{PC}**

$$\mathcal{O} = \overline{q}\Gamma q, \quad \overline{q}\Gamma' q, \quad (\overline{q}\Gamma_1 q)(\overline{q}\Gamma_2 q), \dots$$

$$C_{ij}(t) = \left\langle 0 \middle| \mathcal{Q}_{i}(t) \mathcal{Q}_{j}^{\dagger}(0) \middle| 0 \right\rangle$$

= $\sum_{n} \left\langle 0 \middle| \mathcal{Q}_{i} \middle| n \right\rangle e^{-E_{n}t} \left\langle n \middle| \mathcal{Q}_{j}^{\dagger} \middle| 0 \right\rangle = \sum_{n} Z_{i}^{n} Z_{j}^{n*} e^{-E_{n}t} \qquad Z_{i}^{n} = \left\langle 0 \middle| \mathcal{Q}_{i} \middle| n \right\rangle$

All physical states with given J^{PC} appear as energy levels E_n in principle : single particle, two-particle,...

channel : "eigenstates"

$$J^{PC} = 0^{++}, \, \overline{sc} : D^*_{s0}(2317), \, DK$$

 $J^{PC} = 1^{+-}, \, \overline{ccdu} : Z^+_c, \, J/\psi \, \pi^+, ...$
 $J^{PC} = 1^{--}, \, \overline{su} : K^*(892), \, K\pi$

S. Prelovsek, MESON 14, Lattice spectrum

In experiment: these correspond to two-meson decay products with continous spectrum.

On lattice: these are discrete due to finite box and periodic BC.

Charged charmonium Z_c⁺: experimental status

candidates with preferred IG=1+, J^{PC}=1+-

a

[review: Brambilla et al., 1404.3723]

particle	С	JP	decay	year	coll
Z+(4430)	-	1+	ψ(2S) π ⁺	2008	Belle, BABAR , LHCb
Z _c ⁺ (3900)	-	?	J/ψ π ⁺	2013	BESIII, Belle, CLEOc
Z _c ⁺ (3885)	-	1+	(DD*)+	2013	BESIII
Z _c ⁺ (4020)	-	?	$h_c(1P) \pi^+$	2013	BESIII
Z _c ⁺ (4025)	-	?	(D* D*)+	2013	BES III
Z+(4200)	-	1+	J/ψ π ⁺	2014	Belle
Z+(4050)	+	?	$\chi_{\text{c1}}~\pi^{+}$	2008	Belle
Z ⁺ (4250)	+	?	$\chi_{\text{cl}}~\pi^{\scriptscriptstyle +}$	2008	Belle

[BESIII, 2013, 1303.5949, PRL] $Z_c^+(3900) \rightarrow J/\Psi \pi^+$ <u>cc</u> <u>d</u>u

Previous searches for Zc+ from lattice

- Search in J^{PC}=1⁺⁻ channel for m < 4 GeV: no Z_c⁺ candidate found [S.P. & L. Leskovec, 1308.2097, PLB]
- Search for resonance in D<u>D</u>* scattering with J^{PC}=1⁺⁻ near threshold E ~ 3.9 GeV no Z_c⁺ candidate found
 [Y. Chen et al, 1403.1318, PRD]

First evidence for Z_c⁺ from lattice: I^G=1⁺, J^{PC}=1⁺⁻

Lattice:

Energies of all two-particle states with E<4.3 GeV

[S.P., Lang, Leskovec, Mohler, 1405.7623]

m_π≈266 MeV, L≈2 fm, Nf=2

First evidence for Z_c⁺ from lattice: I^G=1⁺, J^{PC}=1⁺⁻

[S.P., Lang, Leskovec, Mohler, 1405.7623] $m_{\pi} \approx 266$ MeV, L ≈ 2 fm, Nf=2

First evidence for Z_c⁺ from lat: I^G=1⁺, J^{PC}=1⁺⁻

 $m(Z_{c}^{+}) = 4.16 \text{ GeV}$

± 0.163 GeV ± O(Γ)

[S.P., Lang, Leskovec, Mohler, 1405.7623]

 $\mathcal{O}: \bar{s} c, DK \approx [\bar{d}\gamma_5 c] [\bar{s}\gamma_5 d]$

 $D_{s0}^{*}(2317)$ and DK scattering : J^P=0⁺

[D. Mohler, C. Lang, L. Leskovec, S.P. , R. Woloshyn: PRL 2013] $m_{\pi} \approx 156 \text{ MeV}, L \approx 2.9 \text{ fm}, \text{ Nf}=2+1$

$$p = n \frac{2\pi}{L}$$

Rigorous relation [M. Luscher , 1991]: $E \rightarrow \delta(E)$ phase shift for DK scattering in s-wave

$$p\cot\delta(p) = \frac{1}{a_0} + \frac{1}{2}r_0p^2$$

pole position and mass of $D_{s0}^{*}(2317)$

$$S \propto \frac{1}{\cot \delta - i} = \infty$$
 $\cot \delta(p_{BS}) = i$

$$m_{D_{s0}}^{lat, L \to \infty} = E_D(p_{BS}) + E_K(p_{BS})$$

Charmed meson spectrum: rigorous treatment

First evidence for X(3872) from lattice : J^{PC}=1⁺⁺, I=0

$$\mathcal{O}: \bar{c} c, DD^*, J/\psi \omega$$

 $\langle 0 | O_i | X(3872) \rangle$ 10[°] E O_i < 0 10_i 1 X(3872) > 10^{2} cc⊜ 0 ⊲ CC O_3 10 11111 杰 cc O_5 DD^* 0 0 10 11111 J/ψ ω O_{i} Δ O_3^{DD*} 10^{-1} \diamond

Overlaps normalized to $<0|O_1^{cc}|X(3872)>$

X(3872)	m - (m _{D0} +m _{D0*})
lat	- 11 ± 7 MeV
exp	- 0.14 ± 0.22 MeV

lat: simulations on larger L required

exp: Tomaradze et al., 1212.4191 24

S. P. and L. Leskovec : 1307.5172, PRL

m_π≈266 MeV, L≈2 fm, Nf=2

States above threshold - resonances: rigorous treatment

Almost all mesons are resonances (decay strongly)

ūu	$\overline{s}u$	$\overline{c}u$
r^{\pm} r^{0} r	K^{\pm} K^0 K_S^0 K_L^0 K_0^{\bullet} (800) or κ $K_1^{\bullet}^{\bullet}$ (800) or κ K_1^{\bullet} (1270) K_1 (1270) K_1 (1400) K_0^{\bullet} (1430) K_2^{\bullet} (1430) K_2^{\bullet} (1430) K_2 (1580) K_1 (1650) K_1 (1650) K_2 (1770) K_3^{\bullet} (1780) K_2 (1820) $K(1830)$	$D^{\pm}_{D^{0}}$ $D^{(2007)^{0}}_{D^{(2007)^{0}}}$ $D^{(2010)^{\pm}}_{D^{(2400)^{0}}}$ $D^{(2400)^{\pm}}_{D^{(2420)^{\pm}}}$ $D_{1}(2420)^{\pm}$ $D_{1}(2420)^{\pm}$ $D_{1}(2430)^{0}$ $D^{(2400)^{\pm}}_{D^{(2460)^{\pm}}}$ $D(2550)^{0}$ $D(2550)^{0}$ $D(2600)$ $D^{(2640)^{\pm}}_{D(2750)}$ Most resonances simulated only using single-hadron app.
a ₀ (1450) ρ(1450)		

stable on strong decay: ab-initio OK

others decay strongly; hadronic resonances

only resonance simulated properly by several collab. (first simulation: CP-PACS 2007)

SP and coll. (Lang, Mohler, Leskovec, Woloshyn) (2011 - 2014)

w treated rigorously

Simulation also by CP-PACS, PACS-CS, QCDSF, ETMC [Lang, Mohler, S.P. ,Vidmar, PRD 2011] $m_{\pi} \approx 266 \text{ MeV}$

K*(892) resonance: first lat determination of the width

D-meson resonance masses and widths

 $\Gamma(E) = g^2 \frac{p}{E^2}$

g is compared to exp instead of Γ (Γ depends on phase sp. and m_{π})

$J^{P}=0^{+1} D \pi$

(analysis of spectrum in this case is based on an assumption given in paper below)

D ₀ *(2400)	m - 1/4(mD+3 mD*)	g
lat	351 ± 21 MeV	2.55 ± 0.21 GeV
ехр	347 ± 29 MeV	1.92 ± 0.14 GeV

D ₁ (2430)	m - 1/4(mD+3 mD*)	g
lat	381 ± 20 MeV	2.01 ± 0.15 GeV
exp	456 ± 40 MeV	2.50 ± 0.40 GeV

first lattice result for strong decay width of a hadron containing charm quark

• m_π≈266 MeV, L≈2 fm, Nf=2

Lightest axial resonances $a_1(1260)$ and $b_1(1235)$

Simulating scattering: $\rho\pi$ in 1++ channel to extract a1 $\omega\pi$ in 1+- channel to extract b1

$$\Gamma(E) \equiv g^2 \frac{p}{E^2}$$

resonance	$a_1(1260)$			$b_1(1235)$	
quantity	$m_{a_1}^{ m res}$	$g_{a_1 ho\pi}$	$a_{l=0}^{ ho\pi}$	$m_{b_1}^{ m res}$	$g_{b_1\omega\pi}$
	[GeV]	[GeV]	[fm]	[GeV]	[GeV]
lat	$1.435(53)(^{+0}_{-109})$	1.71(39)	0.62(28)	$1.414(36)(^{+0}_{-83})$	input
exp	1.230(40)	1.35(30)	-	1.2295(32)	0.787(25)

[Lang, Leskovec, Mohler, S.P., 1401.2088, JHEP]

Conclusions

Lattice QCD is the only non-perturbative theoretical tool that depends on the same parameters as QCD Lagrangian.

Available already for some time

• Precise result for states well below threshold

Important developments during past two years

- a) Extensive results for excited multiplets within single-hadron approximation
- b) Effect of threshold on near-threshold states: crucial for (c) and (d)
- c) First evidence for an exotic Z_c^+ with two valence quarks and antiquarks
- d) First evidence for X(3872)
- e) First determination of Γ for strange and charmed meson resonances

Thanks to my collaborators

Christian B. Lang (Graz)Daniel Mohler (Fermilab)Luka Leskovec (Ljubljana)Richard Woloshyn (Triumf)

Backup slides

[review: Brambilla et al., 1404.3723]

State	$M, { m MeV}$	Γ , MeV	J^{PC}	Process (mode)	Experiment $(\#\sigma)$	Year	Status
X(3872)	3871.68 ± 0.17	< 1.2	1++	$B \rightarrow K(\pi^+\pi^- J/\psi)$	Belle [772, 992] (>10), BaBar [993] (8.6)	2003	Ok
				$par{p} ightarrow (\pi^+\pi^- J/\psi) \dots$	CDF [994, 995] (11.6), D0 [996] (5.2)	2003	Ok
				$pp ightarrow (\pi^+\pi^- J/\psi) \dots$	LHCb [997, 998] (np)	2012	Ok
				$B ightarrow K(\pi^+\pi^-\pi^0 J/\psi)$	Belle $[999]$ (4.3), BaBar $[1000]$ (4.0)	2005	Ok
				$B o K(\gamma J/\psi)$	Belle $[1001]$ (5.5) , BaBar $[1002]$ (3.5)	2005	Ok
					LHCb $[1003] (> 10)$		
				$B \to K(\gamma \psi(2S))$	BaBar $[1002]$ (3.6) , Belle $[1001]$ (0.2)	2008	NC!
					LHCb $[1003]$ (4.4)		
				$B \to K(D\bar{D}^*)$	Belle $[1004]$ (6.4), BaBar $[1005]$ (4.9)	2006	Ok
$Z_c(3885)^+$	3883.9 ± 4.5	25 ± 12	1^{+-}	$Y(4260) \to \pi^{-}(D\bar{D}^{*})^{+}$	BES III [1006] (np)	2013	NC!
$Z_c(3900)^+$	3891.2 ± 3.3	40 ± 8	??-	$Y(4260) ightarrow \pi^-(\pi^+ J/\psi)$	BES III [1007] (8), Belle [1008] (5.2)	2013	Ok
					T. Xiao <i>et al.</i> [CLEO data] [1009] (>5)		
$Z_c(4020)^+$	4022.9 ± 2.8	7.9 ± 3.7	??-	$Y(4260, 4360) ightarrow \pi^-(\pi^+ h_c)$	BES III [1010] (8.9)	2013	NC!
$Z_c(4025)^+$	4026.3 ± 4.5	24.8 ± 9.5	??-	$Y(4260) \to \pi^- (D^* \bar{D}^*)^+$	BES III [1011] (10)	2013	NC!
$Z_b(10610)^+$	10607.2 ± 2.0	18.4 ± 2.4	1^{+-}	$\Upsilon(10860) \rightarrow \pi(\pi\Upsilon(1S, 2S, 3S))$	Belle [1012–1014] (>10)	2011	Ok
				$\Upsilon(10860) \to \pi^-(\pi^+ h_b(1P, 2P))$	Belle [1013] (16)	2011	Ok
				$\Upsilon(10860) \rightarrow \pi^- (B\bar{B}^*)^+$	Belle [1015] (8)	2012	NC!
$Z_b(10650)^+$	10652.2 ± 1.5	11.5 ± 2.2	1^{+-}	$\Upsilon(10860) \rightarrow \pi^-(\pi^+\Upsilon(1S, 2S, 3S))$	Belle [1012, 1013] (>10)	2011	Ok
				$\Upsilon(10860) \to \pi^-(\pi^+ h_b(1P, 2P))$	Belle [1013] (16)	2011	Ok
				$\Upsilon(10860) ightarrow \pi^- (B^* \bar{B}^*)^+$	Belle $[1015]$ (6.8)	2012	NC!

TABLE 10: Quarkonium-like states at the open flavor thresholds. For charged states, the C-parity is given for the neutral members of the corresponding isotriplets.

[review: Brambilla et al., 1404.3723]

State	M, MeV	Γ , MeV	J^{PC}	Process (mode)	Experiment $(\#\sigma)$	Year	Status
Y(3915)	3918.4 ± 1.9	20 ± 5	$0/2^{?+}$	$B \rightarrow K(\omega J/\psi)$	Belle [1050] (8), BaBar [1000, 1051] (19)	2004	Ok
				$e^+e^- \rightarrow e^+e^-(\omega J/\psi)$	Belle [1052] (7.7), BaBar [1053] (7.6)	2009	Ok
$\chi_{c2}(2P)$	3927.2 ± 2.6	24 ± 6	2++	$e^+e^- \rightarrow e^+e^-(D\bar{D})$	Belle [1054] (5.3), BaBar [1055] (5.8)	2005	Ok
X(3940)	3942^{+9}_{-8}	37^{+27}_{-17}	??+	$e^+e^- \rightarrow J/\psi \left(D\bar{D}^* \right)$	Belle [1048, 1049] (6)	2005	NC!
Y(4008)	3891 ± 42	255 ± 42	1	$e^+e^- \rightarrow (\pi^+\pi^- J/\psi)$	Belle [1008, 1056] (7.4)	2007	NC!
$\psi(4040)$	4039 ± 1	80 ± 10	1	$e^+e^- \to (D^{(*)}\bar{D}^{(*)}(\pi))$	PDG [1]	1978	Ok
				$e^+e^- ightarrow (\eta J/\psi)$	Belle [1057] (6.0)	2013	NC!
$Z(4050)^+$	4051^{+24}_{-43}	82^{+51}_{-55}	??+	$\bar{B}^0 \rightarrow K^-(\pi^+\chi_{c1})$	Belle [1058] (5.0), BaBar [1059] (1.1)	2008	NC!
Y(4140)	4145.8 ± 2.6	18 ± 8	??+	$B^+ \rightarrow K^+(\phi J/\psi)$	CDF [1060] (5.0), Belle [1061] (1.9),	2009	NC!
					LHCb [1062] (1.4), CMS [1063] (>5)		
					D0 [1064] (3.1)		
$\psi(4160)$	4153 ± 3	103 ± 8	1	$e^+e^- \to (D^{(*)}\bar{D}^{(*)})$	PDG [1]	1978	Ok
				$e^+e^- ightarrow (\eta J/\psi)$	Belle [1057] (6.5)	2013	NC!
X(4160)	4156^{+29}_{-25}	139^{+113}_{-65}	??+	$e^+e^- \rightarrow J/\psi \left(D^*\bar{D}^*\right)$	Belle [1049] (5.5)	2007	NC!
$Z(4200)^+$	4196_{-30}^{+35}	370^{+99}_{-110}	1+-	$\bar{B}^0 \to K^-(\pi^+ J/\psi)$	Belle [1065] (7.2)	2014	NC!
$Z(4250)^+$	4248^{+185}_{-45}	177^{+321}_{-72}	??+	$\bar{B}^0 \rightarrow K^-(\pi^+\chi_{c1})$	Belle [1058] (5.0), BaBar [1059] (2.0)	2008	NC!
Y(4260)	4250 ± 9	108 ± 12	1	$e^+e^- \rightarrow (\pi\pi J/\psi)$	BaBar [1066, 1067] (8), CLEO [1068, 1069] (11)	2005	Ok
					Belle [1008, 1056] (15), BES III [1007] (np)		
				$e^+e^- \rightarrow (f_0(980)J/\psi)$	BaBar [1067] (np), Belle [1008] (np)	2012	Ok
				$e^+e^- \to (\pi^- Z_c(3900)^+)$	BES III [1007] (8), Belle [1008] (5.2)	2013	Ok
				$e^+e^- \rightarrow (\gamma X(3872))$	BES III [1070] (5.3)	2013	NC!
Y(4274)	4293 ± 20	35 ± 16	??+	$B^+ \rightarrow K^+(\phi J/\psi)$	CDF [1060] (3.1), LHCb [1062] (1.0),	2011	NC!
					CMS [1063] (>3), D0 [1064] (np)		
X(4350)	$4350.6^{+4.6}_{-5.1}$	13^{+18}_{-10}	$0/2^{?+}$	$e^+e^- \rightarrow e^+e^-(\phi J/\psi)$	Belle [1071] (3.2)	2009	NC!
Y(4360)	4354 ± 11	78 ± 16	1	$e^+e^- \rightarrow (\pi^+\pi^-\psi(2S))$	Belle [1072] (8), BaBar [1073] (np)	2007	Ok
$Z(4430)^+$	4458 ± 15	166^{+37}_{-32}	1+-	$\bar{B}^0 \rightarrow K^-(\pi^+\psi(2S))$	Belle [1074, 1075] (6.4), BaBar [1076] (2.4)	2007	Ok
		-			LHCb [1077] (13.9)		
				$\bar{B}^0 \rightarrow K^-(\pi^+ J/\psi)$	Belle [1065] (4.0)	2014	NC!
X(4630)	4634^{+9}_{-11}	92^{+41}_{-32}	1	$e^+e^- ightarrow (\Lambda_c^+ \bar{\Lambda}_c^-)$	Belle [1078] (8.2)	2007	NC!
Y(4660)	4665 ± 10	53 ± 14	1	$e^+e^- \rightarrow (\pi^+\pi^-\psi(2S))$	Belle [1072] (5.8), BaBar [1073] (5)	2007	Ok
Υ(10860)	10876 ± 11	55 ± 28	1	$e^+e^- \to (B^{(*)}_{(*)}\bar{B}^{(*)}_{(*)}(\pi))$	PDG [1]	1985	Ok
				$e^+e^- \rightarrow (\pi\pi\Upsilon(1S, 2S, 3S))$	Belle [1013, 1014, 1079] (>10)	2007	Ok
				$e^+e^- \rightarrow (f_0(980)\Upsilon(1S))$	Belle [1013, 1014] (>5)	2011	Ok
				$e^+e^- \rightarrow (\pi Z_b(10610, 10650))$	Belle [1013, 1014] (>10)	2011	Ok
				$e^+e^- \rightarrow (\eta \Upsilon(1S, 2S))$	Belle [948] (10)	2012	Ok
				$e^+e^- \rightarrow (\pi^+\pi^-\Upsilon(1D))$	Belle [948] (9)	2012	Ok
$Y_b(10888)$	10888.4 ± 3.0	$30.7^{+8.9}_{-7.7}$	1	$e^+e^- \rightarrow (\pi^+\pi^-\Upsilon(nS))$	Belle [1080] (2.3)	2008	NC!

Wick contractions for Zc+

36

$D_{s0}^{*}(2317)$ with J^P=0⁺

$$\mathcal{O} = \overline{s} c$$
$$\mathcal{O} = DK \approx [\overline{d}\gamma_5 c] [\overline{s}\gamma_5 d]$$

$$C_{ij}(t) = \left\langle 0 \left| \mathcal{O}_i(t) \mathcal{O}_j^+(0) \right| 0 \right\rangle$$

 $D(\vec{p})$ $\vec{z} \neq \vec{z} \neq \vec{z}$

Extract E_n from C_{ij}(t): variational method

reconances

Energy levels that appear in addition to these discrete two-particle states correspond to <u>bound states</u> or

We use distillation method

[Peardon et al. 2009] to calculate C

Meson-meson scattering: extracting $\delta(p)$ from E_n at $P=p_1+p_2=0$ [M. Luscher, 1991]

р

- extract $E_n(L)$
- E_n renders p in the region "outside-interaction"

$$E = \sqrt{s} = \sqrt{m_1^2 + p^2} + \sqrt{m_2^2 + p^2}$$

• p contains info on $\delta(p)$ for periodic BC

$$\det[\delta_{ll'}\delta_{mm'} - \tan\delta_l(p) M_{ll',mm'}(q^2)] = 0 - p$$

$$\tan\delta(p) = \frac{\pi^{3/2}q}{Z_{00}(1;q^2)} \qquad Z_{00}(1;q^2) = \sum_{\vec{n}\in\mathbb{N}^3} \frac{1}{\vec{n}^2 - q^2} \qquad q \equiv \frac{L}{2\pi}p$$

S. Prelovsek, MESON 14, Lattice spectrum

Overlaps of all states in Zc+ channel

$$\begin{array}{l} \mathcal{O}_{1} = \mathcal{O}_{1}^{\psi(0)\pi(0)} = \bar{c}\gamma_{i}c(0) \ \bar{d}\gamma_{5}u(0) ,\\ \mathcal{O}_{2} = \mathcal{O}_{2}^{\psi(0)\pi(0)} = \bar{c}\gamma_{i}\gamma_{t}c(0) \ \bar{d}\gamma_{5}u(0) ,\\ \mathcal{O}_{3} = \mathcal{O}_{3}^{\psi(0)\pi(0)} = \bar{c}\bar{\nabla}_{j}\gamma_{i}\overline{\nabla}_{j}c(0) \ \bar{d}\gamma_{5}u(0) ,\\ \mathcal{O}_{4} = \mathcal{O}_{4}^{\psi(0)\pi(0)} = \bar{c}\bar{\nabla}_{j}\gamma_{i}\gamma_{t}\overline{\nabla}_{j}c(0) \ \bar{d}\gamma_{5}u(0) ,\\ \mathcal{O}_{5} = \mathcal{O}_{5}^{\psi(0)\pi(0)} = |\epsilon_{ijk}||\epsilon_{klm}| \ \bar{c}\gamma_{j}\overline{\nabla}_{i}\overline{\nabla}_{m}c(0) \ \bar{d}\gamma_{5}u(0) ,\\ \mathcal{O}_{5} = \mathcal{O}_{5}^{\psi(0)\pi(0)} = |\epsilon_{ijk}||\epsilon_{klm}| \ \bar{c}\gamma_{i}\gamma_{j}\overline{\nabla}_{i}\overline{\nabla}_{m}c(0) \ \bar{d}\gamma_{5}u(0) ,\\ \mathcal{O}_{6} = \mathcal{O}_{6}^{\psi(0)\pi(0)} = |\epsilon_{ijk}||\epsilon_{klm}| \ \bar{c}\gamma_{i}\gamma_{j}\overline{\nabla}_{i}\overline{\nabla}_{m}c(0) \ \bar{d}\gamma_{5}u(0) ,\\ \mathcal{O}_{7} = \mathcal{O}_{7}^{\psi(0)\pi(0)} = R_{ijk}Q_{klm} \ \bar{c}\gamma_{i}\overline{\nabla}_{i}\overline{\nabla}_{m}c \ \bar{d}\gamma_{5}u(0) ,\\ \mathcal{O}_{8} = \mathcal{O}_{8}^{\psi(0)\pi(0)} = R_{ijk}Q_{klm} \ \bar{c}\gamma_{i}\gamma_{j}\overline{\nabla}_{i}\overline{\nabla}_{m}c \ \bar{d}\gamma_{5}u(0) .\\ \mathcal{O}_{9} = \mathcal{O}^{\psi(1)\pi(-1)} = \sum_{e_{k}=\pm e_{x,y,z}} \bar{c}\gamma_{i}c(e_{k}) \ \bar{d}\gamma_{i}c(0) + \{\gamma_{5}\leftrightarrow\gamma_{i}\},\\ \mathcal{O}_{10} = \mathcal{O}^{\eta_{c}(0)\rho(0)} = \bar{c}\gamma_{5}c(0) \ \bar{d}\gamma_{i}u(0) ,\\ \mathcal{O}_{11} = \mathcal{O}_{2}^{D(0)D^{*}(0)} = \bar{c}\gamma_{5}\tau_{i}u(0) \ \bar{d}\gamma_{i}c(0) + \{\gamma_{5}\leftrightarrow\gamma_{i}\},\\ \mathcal{O}_{13} = \mathcal{O}^{D(1)D^{*}(0)} = \epsilon_{ijk} \ \bar{c}\gamma_{j}u(0) \ \bar{d}\gamma_{i}c(0) ,\\ \mathcal{O}_{14} = \mathcal{O}^{D^{*}(0)D^{*}(0)} = \epsilon_{ijk} \ \bar{c}\gamma_{j}u(0) \ \bar{d}\gamma_{k}c(0) ,\\ \mathcal{O}_{15} = \mathcal{O}_{1}^{4q} = N_{L}^{3} \ \epsilon_{abc}\epsilon_{abc'c}(\bar{c}_{b}C\gamma_{5}\bar{d}_{c} \ c_{b'}\gamma_{1}Cu_{c'} - \bar{c}_{b}C\gamma_{i}\bar{d}_{c} \ c_{b'}\gamma_{5}Cu_{c'}) \\ \mathcal{O}_{16} = \mathcal{O}_{2}^{4q} = N_{L}^{3} \ \epsilon_{abc}\epsilon_{abc'c}(\bar{c}_{b}C\overline{\gamma}_{5}\bar{d}_{c} \ c_{b'}\gamma_{1}Cu_{c'} - \bar{c}_{b}C\gamma_{i}\bar{d}_{c} \ c_{b'}Cu_{c'}) \end{array}$$

$$\mathcal{O}_{17} = \mathcal{O}_3^{4q} = \mathcal{O}_1^{4q} (N_v = 32) ,$$

$$\mathcal{O}_{18} = \mathcal{O}_4^{4q} = \mathcal{O}_2^{4q} (N_v = 32) .$$