Advances in hadron interactions and spectroscopy from lattice QCD

mesons: this talk
baryons: next talk by M. Padmanath

Sasa Prelovsek

University of Ljubljana, Slovenia
Jozef Stefan Institute, Slovenia
Regensburg University
Oberwoltz 2018, Quantum Chromodynamics and its symmetries
679 Heraeus Seminar, 9-15 September 2018
review \& work in collaboration with
QCD: Lang, Padmanath, Mohler, Leskovec, Woloshyn, Collins, Piemonte, Bali, Skerbis
BSM: Drach, Janowski, Pica

Classification of hadron states

Meson classification with respect to threshold

- states well below threshold	$\bar{u} u$	$\bar{s} u$	$\bar{c} u$	$\bar{c} S$	$\begin{aligned} & \text { exotic } \\ & \text { mesons } \end{aligned}$
	$r^{ \pm}$	$K^{ \pm}$	$D^{ \pm}$	$D^{ \pm}$	
	π	K^{0}	D^{0}	${ }^{D_{s}+ \pm}$	all observ
] strongly decay:	$\frac{n}{f_{0}(500) \text { or }}$	$K_{s}{ }^{0}$	$D^{*}(2007)^{0}$	$D_{s 0}^{*}(2317)^{ \pm}$	ones are
resonances	$\rho(770)$	$K_{L}{ }^{0}$	$D^{*}(2010)^{ \pm}$	$D_{s 1}(2460)^{ \pm}$	near or
	ω (782)	$K_{0}(800)$ or	$D_{0}{ }^{(2400)}{ }^{0}$	$\mathrm{D}_{3}(2350)$	threshold
	$\eta^{\prime \prime}(958)$	K ${ }^{\text {(892) }}$	$D_{0}{ }^{*}(2400)^{ \pm}$	$D_{s 2}^{*}$ (2573)	
] candidates for	$\mathrm{f}_{0}(980)$	K(892)		$D_{s 1}^{*}(2700)^{ \pm}$	
shallow bound st.	$a_{0}(980)$	$K_{1}(1270)$	$D_{1}(2420)^{0}$	$D_{s 1}^{* *}(2860)^{ \pm}$	
	$\phi(1020)$	$K_{1}(1400)$	$D_{1}(2420)^{ \pm}$	$D_{s 3}^{*}(2860)^{ \pm}$	
	$h_{1}(1170)$ $b_{1}(1235)$	$K(1410)$	$D_{1}(2430)^{0}$	$D_{s J}(3040)^{ \pm}$	
	$a_{1}(1260)$	$K_{0}{ }^{(1430)}$	$D_{2}{ }^{(2460)}{ }^{0}$		PDG
	$f_{2}(1270)$	$K_{2}{ }^{*}(1430)$	$D_{2}{ }^{*}(2460)^{ \pm}$	$>^{600}$ -	
	$f_{1}(1285)$	$\begin{aligned} & K(1460) \\ & K \end{aligned}$	$D(2550)^{0}$	${ }^{0} 500-$	- -
	$\begin{aligned} & \eta(1225) \\ & n(1300) \end{aligned}$	$\begin{aligned} & K_{2}(1580) \\ & K(1630) \end{aligned}$	$D(2600)$	400 =	
	$a_{2}(1320)$	$K_{1}(1650)$	$D^{*}(2640)^{ \pm}$	$\underset{\sim}{ \pm} 300$	$=$
	$f_{0}(1370)$	$K(1680)$	$D(2750)$	- $200-$	-
	$h_{1}(1380)$	$K_{2}(1770)$		¢ $100-$	-
	$n_{y}(1400)$ $\eta(1405)$	$K_{3}{ }^{*}(1780)$		$\stackrel{+}{4} 0$	-
	$f_{1}(1420)$	$K_{2}(1820)$			-
	$\omega(1420)$	K(1830)		$\underbrace{-10}$	
	$f_{2}(1430)$			- 200 L	$\mathrm{D}_{51} \mathrm{D}_{82}{ }^{*}$
	$a_{0}(1450)$ $\rho(1450)$			$\begin{array}{lll}\mathrm{J}^{\mathrm{n}}: & \mathrm{D}_{5} & \mathrm{o}_{8} \\ 0\end{array}$	

- $\mathrm{T}=0$
- QCD: spontaneously broken chiral s., approx. $\operatorname{SU}(3)_{F}$, heavy quark symmetry for large m_{Q}
- no new symmetries ...

Outline

- states well below threshold (briefly)
- hadronic resonances : R -> $\mathrm{H}_{1} \mathrm{H}_{2}$
- shallow bound states
- resonances above several thresholds: $\mathrm{R}->\mathrm{H}_{1} \mathrm{H}_{2}, \mathrm{H}_{1} \mathrm{H}^{\prime}{ }_{2, \ldots}$
- resonance in Beyond SM strongly coupled scenario

Disclaimer: for clarity - "simpler" systems and pioneering ("simpler") simulations are chosen for presentation

Status within Lattice QCD

- Hadrons well bellow threshold: easy, accomplished

- Hadron resonances above one threshold and bound states slightly below threshold: Unfortunately none of exotic experimental candidates is found well below threshold.

strong decay threshold: $m_{1}+m_{2}$

- until about 2010: treated ignoring decay or threshold effect
- now: rigorous treatment by determining scattering matrix for two hadrons $\mathrm{H}_{1} \mathrm{H}_{2}$ more challenging, partly accomplished
- Resonances above several two-hadron thresholds:
- requires simulation of coupled channel scattering
- most exotic candidates belongs to this class
very challenging, only few simulations exist
- Resonances in 3-hadron channels (e.g. ω-> $\pi \pi \pi$)
- (non-trivial!) progress on formal developments
- no lattice QCD simulations yet

Lattice QFT: Discrete energies of eigenstates: E_{n}

All eigenstates with given JPC appear in principle example: 1-- charmonium vector channel

- single hadron states $\bar{c} c=J / \psi \quad \mathrm{m}=\mathrm{E}_{1} \quad$ for $\mathrm{P}=0$
- two-hadron states

D \bar{D}
$\mathrm{E}_{\mathrm{n}} \quad$ render DD scat . m.

Two-hadron energies in continuum and on the lattice

Lattice: periodic b.c. in space

in non-interacting limit

$$
E(L)=\sqrt{m_{1}^{2}+\vec{p}_{1}^{2}}+\sqrt{m_{2}^{2}+\vec{p}_{2}^{2}}, \quad \overrightarrow{\mathrm{p}}_{1}=\frac{2 \pi}{L} \vec{n}_{1} \quad \overrightarrow{\mathrm{p}}_{2}=\frac{2 \pi}{L} \vec{n}_{2}
$$

finite L (lat)

continuum (exp) Im[E] $\mathrm{L}=\infty$

Hadrons that do not decay strongly: "easy"

- $m=E_{n}$ for $P=0 \quad a \rightarrow 0, L \rightarrow \infty, \quad m_{q} \rightarrow m_{q}^{\text {phy }}$
- Available from a number of lattice QCD collaborations for a number of years

Solved for a while

Resonances in two-hadron scattering

Scattering phase shift δ
$u(r)=r \psi(r)$
QM interpretation:

$$
\psi(r) \propto \frac{\sin (p r)}{r}
$$

$$
\psi(r) \propto \frac{\sin (p r+\delta)}{r} \quad r>R
$$

scattering matrix $\mathrm{T}(\mathrm{E})$ from $\delta(\mathrm{E})$ for elastic scat:

$$
S(E)=1+2 i T(E)=e^{2 i \delta(E)}
$$

$$
T=\frac{e^{2 i \delta}-1}{2 i}=\sin \delta e^{i \delta}=\frac{1}{\cot \delta-i}
$$

$\sigma \propto|T|^{2}=\sin ^{2} \delta$

Extracting scattering phase shift δ

example
two mesons in a lattice box
scattering phase shifts
at infinite volume
$\delta(E)$

E(L)
energies from lattice with spatial extent L

Luscher's relation between E or p and δ in 1D

Relation between E and $\delta(\mathrm{E})$ in 1 D and $3 \mathrm{D}(\mathrm{P}=0)$

analytic proposal: Luscher 1991

$E(p)=\sqrt{p^{2}+m_{1}^{2}}+\sqrt{p^{2}+m_{2}^{2}}$
relation between δ, L and E for $P_{\text {tot }}=0$

Relations if a single partial wave dominates

ρ resonance: a bit of "history" from personal perspective

$$
C_{j k}(t)=\langle 0| O_{j}(t) O_{k}^{+}(0)|0\rangle, \quad O=\bar{q} q, \quad(\bar{q} q)(\bar{q} q)=\pi \pi, \quad 1^{--}
$$

(d)

(a)

(c)

$\pi(0) \pi(1)$
$\pi(0) \pi(1,1,0)$
ground state
Istexcited state
ground state
1st excited state
-

simplest Breit-Wigner

$$
\frac{1}{\cot \delta(E)-i}=T(E)=\frac{-E \Gamma}{E^{2}-m_{R}^{2}+i E \Gamma} \quad \Gamma=\frac{g_{\rho \pi \pi}^{2}}{6 \pi} \frac{p^{3}}{E^{2}}
$$

ρ meson	Mass $[\mathrm{MeV}]$	$\mathrm{g}_{\text {рлл }}$
Lat $\left(\mathrm{m}_{\pi}=266 \mathrm{MeV}\right)$	$772 \pm 6 \pm 8$	5.61 ± 0.12
Exp.	775	5.97

ρ resonance: impressive progress by LQCD community

HAD. spec (2015), $\mathrm{m}_{\pi} \approx 230,390 \mathrm{MeV}$

Andersen, Bulava, Horz, Morningstar $1808.05007, \mathrm{~m}_{\pi} \approx 220 \mathrm{MeV}$

taken from:
Bali, Collins, Lang et al
PRD (2015)

$$
\Gamma=\frac{g_{\rho \pi \pi}^{2}}{6 \pi} \frac{p^{3}}{E^{2}}
$$

K^{*} (892) resonance in p-wave $\mathrm{K} \pi$

Brett et al. NPB 2018, $\mathrm{m}_{\pi} \approx 230 \mathrm{MeV}$

Bali, Collins, Lang et al
$\operatorname{PRD}(2015), m_{\pi} \approx 150 \mathrm{MeV}$

σ in $\pi \pi$ scattering

HAD. spec (PRL 2017), $m_{\pi} \approx 230,390 \mathrm{MeV}$

Im E [MeV]

Resonance $\psi(3770)$ from $\mathrm{D} \underline{\mathrm{D}}$ scattering in p-wave

deuterium-like systems
Two-hadron bound states slightly below threshold

Bound states vs. resonances

for one channel scattering dominated by single partial wave L

$$
S(E)=e^{2 i \delta(E)}, \quad S(E)=1+2 i T(E), \quad T(E)=\frac{1}{\cot \delta(E)-i}
$$

simplest E-dependence expected in a region near a relatively narrow reson.

Bound state (B):

$\cot \left(\delta\left(m_{B}\right)\right)=i, \quad m_{B}<m_{1}+m_{2} \quad T(E)=\frac{E \Gamma(E)}{m_{R}^{2}-E^{2}-i E \Gamma(E)} \quad \Gamma(E)=g^{2} \frac{p^{2 l+1}}{E^{2}}$

Locations of poles of $\mathrm{T}(\mathrm{E})$ for res. and bound st.
$\operatorname{Im}[E]$

Mesonic bound states in s-wave? (analogues of deuterium)

$\mathrm{D}_{\text {so }}{ }^{*}$, pole in DK scat.

D. Mohler, C. Lang, L. Leskovec, S.P. , R. Woloshyn:

Phys. Rev. Lett. 2013: $m_{\pi} \approx 156 \mathrm{MeV}, \mathrm{L} \approx 2.9 \mathrm{fm}, \mathrm{Nf}=2+1$, PACSCS mesonic bound st. established on lattice for the first time

$D_{s 0}{ }^{*}(2317)$	$m-1 / 4\left(m_{D s}+3 m_{D s *}\right)$	$m D+m K-m$
lat	$266 \pm 16 \pm 4 \mathrm{MeV}$	$36 \pm 17 \mathrm{MeV}$
\exp	$241.45 \pm 0.6 \mathrm{MeV}$	45 MeV

$p \cot \delta(p)=\frac{1}{a_{0}}+\frac{1}{2} r_{0} p^{2}$
$a_{0}=-1.33 \pm 0.20 \mathrm{fm} \quad \mathrm{r}_{0}=0.27 \pm 0.17 \mathrm{fm}$

$$
T \propto \frac{1}{\cot \delta-i}=\infty, \quad \cot \delta\left(p_{B}\right)=i, \quad p_{B}=i\left|p_{B}\right|
$$

$$
m_{D_{s 0}}^{\text {lat } L \rightarrow \infty}=\sqrt{m_{D}^{2}-\left|p_{B}\right|^{2}}+\sqrt{m_{K}^{2}-\left|p_{B}\right|^{2}}
$$

$\mathrm{D}_{50}(2317)$ and $\mathrm{D}_{51}(2460)$
 below DK and D*K thresholds
 $\bar{S} c$
 Mass prediction for missing $B_{s 0}$ and $B_{s 11}$

X(3872): pole in D- ${ }^{*}$

$\mathscr{C}: \bar{c} c, \quad D D^{*}, \quad J / \psi \omega$

$\mathrm{J}^{\mathrm{PC}}=1^{++}, \mathrm{I}=0$

$\langle 0| O_{j}|X(3872)\rangle$

Overlaps normalized to <0| $\mathrm{O}_{1}^{\text {cc }}$ |X(3872)>

$\mathrm{X}(3872)$	$\mathrm{m}-\left(\mathrm{m}_{\mathrm{DO}}+\mathrm{m}_{\mathrm{DO}}{ }^{*}\right)$
lat	$-11 \pm 7 \quad \mathrm{MeV}$
\exp	$-0.14 \pm 0.22 \mathrm{MeV}$

Which Fock components are essential for $X(3872)$ with $1=0$?

$D_{s 0}{ }^{*}$ in DK

X(3872) in DD*

- same
- currently theoretically less clean -> more to be done
- charm annihilation omitted
- $\mathrm{I}=0$ state in isospin limit: $\mathrm{J} / \Psi \omega$ ($\mathrm{I}=0$) threshold at $3879 \mathrm{MeV}, \mathrm{J} / \Psi \pi \pi \pi$ $J / \Psi \pi \pi(I=0)$ threshold formally below $X(3872)$
- isospin breaking more relevant (not considered on lat) another threshold for broken I $J / \Psi \rho(\mathrm{I}=1)$ threshold $3873 \mathrm{MeV}, \mathrm{J} / \Psi \pi \pi$
- $\quad s$ and d-wave in $J^{P}=1^{+}$(d-wave not considered on lat)
- nevertheless: the lattice result obtained is believed to be rather solid (X has width much less than MeV)
- more work to be done

Prediction of strongly stable doubly-bottom tetraquarks
 $\overline{b b u d} \quad\left(J^{P}=1^{+}, I=0\right)$
 $\overline{b b u s} \quad\left(J^{P}=1^{+}\right)$

NRQCD for b-quarks; no phase shift analysis. Determining E_{1} and assuming $\mathrm{m}_{\mathrm{B}}=\mathrm{E}_{1}$

$$
\Delta E=m_{\text {tetra }}-m_{B}-m_{B_{(s)}^{*}}
$$

[Francis, Hudspith, Lewis, Maltman, PRL 2017]

Confirmation of prediction based on similar methods

$$
\Delta E=m_{\text {tetra }}-m_{B}-m_{B_{(s)}^{*}}
$$

$$
\begin{array}{ll}
\overline{b b} u d & \left(J^{P}=1^{+}, I=0\right) \\
\overline{b b} u s & \left(J^{P}=1^{+}\right)
\end{array}
$$

[Junnarkar, Padmanath, Mathur, EpJWebConf175(2018)05014, preliminary]

Similar conclusion using static b quarks and extracting B^{*} potential $V(r)$:
Bicudo, Wagner, Peters (2015-2017)

$R->\mathrm{H}_{1} \mathrm{H}_{2}, \mathrm{H}_{1}^{\prime} \mathrm{H}_{2, \ldots}$

Hadrons that decay to several final states

Scattering in two or more channels

"very challenging"

most of interesting exotic hadrons lie above several thresholds
$\bar{c} c \bar{d} u: \quad Z_{c}(3900) \rightarrow J / \psi \pi, \eta_{c} \rho, D \bar{D}^{*}$
$\bar{b} b \bar{d} u: \quad Z_{b} \rightarrow \Upsilon(n S) \pi, h_{b}(n P) \pi, B \bar{B}^{*}$
$\bar{c} c u u d: \quad P_{c} \rightarrow J / \psi p, \ldots$

One channel scattering

$$
S(E)=e^{2 i \delta(E)}=I+2 i T
$$

Luscher's equation:

$$
f\left[E_{n}, \delta\left(E_{n}\right)\right]=0: \quad E_{n} \rightarrow \delta\left(E_{n}\right)
$$

Two coupled channel scattering

$$
\left.\begin{array}{cc}
\\
\text { a: } \mathrm{O}=\mathrm{H}_{1} \mathrm{H}_{2} \\
\mathrm{~b}: \mathrm{O}=\mathrm{H}_{1}^{\prime} \mathrm{H}_{2}^{\prime} \\
\downarrow & \mathrm{a}->\mathrm{a} \\
\mathrm{E}_{\mathrm{n}} & i \sqrt{1-\eta^{2}(E)} e^{i\left(\delta_{a}(E)+\delta_{b}(E)\right)} \\
i \sqrt{1-\eta^{2}(E)} e^{i\left(\delta_{a}(E)+\delta_{b}(E)\right)} & \eta(E) e^{2 i \delta_{b}(E)}
\end{array} \right\rvert\,=I+2 i T(E)
$$

generalized Luscher's (det) eq.:
1 equation with three unknowns

$$
f\left[E_{n}, \delta_{1}\left(E_{n}\right), \delta_{2}\left(E_{n}\right), \eta\left(E_{n}\right)\right]=0: \quad E_{n} \rightarrow ? ?
$$

Parametrizing T matrix and

$$
\operatorname{Re}\left[T_{i j}^{-1}(E)\right]=a_{i j}+b_{i j} E^{2}+c_{i j} E^{4}+\ldots
$$

determine parameters from the fit to all E_{n}

$$
\text { fit to all } \mathrm{E}_{n}: \text { values } \mathrm{a}_{i j}, b_{i j}, c_{i j}
$$

First determination of coupled-channel $S: K \pi-K \eta$

[Hadron Spectrum coll. (PRL 2014), $m_{\pi}=390 \mathrm{MeV}$]
Location of poles (from all 4 sheets)
$\operatorname{Re}\left(\mathrm{E}_{\mathrm{cm}}\right)[\mathrm{MeV}]$
180 (a) 0^{+}

Scalar charmonium channel: $\mathrm{D}^{+} \mathrm{D}^{-}=\mathrm{D}_{\mathrm{s}}{ }^{+} \mathrm{D}_{\mathrm{s}}{ }^{-}$

[Regensburg QCD: Collins, Padmanath, Pimonte, Mohler, S.P., Bali]

- not settled yet which is first excited scalar charmonia

$$
\begin{gathered}
O \approx D D=(\bar{c} u)(\bar{u} c)+(\bar{c} d)(\bar{d} c) \\
D_{s} D_{s}=(\bar{c} s)(\bar{s} c)
\end{gathered}
$$

- testing group before attacking more exotic channels
- CLS ensembles, two volumes, three different total momenta

$\operatorname{Im}\left(k_{D}\right)>0, \operatorname{Im}\left(k_{D s}\right)<0$

$\mathrm{Z}_{\mathrm{c}}{ }^{+}(3900)$ channel : $I^{G}=1^{+}, J^{P C}=1^{+-}$HALQCD method $\mathrm{V}(\mathrm{r})$

HALQCD is another method to extract scattering matrix from lattice
(considered to be less rigorous than the Luscher's method for coupled channels)

$C^{\alpha \beta}(\vec{r}, t) \equiv \sum_{\vec{x}}\langle 0| \phi_{1}^{\alpha}(\vec{x}+\vec{r}, t) \phi_{2}^{\alpha}(\vec{x}, t) \overline{\mathcal{J}}^{\beta}|0\rangle / \sqrt{Z_{1}^{\alpha} Z_{2}^{\alpha}}$,

$$
\begin{array}{cc}
R^{\alpha \beta}(\vec{r}, t) \equiv & \left(-\frac{\partial}{\partial t}-H_{0}^{\alpha}\right) R^{\alpha \beta}(\vec{r}, t) \simeq \\
C^{\alpha \beta}(\vec{r}, t) e^{\left(m_{1}^{\alpha}+m_{2}^{\alpha}\right) t} & \sum_{\gamma} \Delta^{\alpha \gamma} \int d \vec{r}^{\prime} U^{\alpha \gamma}\left(\vec{r}, \vec{r}^{\prime}\right) R^{\gamma \beta}\left(\overrightarrow{\left.r^{\prime}, t\right)}\right.
\end{array}
$$

$Z_{c}{ }^{+}$channel ,three-body $Y(4260)$ decay: lattice $\& \exp$

$J / \Psi p$ scattering in P_{c} channels (one-channel approx.)

U. Skerbis, S. P., 18010.xxxx, first lat. simulation that reaches energies where Pc were found

Strongly coupled scenario Beyond Standard Model

Scattering and resonance study in a composite Higgs model

$$
\bar{f} f
$$

SU(2) gauge sym. with two fundamental in fundamental rep.

Phenomenology and Symanzik unimproved Lat: Sannino, Pica et al. (series of papers)
This lattice study (Symanzik improved Wilson fermions): Drach, Janowski, Pica, S.P., preliminary

Pseudoscalar-pseudoscalar scattering

Drach, Janowski, Pica, S.P., preliminary

$$
\begin{aligned}
& \text { Luscher's relation: } \quad E_{1} \rightarrow \delta\left(E_{1}\right), \quad E_{2} \rightarrow \delta\left(E_{2}\right) \\
& \frac{1}{\cot \delta(E)-i}=T(E)=\frac{-E \Gamma}{E^{2}-m_{R}^{2}+i E \Gamma}: \quad \Gamma=\frac{g^{2}}{6 \pi} \frac{p^{3}}{E^{2}} \\
& g=5.84(?) \quad \mathrm{m}_{\mathrm{V}} \mathrm{a}=0.437(?)>2^{*} \mathrm{~m}_{\mathrm{PS}} \quad \mathrm{~m}_{\mathrm{V}}{ }^{\text {naive } \mathrm{a}=0.444(9)} \\
& \mathrm{m}_{\mathrm{PS}} \mathrm{a}=0.2114(8)
\end{aligned}
$$

Preliminary: statistics is being increased and other total momenta analyzed

$$
\text { note: } g_{\rho \pi \pi} \mathrm{QCD}^{\mathrm{QCD}} \approx 6
$$

Conclusions

Hadrons near and above threshold from lattice:

- progress, no doubt
- lots to be done
- many observed exotic hadrons (very/to) challenging, for now

Concerning QCD symmetries (spontaneously broken chiral s., approx. SU(3) $)_{\text {, }}$, heavy quark symmetry for large m_{Q}):

- those will be easier to consider once all these resonance masses are interpolated/extrapolated to $\mathrm{m}_{\mathrm{q}}{ }^{\text {phy }}$
- presently, resonance simulations for one m_{q}, m_{s}, a
- systematics not under control (yet), unlike for strongly stable states
- unfortunately, more thresholds open as $m_{u}->m_{u}$ phy

Scattering and resonance studies of strongly coupled scenarios Beyond SM are on the way

Backup slides

$\mathcal{O}:(\bar{c} u)(\bar{d} c),(\bar{c} c)(\bar{d} u),[\bar{c} \bar{d}][c u]$

Eigen-energies in Zc channel

[S.P., Lang, Leskovec, Mohler, 1405.7612, PRD 2015]

$s=$ wave scattering on spherical well with shallow bound state in $Q M: T\left(p=i\left|p_{B}\right|\right)=\infty$

$A \sin q r \quad B \sin \left(p r+\delta_{0}\right)$

$|\mathrm{p}|=\left|\mathrm{p}_{\mathrm{B}}\right|=0.2$: pole of T at the position of the bound st.

$$
\begin{aligned}
& u(R)=A \sin q R=B \sin \left(p R+\delta_{0}\right) \\
& u^{\prime}(R)=q A \cos q R=k B \cos \left(p R+\delta_{0}\right)
\end{aligned} \quad \begin{aligned}
& \frac{1}{q} \tan q R=\frac{1}{k} \tan \left(p R+\delta_{0}\right) \\
& q=\sqrt{2 \mu\left(V_{0}+E\right)}=\sqrt{2 \mu V_{0}+p^{2}} \quad S=e^{2 i(p)}=1+2 i T(p) \quad T(p)=\frac{1}{\cot \delta(p)-i}
\end{aligned}
$$

s-wave scattering on a spherical well with a shallow bound state in QM

$$
\delta_{0}(p)=\arctan \left(\frac{p}{q} \tan (p R)\right)-p R+n \pi \quad q=\sqrt{2 \mu V_{0}+p^{2}}=\sqrt{C^{2}+p^{2}}
$$

Taylor expanding

Signature of a shallow bound state:
a_{0} negative and large

