Doubly charm tetraquark from lattice QCD

Sasa Prelovsek University of Ljubljana & Jozef Stefan Institute, Slovenia

QNP2022 - Conference on Quarks and Nuclear Physics September 5-9, 2022 Florida State University

Outline and lattice QCD results

Doubly charm tetraquark (T_{cc})

- T_{cc} found as a virtual bound state \approx 10 MeV below DD* threshold

- likely related to T_{cc} discovered by LHCb

Padmanath, S.P.: 2202.101101, PRL

Charmonium(like) states

- masses and decay widths of conventional charmonia confirmed : ground states (bound states)

first excitations (resonances)

- two additional exotic charmonium-like states with J^{PC}=0⁺⁺ found just below thresholds

seen in dispersive re-analysis of exp.

[Danilkin et al 2111.15033]

likely related to X(3915) / $\chi_{c0}(3930)$ / X(3960)

LHCb2020 LHCb2022

Extract resonances and (virtual) bound states from H₁ H₂ scattering

one-channel scattering
$$S = 1 + i \frac{4p}{E}T = e^{2i\delta}$$
 $T = \frac{E}{2} \frac{1}{p \cot \delta - ip}$

Padmanath, S.P.: 2202.101101, Phys.Rev.Lett. 129 (2022) 3, 032002 & subsequent studies with S. Collins

The longest lived exotic hadron ever discovered

LHCb July 2021, 2109.01038, 2109.01056, Nature Physics

The doubly charmed tetraquark T_{cc}^+ , I = 0 and favours $J^P = 1^+$. No states observed in $D^0D^+\pi^+$: eliminates possibility of I = 1. Near-threshold state: Demands pole identification to confirm existence.

Omitting $D^* \to D\pi, \ T_{cc} \to DD\pi$ T_{cc} would be a bound state

$$\begin{split} \delta m_{\rm pole} &= -360 \pm 40 \,{}^{+4}_{-0} \,\, {\rm keV}/c^2 \,, \\ \Gamma_{\rm pole} &= 48 \pm 2 \,{}^{+0}_{-14} \, {\rm keV} \,, \end{split}$$

Eigen-energies on the lattice

at $m_{\pi} \approx 280 \ MeV$

D*(p₂)

 $E_{DD^*} \equiv m_D + m_{D^*}$

Scattering amplitude for 1=0

at $m_{\pi} \approx 280 \ MeV$

$$T = \frac{E}{2} \frac{1}{p \cot \delta - ip}$$

$$\delta m_{T_{cc}} = \operatorname{Re}(E_{cm}) - m_{D^0} - m_{D^{*+}} [\operatorname{MeV}]$$

$$\xrightarrow{-20 -15 -10 -5}_{lat} \underbrace{\operatorname{HCb}}_{m_{\pi}} \underbrace{\operatorname{Kem}}_{280 \, \operatorname{MeV}} \underbrace{\operatorname{MeV}}_{-0.03}$$

Lattice: virtual bound st. pole

Binding energy: $\delta m_{T_{cc}} = -9.9(^{+3.6}_{-7.2}) \text{ MeV}.$

Sasa Prelovsek

Nature (LHCb): bound st. pole

omitting $D^* \to D\pi, \ T_{cc} \to DD\pi$

9

Possible binding mechanisms of T_{cc}

molecular likely dominant [e.g. Janc, Rosina 2003]

"molecular"

Molecular component: dependence on m_{u/d}

exchanged particles: light mesons $\pi, \rho, ...$

increasing m_{u/d} increasing m_{ex} decreasing R or decreasing attraction |V| Yukava-like potential

SP=0+

SP=1+

 $|\bar{u}d|$

|cc|

$$V(r) \propto -\frac{e^{-m_{ex}r}}{r}$$

analogous conclusion for any fully attractive

$$V(r) = -V_0 f(r/R)$$

$$f = e^{-r/R}, e^{-r^2/R^2}, \theta(R-r), \dots$$

subsequent lattice study: CLQCD, Chen et al. 2206.06185 comparison of I=0,1 : attraction in I=0 channel arises mainly from *Q* exchange

Simplest Example: scattering in square-well potential in QM

increasing $m_{u/d}$, decreasing attraction V_0 (or decreasing R)

Conclusions on T_{cc}

Hypothesis to be verified by future simulations

closer-to physical m_c

exp.

lat. $(m_{\pi} \simeq 280 \text{ MeV}, m_c^{(l)})$

1762(1)

1864.85(5)

 $-15.0(^{+4.6}_{-9.3})$

-0.36(4)

bound st.

virtual bound st.

 $D^* \to D\pi$ omitting

 $T_{cc} \rightarrow DD\pi$

S.P., Collins, Padmanath, Mohler, Piemonte 2011.02541 JHEP, 1905.03506 PRD, 2111.02934

Charmonium(like) resonances and bound states

₫

32

 $E_{\rm cm}^{\rm calc}$ [GeV], $B_1 P^2 = 1$

4.1

4.

3.9

3.8

3.7

3.6

3.5

3.4

24

L/a

đΦ

32

Doubly charm tetraquark from lattice

Eigen-energies

4.1

4.

3.9

3.8

3.7

3.6

3.5-

3.4

32

 $T_{ij}(E)$

 $\Phi \Phi$

24

L/a

Luscher formalism

 $E_{\rm cm}^{\rm calc}$ [GeV], $A_1 P^2 = 2$

 $E_{\rm cm}^{\rm calc}$ [GeV], $A_1 P^2$ =1

24

L/a

Charmonium(like) resonances and bound states

q=u,d,s $I\!=\!0$

likely related to X(3915) / $\chi_{c0}(3930)$ / X(3960)

all three likely the same state currently named χ_{c0} (3914) in PDG

J^{PC}=0⁺⁺

Conclusions on charmonium(like) states

- masses and decay widths of conventional charmonia confirmed : ground states (bound states)

first excitations (resonances)

- two additional exotic charmonium-like states with J^{PC}=0⁺⁺ found just below thresholds

seen in dispersive re-analysis of exp. [Danilkin et al 2111.15033]

likely related to X(3915) / $\chi_{c0}(3930)$ / X(3960) LHCb2020 LHCb2022

Backup

Lattice details

CLS ensembles with u/d, s dynamical quarks $a \simeq 0.086 \text{ fm}$ N_L=24, 32

lat exp $m_{u/d} > m_{u/d}^{exp}$ $m_s < m_s^{exp}$ $m_u + m_d + m_s = m_u^{exp} + m_d^{exp} + m_s^{exp}$

m [MeV]	lat	ехр
m _π	280(3)	137
m _D	1927(2)	1867
m _{Ds}	1981(1)	1968
M _{av}	3103(3)	3068

separation between DD and DsDs threshols smaller than in exp

Wick contractions evaluated with distillation or stochastic distillation method.

Lattice results on Tcc

	$m_D [{ m MeV}]$	m_{D^*} [MeV]	M_{av} [MeV]	$a_{l=0}^{(J=1)}$ [fm]	$r_{l=0}^{(J=1)}~[{ m fm}]$	$\delta m_{T_{cc}}$ [MeV]	T_{cc}
lat. $(m_{\pi} \simeq 280 \text{ MeV}, m_c^{(h)})$	1927(1)	2049(2)	3103(3)	1.04(29)	$0.96(^{+0.18}_{-0.20})$	$-9.9^{+3.6}_{-7.2}$	virtual bound st.
lat. $(m_{\pi} \simeq 280 \text{ MeV}, m_c^{(l)})$	1762(1)	1898(2)	2820(3)	0.86(0.22)	$0.92(^{+0.17}_{-0.19})$	$-15.0(^{+4.6}_{-9.3})$	virtual bound st.
exp. 2 , 37	1864.85(5)	2010.26(5)	3068.6(1)	-7.15(51)	[-11.9(16.9),0]	-0.36(4)	bound st.

Interpolators for Tcc

Example: P=0 $J^{P}=1^{+} \rightarrow cubic irrep T_{1}^{+}$

$$\chi^{2}(\{a\}) = \sum_{L} \sum_{\vec{P} \Lambda n} \sum_{\vec{P}' \Lambda' n'} dE_{cm}(L, \vec{P} \Lambda n; \{a\})$$
(1)
$$\mathcal{C}^{-1}(L; \vec{P} \Lambda n; \vec{P}' \Lambda' n') dE_{cm}(L, \vec{P}' \Lambda' n'; \{a\}) .$$

Here

$$dE_{cm}(L,\vec{P}\Lambda n;\{a\}) = E_{cm}(L,\vec{P}\Lambda n) - E_{cm}^{an.}(L,\vec{P}\Lambda n;\{a\})$$

$$(t_l^{(J)})^{-1} = \frac{2(\tilde{K}_l^{(J)})^{-1}}{E_{cm}p^{2l}} - i\frac{2p}{E_{cm}}, \quad (\tilde{K}_l^{(J)})^{-1} = p^{2l+1}\cot\delta_l^{(J)}$$
(5)

We parametrize it with the effective range expansion

$$\tilde{K}^{-1} = \begin{bmatrix} \frac{1}{a_0^{(1)}} + \frac{r_0^{(1)}p^2}{2} & 0 & 0\\ 0 & \frac{1}{a_1^{(0)}} + \frac{r_1^{(0)}p^2}{2} & 0\\ 0 & 0 & \frac{1}{a_1^{(2)}} \end{bmatrix}.$$
 (6)

s-wave scattering on spherical potential well

Sasa Prelovsek

Doubly charm tetraquark from lattice

Previous lattice QCD study of T_{cc} channel

Junnarkar, Mathur, Padmanath, PRD 99, 034507 (2019), 1810.12285

lowest finite-volume eigen-energy for P=0, J^P=1⁺, I=0

- Study performed on LQCD ensembles with different lattice spacings.
 Single volume and only rest frame finite-volume irreps considered.
- Including a meson-meson and diquark-antidiquark interpolator.
 Diquark-antidiquark interpolators do not influence the low energy spectrum.
- ***** The ground state energy subjected to chiral and continuum extrapolations.
- ✿ A finite-volume energy level 23(11) MeV below DD* threshold.
 No rigorous scattering analysis and no pole structure determined.

- Single volume rest frame study on a relatively coarse lattice ($a_s \sim 0.12$ fm).
- Large basis of meson-meson and diquark-antidiquark interpolators.
- Diquark-antidiquark interpolators do not influence the low energy spectrum.
- ✿ No statistically significant energy shifts observed near DD^* threshold. ⇒ No scattering amplitude extraction.

Subsequent lattice QCD study of T_{cc} channel

CLQCD, Chen et al. 2206.06185

comparison of I=0,1 : attraction in I=0 channel arises mainly from *q* exchange

 $C^{(I)}(p,t) = D - C_1(\pi/\rho) + (-)^{I+1} \left(D' - C_2(\rho) \right)$