#### And at V Charmonia above V open thresholds from lattice QCD

## Sasa Prelovsek

#### University of Ljubljana & Jozef Stefan Institute, Slovenia

Quarkonium 2016 June 2016, PNNL, WA, USA

in collaboration with C.B. Lang, L. Leskovec, D. Mohler and M. Padmanath

## Outline

- charmonia well below DD thresholds : "straightforward" on the lattice
- First lattice QCD study of "conventional" charmonium resonances above open-charm threshold taking into account strong decay
   [Lang, Leskovec, Mohler, S.P., 1503.05363, JHEP 2015]

$$J^{PC} = 1^{--}: \ \psi(3770) \to D\bar{D}$$
  
 $J^{PC} = 0^{++}: \ \chi_{c0}(2P) \to D\bar{D}$ 

not clear which exp state corresponds to  $\chi_{c0}(2P)$  -> happy to discuss this puzzling channel after the talk in person

• Three channels with  $J^{PC}=1^{++}$ [M. Padmanath, C.B. Lang, S.P., 1503.03257, PRD 2015]  $\bar{c}c(\bar{u}u + \bar{d}d), I = 0, X(3872)$  $\bar{c}c\bar{u}d, I = 1, \text{ charged } X(3872) ?$  $\bar{c}c\bar{s}s, I = 0, Y(4140) ?$ 



Zc<sup>+</sup>(3900) with HALQCD method, [HALQCD, Ikeda et al, 1602.03465]

# Lattice gives discrete energies of eigenstates: E<sub>n</sub>

Meson(like) system with given **J**<sup>PC</sup> is created by a number of interpolating fields

$$J^{PC} \quad \mathcal{O} = \overline{q} \Gamma q, \quad (\overline{q} \Gamma_1 q)_{\vec{p}_1} (\overline{q} \Gamma_2 q)_{\vec{p}_2}, \quad [\overline{q} \Gamma_3 \overline{q}] [q \Gamma_4 q], \dots$$

$$1 - -: \quad \overline{c}c, \quad (\overline{c}u)(\overline{u}c) = D\overline{D}, \quad [\overline{c}\overline{u}] [cu]$$

$$\mathcal{O}_{ij}(t) = \left\langle 0 \right| \mathcal{O}_i(t) \quad \mathcal{O}_j^+(0) \left| 0 \right\rangle = \sum_n Z_i^n Z_j^{n^*} e^{-E_n t}, \quad Z_i^n = \left\langle 0 \right| \mathcal{O}_i \left| n \right\rangle$$

All physical states with given  $J^{PC}$  appear as  $E_n$  in principle (example: charmonium with 1<sup>++</sup>)

• "single-meson" states  $J/\Psi$  m=E<sub>1</sub> for P=0 (after extrapolations)

Ψ(2S)

- <u>"two-meson" states</u>  $D\overline{D},...$
- $E_n$  rigorously render two-hadron scattering matrix (for example D<u>D</u> scattering matrix)

# Approximation for all closed charm hadrons on the lattice (presented in this talk)

Wick contractions with charm annihilation are omitted

- OZI: one expects very small influence from charm annihilation on energies of eigenstates of interest: but this needs to be verified in the future
- very challenging to go beyond this approximation on the lattice due to a number of light single and multi-hadron states with the same quantum numbers



Analogous Wick contractions for u,d,s quarks are NOT omitted



## Charmonia well below DD: recent precision results



## Scattering of two mesons

one-channel (elastic) scattering with total momentum  $P=0: E=E_{cm}$ 





Scattering matrix for partial wave l

$$S(E) = e^{2i\delta(E)}, \quad S(E) = 1 + 2iT(E), \quad T(E) = \frac{1}{\cot \delta(E) - i}$$



#### Resonance $\psi(3770)$ and bound st. $\psi(2S)$ from DD scattering in p-wave



Lang, Leskovec, Mohler, S.P.,

S. Prelovsek, QWG 2016

1503.05363, JHEP 2015 8

#### Resonance $\psi(3770)$ and bound st. $\psi(2S)$ from DD scattering in p-wave



## Resonance $\psi(3770)$ and bound st. $\psi(2S)$ from DD scattering in p-wave



| $\mathcal{P}: \overline{c} \; c, D \overline{l}$<br>at. in p-wa<br>$ ightarrow \; \delta(B)$<br>rix is determ | $\overline{D},  J^{PC} = 1^{}$<br>ve is simulated<br>$\overline{E}_n$ )<br>ined from $E_n$ | $egin{aligned} &\eta_{c}(1S)\ &J/\psi(1S)\ &\chi_{c0}(1P)\ &\chi_{c1}(1P)\ &h_{c}(1P) \end{aligned}$ |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| terpolated n                                                                                                  | ear threshold:                                                                             | $\chi_{c2}(1P) \ \eta_c(2S)$                                                                         |
| <u>d state</u> ψ(2<br>p <sub>P</sub> ) = i                                                                    | S) from pole in T:                                                                         | $\frac{\psi(2S)}{2m_{D}} \frac{\psi(2S)}{\psi(3770)}$                                                |
| triangles)                                                                                                    | $T \propto \frac{1}{\cot \delta - i}$                                                      | X(3872)<br>$\chi_{c0}(2P)$ wa                                                                        |
| <u>nance</u> ψ(3                                                                                              | $\chi_{c2}(2P) = X(3940)$                                                                  |                                                                                                      |
| (diamonds)                                                                                                    | , Γ (given below)                                                                          | $egin{array}{l} \psi(4040)\ X(4050)^{\pm}\ X(4140) \end{array}$                                      |
| unit)                                                                                                         | <b>१</b> २                                                                                 | $\psi(4160) = X(4160)$                                                                               |
| 4                                                                                                             | $\Gamma = \frac{g^2}{6\pi} \frac{p^3}{s}$                                                  | $- X(4250)^{\pm}$                                                                                    |
|                                                                                                               |                                                                                            |                                                                                                      |

Lang, Leskovec, Mohler, S.P., 1503.05363, JHEP 2015] <sup>10</sup>

| ψ(3770)                                      | Mass [MeV]    | g (no unit)     |
|----------------------------------------------|---------------|-----------------|
| Lat (m <sub><math>\pi</math></sub> =266 MeV) | 3774 ±6±10    | 19.7 ±1.4       |
| Lat (m <sub><math>\pi</math></sub> =156 MeV) | 3789 ±68±10   | 28 ± 21         |
| Exp.                                         | 3773.15± 0.33 | 18.7 ± 1.4      |
|                                              | S. Prelo      | ovsek. OWG 2016 |

## X(3872) as bound state from DD\* scattering, JPC=1++, I=0



 $\mathcal{O}: \ \overline{c} \ c, \ D\overline{D}^*, \ [\overline{cu}]_{3c}[cu]_{3c}, \ [\overline{cu}]_{6c}[cu]_{6c}$ 

- ground state:  $\chi_{c1}(1P)$
- D<u>D</u>\* scattering matrix near th. determined

$$p \cot \delta(p) = \frac{1}{a_0} + \frac{1}{2}r_0p^2, \quad a_0 < 0$$

$$T \propto \frac{1}{\cot \delta - i} = \infty$$

- A pole of found just below th. (violet star)
- The pole attributed to X(3872), which is a shallow bound state

[M. Padmanath, C.B. Lang, S.P., 1503.03257, PRD 2015] m<sub>π</sub>≈266 MeV, a=0.124 fm, L= 2 fm

#### Which Fock components are essential for X(3872) with I=0?

$$J^{\mathsf{PC}=1^{**}} \quad \mathcal{O}: \ \overline{c} \ c, \ D\overline{D}^*, \ J/\psi\omega, \ \chi_{c1}\sigma, \ \eta_c\sigma, \ [\overline{cu}]_{3c}[cu]_{3c}, \ [\overline{cu}]_{6c}[cu]_{6c} \\ (\overline{cq})_{1_c}(c\overline{q})_{1_c}, \ (\overline{cc})_{1_c}(\overline{q}q)_{1_c}$$



[M. Padmanath, C.B. Lang, S.P., 1503.03257, PRD 2015]

#### Which Fock components are essential for X(3872) with I=0?



## Illustration how eigenstate D<sub>0</sub>\*(2400) dominated by "<u>q</u>q" dissapears when <u>q</u>q interpolators omitted



## Search for charged partner of X(3872); channel I<sup>G</sup>=1<sup>-</sup>, J<sup>PC</sup>=1<sup>++</sup>, <u>ccd</u>u

## $\mathcal{O}: (\bar{c}u)(\bar{d}c), \ (\bar{c}c)(\bar{d}u), \ [\bar{c}\bar{d}][cu]$

- Simulation is done in the isospin limit: m<sub>u</sub>=m<sub>d</sub>
- No lattice candidate for charged X(3872) In agreement with absence of such state in exp.
- No lattice candidate for other charged state below 4.3 GeV

#### Search for Y(4140) in channel J<sup>PC</sup>=1<sup>++</sup>, <u>ccs</u>s

#### $\mathcal{O}: \ \overline{c}c, \ (\overline{c}s)(\overline{s}c), \ (\overline{c}c)(\overline{s}s), \ [\overline{c}\overline{s}][cs]$

- No lattice candidate for Y(4140) or other candidate below 4.3 GeV found
- Note: experimentaly J<sup>PC</sup> of Y(4140) is unknown; 1<sup>++</sup> is not favored by phenomenology anyway.

[HALQCD, Ikeda et al, 1602.03465]

## $Z_c^+(3900)$ channel : $I^G=1^+$ , $J^{PC}=1^{+-}$ HALQCD method V(r)

HALQCD is another method to extract scattering matrix from lattice (considered to be less rigorous than the Luscher's method for coupled channels)



#### Z<sub>c</sub><sup>+</sup> channel , three-body Y(4260) decay: lattice & exp



#### [HALQCD, Ikeda et al, 1602.03465]

## Z<sub>c</sub><sup>+</sup> channel : HALQCD method , poles of S in complex plane





[HALQCD, Ikeda et al, 1602.03465]

Second Riemann sheet for all three channels shown.

#### Remarks:

- HALQCD method not considered as rigorous as the Luscher's method for coupled channels
- 3x3 matrix S in Zc channel has not been determined by Luscher method yet
- HALQCD method has not verified any of the conventional resonances yet (to my knowledge)
- Luscher's method has been verified on conventional res. like  $\rho$ , K\*,  $\psi$ (3770), D<sub>0</sub>(2400) ...

# **Conclusions & Outlook**

- quarkonia well below strong decay threshold: easy, under control
- resonances and shallow bound states where <u>one channel dominates</u>: first rigorous results for chamonium-like state obtained during past few years:
  - first simulation of charmonium resonance

$$D\bar{D} \to \psi(3770) \to D\bar{D}$$

[Lang, Leskovec, Mohler, S.P., 1503.05363, JHEP 2015]

- first evidence for shallow bound state  $D\bar{D}^* o \psi(3872) o D\bar{D}^*$ 

[S.P. and Leskovec: PRL 2013; Lee et al. proceedings 1411.1389; Padmanath, Lang, S.P., PRD 2015] Improved lattice results for these and other channels expected

- States that can decay to two or three channels:
  - S for three-coupled channels with HALQCD approach: Zc(3900)
    - [HALQCD, Ikeda et al, 1602.03465]
- Lots of interesting open problems to solve ... and I am looking forward.

## Non-perturbative method: QCD on lattice

$$L_{QCD} = -\frac{1}{4}G_{\mu\nu}^{a}G_{a}^{\mu\nu} + \sum_{q=u,d,s,c,b,t} \overline{q}i\gamma_{\mu}(\partial^{\mu} + ig_{s}G_{a}^{\mu}T^{a})q - m_{q}\overline{q}q$$
  
input:  $g_{s}$ ,  $m_{q}$   
output: hadron properties  
hadron interactions (if we are lucky)  
$$precision cal.$$
  
 $a^{\circ}0.05 \text{ fm}$   
 $L^{\sim}4 \text{ fm}$ 

#### Evaluation of Feynman path integrals in discretized space-time

quantum mechanics

 $\int Dx \ e^{i S/\hbar}$   $S = \int dt \ L[x(t)]$ 

quantum field theory in Euclidian space-time

$$\int DG Dq D\overline{q} e^{-S_{QCD}/\hbar}$$

$$S_{QCD} = \int d^4x \, L_{QCD}[G(x), q(x), \overline{q}(x)]$$

x,t (Minkovsky)  $\rightarrow x, it$  (Euclidean)

# Lattice setup

|                        |                  | PACS-CS          |
|------------------------|------------------|------------------|
|                        | Ensemble (1)     | Ensemble $(2)$   |
| $N_L^3 \times N_T$     | $16^3 \times 32$ | $32^3 \times 64$ |
| $N_{f}$                | 2                | 2 + 1            |
| $a~[{ m fm}]$          | 0.1239(13)       | 0.0907(13)       |
| $L \; [{ m fm}]$       | 1.98(2)          | 2.90(4)          |
| $m_{\pi}   [{ m MeV}]$ | 266(3)(3)        | 156(7)(2)        |

- Wilon-clover quarks
- Fermilab method for c and b : [El Khadra, Kronfeld et al, 1997]

Rest hadron energies have sizable discretization errors but these largely cancel in splittings.

Only splittings with respect to a chosen reference mass are compared to experiment.

- evaluating Wick contractions to simulate scattering on the lattice is challenging and computationally intensive that is part of the reason why a small number of studies have been made. We apply two methods
  - distillation (Ensemble 1) [Peardon et. al., HSC, 2009]
  - stochastic distillation (Ensemble 2) [Morningstar et al., 2011]

# Charmonia near or above D<u>D</u> threshold: single-meson approximation

• only interpolating fields  $\mathcal{O} \approx \overline{c} c$ 

• assumptions: strong decays of resonances above threshold ignored

effects of thresholds on near-threshold states ignored

m=E (for P=0)

these are strong assumptions ...

but results still present valuable reference point



• green: lat, black: exp

# Comparing lattice results for X(3872), J<sup>PC</sup>=1<sup>++</sup>, I=0



Lattice evidence for X(3872):

- [1] [Lee, DeTar, Na, Mohler , update of proc 1411.1389]  $m_{\pi} \approx 310$  MeV, a=0.15 fm, L=2.4 fm , HISQ
- [2] [S.P. and Leskovec: 1307.5172, PRL 2013 ]
   m<sub>π</sub>≈266 MeV, a=0.124 fm, L= 2 fm
- [3] [M. Padmanath, C.B. Lang, S.P., 1503.03257, PRD 2015]
- Position of DD\* threshold depends on  $m_{u/d}$ , and may be affected by discretization effects related to charm dark

#### Search for charged partner of X(3872); channel I<sup>G</sup>=1<sup>-</sup>, J<sup>PC</sup>=1<sup>++</sup>, <u>ccd</u>u



[M. Padmanath, C.B. Lang, S.P., PRD 2015, 1503.03257]



- Horizontal lines: energies of expected two-meson states in limit of no interaction:  $E = E[M_1(p_1)] + E[M_2(p_2)]$
- Circles: energies of eigenstates from latt
- Only expected two-meson states observed.
- No lattice candidate for charged X(3872). In agreement with absence of such state in exp.
- No lattice candidate for other charged state below 4.3 GeV.
- Two Belle 2008 states are exp. unconfirmed. S. Prelovsek, QWG 2016 25

 $Y(4140), J^{PC}=?^{+}, ccss$ 

**Experiment:** 

peak in J/ $\psi \Phi$  just above J/ $\psi \Phi$  threshold found: CDF 2009, CMS 2012, D0 2013, Babar 2015 not found: Belle 2010, LHCb 2012

#### Lattice:

S. Ozaki and S. Sasaki, 1211.5512, PRD caveat: strange quark annihilation neglected no resonant Y(4140) structure found

δ

M. Padmanath, C.B. Lang, S.P., 1503.03257, PRD  $\mathcal{O}: \ \overline{c}c, \ (\overline{c}s)(\overline{s}c), \ (\overline{c}c)(\overline{s}s), \ [\overline{c}\overline{s}][cs]$ channel J<sup>P</sup>=1<sup>+</sup> considered only: expected two-particle

eigenstates found and  $\chi_{c1}$ , X(3872) but **not Y(4140)** 

m<sub>π</sub>≈266 MeV

$$\begin{array}{rcl} Y(4140) \rightarrow & J/\psi \ \phi \\ & \overline{c}c & \overline{s}s \end{array}$$



# Scalar charmonia from DD scattering in s-wave, JPC=0++

- $\chi_{c0}(1P)$ : the only settled state
- It is still not commonly accepted which exp state corresponds to  $\chi_{c0}(2P)$
- DD and J/ $\Psi \omega$  scattering in s-wave simulated on lattice:



Assumption for extracting D<u>D</u> phase shifts:  $J/\Psi \omega$  channel approximately decoupled Verified in lattice data (when  $J/\Psi \omega$  interpolator removed all other E<sub>n</sub> and Z remain unaffected)

## Scalar charmonia from D<u>D</u> scattering in s-wave, J<sup>PC</sup>=0<sup>++</sup> Puzzle remains in exp and on lattice, more work needed !

• PDG assigned X(3915) to be  $\chi_{c0}(2P)$ 

 $\mathcal{O}: \overline{c} c, D\overline{D}$ 

- Meissner & Guo [1208.1134], Olsen [1410.6534]: arguments against this assignment
- It is still not commonly accepted which exp state corresponds to  $\chi_{c0}(2P)$
- DD scattering in s-wave simulated on lattice: comparison to several hypothesis made







#### Scalar charmonia from DD scattering in s-wave, $J^{PC}=0^{++}$ various hypothesis versus lattice results $\mathcal{O}: \overline{c} c, D\overline{D}$ more detailed DD lineshape needed from lattice and exp

Hypothesis: Hypothesis: Hypothesis: one narrow resononance & one broad BW resonance two BW resonances bound state pole at  $\chi_{c0}(1P)$ Olsen 1.00 1.00 Guo& 1.00 0.80 Meissner 0.80 0.80 0.60 cotð/Vs 0.60 cotô//s 0.60 0.40 cotð//s 0.40 0.20 0.40 0.20 م 0.00 Q 0.20 0.00 م -0.20 0.00 -0.20 χ<sub>c0</sub>(1Ρ -0.40 -0.20 -0.40 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.2 0.4 -0.4 -0.2 0.0 -0.6 -0.40  $p^2$  [GeV<sup>2</sup>] -0.2 0.4 -0.4 0.0 0.2  $p^2$  [GeV<sup>2</sup>] -0.6  $p^2$  [GeV<sup>2</sup>] not supported by lat! data near and above th. supported by lat. N/50 MeV/c<sup>2</sup> Belle e⁺e⁻→J/ψ DD <sub>10</sub> 20 PRL100, 0821001 narrow resonance in DD:  $m_{R}$ =4.002(24) GeV Γ<sup>predict</sup>=32(48) MeV Lang, Leskovec, Mohler, S.P., 0 4.5 5 4 ARM 2015 29 1503.05363 M(DD) GeV/c<sup>2</sup>

