Lattice study of quarkonium-like states

Sasa Prelovsek

University of Ljubljana & Jozef Stefan Institute, Slovenia sasa.prelovsek@ijs.si

Workshop on High Energy Physics Hard Problems of Hadron Physics: Non-Perturbative QCD & Related Quests

> Protvino, Russia, online 9th November 2021

Outline

Lattice QCD study of

• charmonium-like resonances with I= 0

• bottomonium-like resonances with I=1

Motivation to study charmonium resonances:

Experimentally discovered exotic hadrons

- Most of them contain <u>cc</u>
- All of them are resonances (decay strongly)

Charmonium-like resonances with I=0

S. P., Collins, Mohler, Padmanath and Piemonte 2011.02542, PRD 2021, J^{PC}=0⁺⁺, 2⁺⁺ 1905.03506, PRD 2019, J^{PC}=1⁻⁻, 3⁻⁻ 2111.02934 (proceedings for Lattice 2021)

the first extraction of the scattering matrix for coupled channels in the charmonium sector

Charmonium resonances in coupled DD – D_s D_s scattering

aim: extract scattering matrix t_{ij}(E) illustrated below using Luscher's finite volume method

Towards E_n for coupled-channel $D\underline{D} - D_s \underline{D}_s$ scattering

$$C_{ij}(t) = \left\langle 0 \right| \mathcal{Q}_{i}(t) \mathcal{Q}_{j}^{+}(0) \left| 0 \right\rangle = \sum_{n} Z_{i}^{n} Z_{j}^{n*} e^{-E_{n} t}$$

 $\begin{array}{rcl} & & lat & exp \\ m_{\pi} \sim 280 \ \text{MeV} & & m_{u/d} > m_{u/d}^{exp} \\ & & m_s & < m_s^{exp} \\ & & m_u + m_d + m_s = m_u^{exp} + m_d^{exp} + m_s^{exp} \\ & & m_c & \gtrsim m_c^{exp} \\ & & \text{CLS Nf=2+1 ensembles} \end{array}$

Implemented operators

$\vec{P} = \vec{p}_1 + \vec{p}_2$	
P: 0	N _L =24, 32
(0,0,1) 2π/N _L	
(1,1,0) 2π/N _L	

 $O^{J/\psi \ \omega} = J/\psi(\vec{p}_1) \ \omega(\vec{p}_2)$ $O^{\bar{D}^*D^*} = \bar{D}^*(\vec{p}_1) \ D^*(\vec{p}_2)$

omission of channel $\eta_c \eta$ for 0++

Energies of eigen-states E_n in irreps that contain J^{PC}=0⁺⁺,2⁺⁺

for m_D=1927 MeV

Extraction of matrix t(E) :

$$S_{ij}(E_{cm}) = 1 + 2i \ \rho \ t_{ij}(E_{cm})$$

Luscher's equation for 2x2 coupled system

$$det[1+i \ t(E_{cm}) \ F(E_{cm})] = 0$$

known 2x2 matrix

the need to parametrize t_{ij}(Ecm)

 $\rho_i \equiv 2p_i/E_{cm}$

molecular models F.-K. Guo 2101.01021

J^{PC}=0⁺⁺ : higher energy region around D_sD_s threshold $D\bar{D} - D_s\bar{D}_s$

couplings of state near D_sD_s threshold to both channels

• 2++ resonance $\Gamma \equiv g^2 p_D^{2l+1}/m^2$

summary of masses for charmonium-like states

summary of couplings that parametrize the width

$$\Gamma \equiv g^2 p_D^{2l+1}/m^2$$

Bottomonium-like resonances with I=1

M. Sadl, S. P.: 2109.08560, accpeted to PRD S.P., Bahtyar, Petkovic: 1912.02656, PLB

$\overline{b} b \overline{d} u$ with Lattice QCD, non-static b quarks and Luscher's method : to challenging !

 $Z_{b}^{+}(10610)$, $Z_{b}^{+}(10650)$ **I**=1, J^{PC}=1⁺⁻

Rigorous treatment to challenging:

- at least 7 two-particle channels coupled
- very dense B<u>B</u>* and B*<u>B</u>* energy levels

general idea: talk by Marc Wagner

Idea and the only previous lat study

Bicudo, Cichy, Peters, Wagner [proceedings : Lat16: 1602.07621]

Born-Oppenheimer approach

h = heavy: b, <u>b</u> l=light:u,d,gluons

Step 1: fix static b and <u>b</u> at distance r: determine E_n(r) for light d.o.f.: lattice QCD Step 2: consider motion of heavy d.o.f. in the potential determined in step 1 with non-relativistic Schrodinger equation [Braaten et al PRD 1402.0438, Brambilla et al PRD 1707.09647, Bali et al. hep-lat/0505012 PRD, Bicudo & Wagner 1209.6274 + many others ..]

aim:

Four different sets of quantum numbers considered couple to J^{PC}=1⁺⁻ (Zb) B π(p≠0 ρ(p≠0) ρ(p=0) b₁(p≠0 π(p=0 d u π(p≠0 ρ(p≠0 a1(p=0 a₀(p≠0 $b_1(p=0)$ a₁(p≠0 (a) (b) $J_z^l = 0$, $C \cdot P = -1$, (c) $J_z^l = 0$, $C \cdot P = +1$, (d) $J_z^l = 0$, $C \cdot P = +1$, (e) $J_z^l = 0$, $C \cdot P = -1$, $\epsilon = -1$ $\epsilon = +1$ $S_h = 1 \& J_l = 0$ $S_h = 0 \& J_l = 1$

 $\Upsilon \pi$

 $\eta_c \rho$

18

Potential V(r) between B and <u>B</u>*

7

8

in agreement with only previous lattice study Bicudo, Cichy, Peters, Wagner [proceedings : Lat16: 1602.07621]

Conclusions on S_h=1, J_l=0: peak above BB* for shallow bound state Z_b

Schrodinger equation for BB* motion -> scattering phase shift δ -> cross section σ

Conclusion from our lattice study [in agreement with Wagner & Bicudo & Peters]

- attraction between B and <u>B</u>* renders bound state Zb
- for certain parametrizations bound state is close below threshold and renders peak in BB* cross-section above threshold

Re-analysis of exp data [Wang, Baru, Filin, Hanhart, Nefediev, Wynen, 1805.07453, PRD 2018]:

- Zb is virtual bound state few MeV below B<u>B</u>* [when coupling to (<u>bb)(du</u>) omitted]
- renders peak above threshold

Conclusions

Results of these lattice QCD studies:

• many conventional charmonium resonances and bound states with I=0 confirmed

• two unconventional charmonium-like states with I=0 identified

• Zb resonances likely related to significant attraction between B and B*

 $D\bar{D}, D_s\bar{D}_s$

Backup

Lattice details for charmonium-like studies

CLS ensembles with u/d, s dynamical quarks $a \simeq 0.086$ fm

N_L=24, 32

lat exp $m_{u/d} > m_{u/d}^{exp}$ $m_s < m_s^{exp}$ $m_u + m_d + m_s = m_u^{exp} + m_d^{exp} + m_s^{exp}$

m [MeV]	lat	ехр
m _π	280(3)	137
m _D	1927(2)	1867
m _{Ds}	1981(1)	1968
M _{av}	3103(3)	3068

separation between $D\underline{D}$ and $D\underline{s}\underline{D}\underline{s}$ threshols smaller than in exp

Energies of eigen-states E_n in irreps that contain J^{PC}=0⁺⁺,2⁺⁺

for m_D=1927 MeV

Extraction of matrix t(E): i,j=1,2 1: <u>D</u>D, 2: <u>D</u>SDS, 1=0,2

$$(t^{-1})_{ij} = rac{2}{E_{cm} \ p_i^l p_j^l} \ (\tilde{K}^{-1})_{ij} - i \ \rho_i \ \delta_{ij}$$

$$\det[\tilde{K}_{l;ij}^{-1}(E_{cm}) \ \delta_{ll'} - B_{ll';i}^{\vec{P},\Lambda}(E_{cm}) \ \delta_{ij}] = 0$$

Parametrization for K(s) matrix in each of two energy regions

$$rac{ ilde{K}_{ij}^{-1}(s)}{\sqrt{s}} = a_{ij} + b_{ij}s$$
 ,

 $s=E_{cm}^2$ we verified aposteriory that both regions can be smoothly connected

Luscher's equation

known matrix (we take into account that it is not diagonal in I=0,2)

package TwoHadronsInBox by C. Morningstar et al employed [1707.05817]

$$\rho_i \equiv 2p_i/E_{cm}$$

(b) Left pane: The same masses *m* as above, but shifted to $m - E^{ref} + E_{exp}^{ref}$ in order to account for the dominant effect of unphysical quark masses in the simulation. The reference energy is $E^{ref} = 2m_D (2m_{D_s})$ for the state closest to the $D\bar{D} (D_s\bar{D}_s)$ threshold, while $E^{ref} = M_{av} = \frac{1}{4}(3m_{J/\psi} + m_{\eta_c})$ for the remaining four states. The green lines denote experimental thresholds.

Quantum numbers relevant for Zb

h=heavy=b, \underline{b} $\vec{S}_h = \vec{S}_b + \vec{S}_{\overline{h}}$

l=light=u,d,gluons

exp+pheno continuum J^{PC}=1^{^+-}

 $Z_b(10610)$ as $B\underline{B}^*$ molecule

 $\begin{array}{ccc} \bar{b}\gamma_5 q \ \bar{q}\gamma_z b + \bar{b}\gamma_z q \ \bar{q}\gamma_5 b \propto (S_h \!=\! 1)(J_l \!=\! 0) + (S_h \!=\! 0)(J_l \!=\! 1) \\ \\ \mathbf{B} \quad \underline{\mathbf{B}^*} \quad \mathbf{B^*} \quad \underline{\mathbf{B}} \end{array}$

Bondar, Garmash, Milstein, Mizuk, Voloshin PRD84 054010, Voloshin PRD84 (2011) 031502 Wang, Baru, Filin, Hanhart, Nefediev, Wynen, 1805.07453, PRD 2018

Eigen-energies $E_n(r)$: channel $S_h=1$, $J_1=0$ (CP=-1, $\epsilon=-1$)

dot-dashed-lines: $E_n^{non-int}$

