# Resonances with heavy quarks from lattice (Bound states will be discussed by Daniel Mohler) 

## Sasa Prelovsek

University of Ljubljana \& Jozef Stefan Institute, Slovenia

SFB meeting<br>University of Regensburg, 6 and 7 October 2016

in collaboration with: C.B. Lang, D. Mohler, L. Leskovec, U. Skerbis

## Outline

Lattice QCD studies considering scattering of two hadrons in the rest frame

$$
H_{1}(p) H_{2}(-p)
$$

$\square$ charmonium resonances above open-charm threshold [Lang, Leskovec, Mohler, S.P.,1503.05363, JHEP 2015]

$$
J^{P C}=1^{--}: \quad D \bar{D} \rightarrow \psi(3770) \rightarrow D \bar{D} \quad \text { in p-wave }
$$

$\square$ lattice search for resonance $X(5568)$ in $B_{s} \pi^{+}$scat.
[Lang, Mohler, S.P., 1607.03185, PRD 2016]
aimed resonances that appear in scat. of hadrons with spin construction of lattice operators [S.P., Lang, Skerbis, 1607.06738]
vector-pseudoscalar (e.g J/ $\psi \pi$ for $Z_{c}$ resonance)
vector-nucleon (e.g. J/ $\psi$ p for $P_{c}$ resonance)
pseudoscalar-nucleon (e.g. $\pi p$ for Roper resonance)
lattice simulation of $\pi N$ in the Roper channel with $J^{P}=1 / 2^{+}$
[Lang, Leskovec, Padmanath, S.P., arxiv:1610.01422]

## Lattice gives discrete energies of eigenstates: $\mathrm{E}_{\mathrm{n}}$

Meson(like) system with given JPC is created by a number of interpolating fields

$$
\begin{aligned}
& J^{P C} \quad \mathscr{O}=\bar{q} \Gamma q, \quad\left(\bar{q} \Gamma_{1} q\right)_{\vec{p}_{1}}\left(\bar{q} \Gamma_{2} q\right)_{\vec{p}_{2}}, \quad\left[\bar{q} \Gamma_{3} \bar{q}\right]\left[q \Gamma_{4} q\right], \ldots \\
& \psi(3770), 1^{--}: \quad \bar{c} c, \quad(\bar{c} u)(\bar{u} c)=D \bar{D}, \quad[\overline{c u}][c u] \\
& C_{i j}(t)=\langle 0| \Theta_{i}(t) \mathscr{O}_{j}^{+}(0)|0\rangle=\sum_{n} Z_{i}^{n} Z_{j}^{n^{*}} e^{-E_{n} t}, \quad Z_{i}^{n}=\langle 0| \Theta_{i}|n\rangle
\end{aligned}
$$

All physical states with given J ${ }^{P C}$ appear as $E_{n}$ in principle (example: charmonium with $1^{++}$)

- "single-meson" states J/ $\Psi$
$\mathrm{m}_{\mathrm{J} / \psi}=\mathrm{E}_{1}$ for $\mathrm{P}=0$ (after extrapolations)
- "two-meson" states $D \bar{D}, \ldots$
$\mathrm{E}_{\mathrm{n}}$ rigorously render two-hadron scattering matrix (for example Dㅡㅛ scattering matrix)


## Rigorous treatment of hadrons near or above threshold

 scattering of two spin-less mesons in rest frame

| scattering phase shifts <br> at infinite volume | $\delta(E)$ | $E(L) \quad$energies from lattice <br> with spatial extent $L$ |
| :--- | :--- | :--- |

## Scattering of two mesons

one-channel (elastic) scattering with total momentum $\mathrm{P}=0$ : $\mathrm{E}=\mathrm{E}_{\mathrm{cm}}$
$\mathrm{E}_{\mathrm{n}}(\mathrm{L}) \xrightarrow{\text { Luscher's eq. }} \delta(\mathrm{E})$

Scattering matrix for partial wave $l$


$$
S(E)=e^{2 i \delta(E)}, \quad S(E)=1+2 i T(E), \quad T(E)=\frac{1}{\cot \delta(E)-i}
$$



# Charmonium 

in particular

## charmonium resonances

## Charmonia well below Dㅁ precisely known

$$
\begin{aligned}
& m=E(P=0): \\
& a \rightarrow 0 \\
& L \rightarrow \infty \\
& m_{q} \rightarrow m_{q}{ }^{\text {phy }}
\end{aligned}
$$

## Mass (MeV)


see also:
FNAL/MILC, 1412.1057

The omission of charm annihilation is the main remaining uncertainty

## Excited charmonia within single-hadron approach

just $\underline{c}$ interpolators used, strong decay of resonances above DD not taken into account


## Resonance $\psi(3770)$ and bound st. $\psi(2 S)$ from DD scattering in p-wave

$$
\begin{aligned}
O_{1, \ldots, 16}^{\bar{c} c} & =\bar{c} \Gamma c \quad(16 \text { operators }) \\
O_{1}^{D D} & =\left[\bar{c} \gamma_{5} u\left(e_{i}\right) \bar{u} \gamma_{5} c\left(-e_{i}\right)-\bar{c} \gamma_{5} u\left(-e_{i}\right) \bar{u} \gamma_{5} c\left(e_{i}\right)\right]+\{u \rightarrow d\} \\
O_{2}^{D D} & =\left[\bar{c} \gamma_{5} \gamma_{t} u\left(e_{i}\right) \bar{u} \gamma_{5} \gamma_{t} c\left(-e_{i}\right)-\bar{c} \gamma_{5} \gamma_{t} u\left(-e_{i}\right) \bar{u} \gamma_{5} \gamma_{t} c\left(e_{i}\right)\right]+\{u \rightarrow d\}
\end{aligned}
$$

$$
\left.2 m_{D}-\frac{\psi(3770)}{--\psi(2 S)-\frac{--\psi}{-1}} \right\rvert\,
$$



Wick contractions evaluated using

- distillation [Peardon et. al., 2009]
- stochastic distillation
[Morningstar et al., 2011]


First (exploratory) lattice simulation of a charmonium resonance above open-charm threshold taking into account its strong decay $\quad D \bar{D} \rightarrow \psi(3770) \rightarrow D \bar{D}$

## Eigen-energies $E_{n}$ in finite volume



## Resonance $\psi(3770)$ and bound st. $\psi(2 S)$ from DD scattering in $p$-wave

$$
E_{n} \rightarrow \delta\left(E_{n}\right) \rightarrow p^{3} \cot \delta(p) / \sqrt{s}
$$

$$
2 m_{D}\left|\frac{\psi(3770)}{--\psi(2 S)-}\right|
$$

This quantity presented as it is approx. linear near simple BW resonance:

- BW fit (i):

$$
\begin{aligned}
& T_{l}(s)=\frac{\sqrt{s} \Gamma(s)}{m_{R}^{2}-s-i \sqrt{s} \Gamma(s)}=\frac{1}{\cot \delta_{l}(s)-i} \\
& \Gamma(s)=\frac{g^{2}}{6 \pi} \frac{p^{3}}{s} \quad \frac{p^{3} \cot \delta(s)}{\sqrt{s}}=\frac{6 \pi}{g^{2}} 4\left(p_{R}^{2}-p^{2}\right)
\end{aligned}
$$

- fit (ii): captures also bound st.:
$R$ : $m_{R}$ : zero, $\Gamma_{R}$ : slope near zero
B: $\cot \delta=\mathrm{i}$


$$
\begin{aligned}
\frac{p^{3}}{\sqrt{s}} \cot \delta_{1}(s) & =A+B p^{2}+C p^{4} \\
p=i|p| \rightarrow p^{3} \cot \delta & =(i|p|)^{3} i=|p|^{3}>0
\end{aligned}
$$



## Resonance $\psi(3770)$ and bound st. $\psi(2 S)$ from DD scattering in $p$-wave


$\mathcal{O}: \bar{c} c, D \bar{D}, \quad J^{P C}=1^{--}$
DD scat. in p-wave is simulated
T-matrix is determined from $\mathrm{E}_{\mathrm{n}}$
Fit of T-matrix gives:

BW resonance $\psi(3770)$ :
$m_{R}$ (magenta diamonds): $\delta=\pi / 2$
$\Gamma$ (given below): from slope near $\delta=\pi / 2$

Bound state $\psi(2 \mathrm{~S})$ from pole in T :
$m_{B}$ (magetna triangles): cot $\delta=i$

| $\Psi(3770)$, fit (ii) | Mass $[\mathrm{MeV}]$ | g (no unit) |
| :--- | :--- | :--- |
| Lat $\left(\mathrm{m}_{\pi}=266 \mathrm{MeV}\right)$ | $3774 \pm 6 \pm 10$ | $19.7 \pm 1.4$ |
| Lat $\left(\mathrm{m}_{\pi}=156 \mathrm{MeV}\right)$ | $3789 \pm 68 \pm 10$ | $28 \pm 21$ |
| Exp. | $3773.15 \pm 0.33$ | $18.7 \pm 1.4$ |

$$
\Gamma=\frac{g^{2}}{6 \pi} \frac{p^{3}}{s}
$$

## Search for resonance $X(5568)$ in $B_{s} \pi^{+}$scattering

## DO coll. found resonance $X(5568)$ in $B_{s} \pi^{+}$scattering



D0 collaboration
february 2016
1602.07588

- 「=22 MeV
- JP not measured
- The only hadron with 4 different flavors ?!

$$
B_{s} \pi^{+}
$$

$$
\bar{b} s \bar{d} u
$$

## Search for $X(5568)$ in $B_{s} \pi^{+}$scattering

- soon after D0 result, several phenomenological studies appeared
- those who could find support, suggested it has $\mathrm{J}^{\mathrm{P}}=\mathrm{O}^{+}$
- if $X(5568)$ is $J^{P}=0^{+}$:
- the only strong decay channel is $\mathrm{B}_{\mathrm{s}} \pi^{+}$
- the next threshold is BK and it is 210 MeV above $\mathrm{X}(5568)$ !
- exotic resonance in elastic channel !? This is something lattice QCD can do!
[Lang, Mohler, S.P., 1607.03185, PRD 2016]
- note: all other exotic candidates $\left(Z_{c}, Z_{b}, \ldots.\right)$ are resonances but lie
- next to a higher threshold - above several thresholds
this is much more challenging
that is why it is difficult to establish
those exotic states on lattice


## Employed operators: $\mathrm{B}_{\mathrm{s}} \pi^{+}$and BK

$$
\begin{aligned}
& O_{1,2}^{B_{s}(0) \pi(0)}=\left[\bar{b} \Gamma_{1,2} s\right](\mathbf{p}=0)\left[\bar{d} \Gamma_{1,2} u\right](\mathbf{p}=0) \\
& O_{1,2}^{B_{s}(1) \pi(-1)}=\sum_{\mathbf{p}}= \pm \mathbf{e}_{\mathbf{x}, \mathbf{y}, \mathbf{z}} \\
& {\left[\bar{b} \Gamma_{1,2} s\right](\mathbf{p})\left[\bar{d} \Gamma_{1,2} u\right](-\mathbf{p}) } \\
& O_{1,2}^{B(0) K(0)}=\left[\bar{b} \Gamma_{1,2} u\right](\mathbf{p}=0)\left[\bar{d} \Gamma_{1,2} s\right](\mathbf{p}=0) \\
& \Gamma_{1}=\gamma_{5} \text { and } \Gamma_{2}=\gamma_{5} \gamma_{t}
\end{aligned}
$$

BK threshold 210 MeV higher;
the interpolators are employed just for completeness
[Lang, Mohler, S.P., 1607.03185, PRD 2016]

## Analytic expectation for $\mathrm{E}_{\mathrm{n}}$ if $\mathrm{X}(5568)$ exists

based on $m_{x}$ and $\Gamma_{X}$ as measured by DO exp


$$
\begin{gathered}
\delta_{B_{s} \pi}(p)=\operatorname{atan}\left[\frac{E \Gamma(E)}{m_{X}^{2}-E^{2}}\right], \quad \Gamma(E)=\Gamma_{X} \frac{p(E) m_{X}^{2}}{p\left(m_{X}\right) E^{2}} \\
\delta_{B_{s} \pi}(p)=\operatorname{atan}\left[\frac{\sqrt{\pi} p L}{2 Z_{00}\left(1 ;(p L / 2 \pi)^{2}\right)}\right]
\end{gathered}
$$

Results of $E_{n}$ from actual lattice simulation


Lattice Analytic
(if X exists)


Lattice result (obtained before march 22nd 2016 - see next slide):

- no indication of $X(5568)$
- interactions in $B_{s} \pi^{+}$and $B K$ system are small


## Analytic expectation for

 $E_{n}$ if $X(5568)$ existsbased on $m_{x}$ and $\Gamma_{X}$ as measured by DO exp


$$
\delta_{B_{s} \pi}(p)=\operatorname{atan}\left[\frac{E \Gamma(E)}{m_{X}^{2}-E^{2}}\right], \quad \Gamma(E)=\Gamma_{X} \frac{p(E) m_{X}^{2}}{p\left(m_{X}\right) E^{2}}
$$

$$
\delta_{B_{s} \pi}(p)=\operatorname{atan}\left[\frac{\sqrt{\pi} p L}{2 Z_{00}\left(1 ;(p L / 2 \pi)^{2}\right)}\right]
$$



LHCb data published in 1608.00435: PRL 2016


Previous two examples concerned scattering of two spinless hadrons: pseudoscalar-pseudoscalar (DD and $B_{s} \pi^{+}$)

## Lattice operators for scattering of particles with spin

[S.P., Lang, Skerbis, 1607.06738]

## Motivation

- Mainly PP scattering was simulated on lattice up to now $\Rightarrow$ scattering phase shift extracted ( $P$ has no spin)
- $\mathrm{H}^{(1)} \mathrm{H}^{(2)}$ : where one or both H carry spin was explored mostly only for $\mathrm{L}=0$ many interesting channels still unexplored, particularly for $L>0$

I will consider construction of $\mathrm{H}^{(1)} \mathrm{H}^{(2)}$ interpolators where H is one of $\mathrm{P}, \mathrm{V}, \mathrm{N}$ hadrons, which is (almost) stable with respect to strong decay:
$\mathbf{P}=$ psuedoscalar $\left(J^{P}=0^{\wedge-}\right)=\pi, K, D, B, \eta_{c}, \ldots$
$\mathrm{V}=$ vector $\quad\left(\mathrm{J}^{\mathrm{P}}=1^{\wedge}-\right)=\mathrm{D}^{*}, \mathrm{~B}^{*}, \mathrm{~J} / \Psi, \Upsilon_{b}, \mathrm{~B}_{\mathrm{c}}{ }^{*}, \ldots \quad$ (but not directly applicable to $\rho$ as is unstable...)
$\mathbf{N}=$ nucleon $\quad\left(J^{\mathrm{P}}=1 / 2^{\wedge+}\right)=p, \mathrm{n}, \wedge, \wedge_{c^{\prime}}, \Sigma, \ldots \quad$ (but not directly applicable to $\mathrm{N}^{-}(1535)$ as is unstable...)

I will consider interpolators for channels :
PV: meson resonances and $\underline{Q Q}$-like exotics (e.g. $\left.\pi \mathrm{J} / \Psi, \mathrm{D} \underline{\mathrm{D}}^{*} ..\right)$
$\mathbf{P N}$ : baryon resonances (e.g. $\pi \mathrm{N}, \mathrm{K} \mathrm{N} . .$. ) and pentaquarks
NV: baryon resonances and pentaquarks
NN: nucleon-nucleon and deuterium, baryon-baryon

## Motivation

- Mainly PP scattering was simulated on lattice up to now $\Rightarrow$ scattering phase shift extracted ( $P$ has no spin)
- $\mathrm{H}^{(1)} \mathrm{H}^{(2)}$ : where one or both H carry spin was explored mostly only for $\mathrm{L}=0$ many interesting channels still unexplored, particularly for $L>0$

I will consider construction of $\mathrm{H}^{(1)} \mathrm{H}^{(2)}$ interpolators where H is one of $\mathrm{P}, \mathrm{V}, \mathrm{N}$ hadrons, which is (almost) stable with respect to strong decay:
$\mathrm{P}=$ psuedoscalar $\left.\left(\mathrm{J}^{\mathrm{P}}=0^{\wedge}\right)^{-}\right)=\pi, \mathrm{K}, \mathrm{D}, \mathrm{B}, \eta_{\mathrm{c}}, \ldots$
$V=$ vector $\quad\left(J^{\mathrm{P}}=1^{\wedge}-\right)=D^{*}, \mathrm{~B}^{*}, \mathrm{~J} / \Psi, \Upsilon_{b}, \mathrm{~B}_{\mathrm{c}}{ }^{*}, \ldots \quad$ (but not directly applicable to $\rho$ as is unstable...)
$N=$ nucleon $\quad\left(J^{\mathrm{P}}=1 / 2^{\wedge+}\right)=p, n, \wedge, \Lambda_{c}, \Sigma, \ldots \quad$ (but not directly applicable to $\mathrm{N}^{-}(1535)$ as is unstable...)

I will consider interpolators for channels :

$$
\left\langle O_{i}(t) \mid O_{j}^{\dagger}(0)\right\rangle \rightarrow E_{n} \rightarrow \delta(E)
$$

PV: meson resonances and $\underline{Q} Q$-like exotics (e.g. $\left.\pi J / \Psi, D \underline{D}^{*} ..\right)$
$\mathbf{P N}$ : baryon resonances (e.g. $\pi \mathrm{N}, \mathrm{K} \mathrm{N} . .$. ) and pentaquarks
$\mathbf{N V}$ : baryon resonances and pentaquarks
NN: nucleon-nucleon and deuterium, baryon-baryon

- $\mathrm{O}=\mathrm{HH}$ needed to create/annihilate HH system
- $\mathrm{E}_{\mathrm{n}}$ related to phase shifts for HH scattering
- two spinless particles Luscher (1991):
- two particles with arbitrary spin Briceno, PRD89, 074507 (2014)


# Some previous related work on lattice HH operators for hadrons with spin and $\mathrm{L} \neq 0$ 

## Partial-wave method for HH :

Berkowitz, Kurth, Nicolson, Joo, Rinaldi, Strother, Walker-Loud, 1508.00886
Wallace, Phys. Rev. D92, 034520 (2015), [arXiv:1506.05492]
Projection method for HH:
M. Göckeler et al., Phys.Rev. D86, 094513 (2012), [arXiv:1206.4141].

Helicity operators for single-H:
Thomas, Edwards and Dudek, Phys. Rev. D85, 014507 (2012), [arXiv:1107.1930]

Some aspects of helicity operators for HH :
Wallace, Phys. Rev. D92, 034520 (2015), [arXiv:1506.05492].
Dudek, Edwards and Thomas, Phys. Rev. D86, 034031 (2012), [arXiv:1203.6041].

Which CG of $\mathrm{H}_{1}$ and $\mathrm{H}_{2}$ to $\mathrm{H}_{1} \mathrm{H}_{2}$ irreps are nonzero; values of CG not published:
Moore and Fleming, Phys. Rev. D 74, 054504 (2006), [arXiv:hep- lat/0607004].
etc ...

However: for a lattice practitioner who was interested in a certain channel, for example (PV scattering in L=2 or VN scattering with $\lambda_{V}=1$ and $\lambda_{N}=1 / 2$ )
there were still lots of puzzles to beat before constructing a reliable interpolator ..

## We restrict to total momentum zero

$H^{(1)}(p) H^{(2)}(-p), P_{t o t}=0$
Advantage of $P_{\text {tot }}=0$ :

- parity $P$ is a good number $\quad$ not true for $P_{\text {tot }} \neq 0$
- channels with even and odd L do not mix in the same irrep 5


## Building blocks H : required transformation properties of H

to prove correct transformation properties of HH
rotations R
$R H_{m_{s}}(p) R^{-1}=\sum_{m_{s}^{\prime}} \underbrace{D_{m_{s}^{\prime} m_{s}}^{s}(R)^{*}} H_{m_{s}^{\prime}}(R p), \quad I H_{m_{s}}(p) I=(-1)^{P} H_{m_{s}}(-p)$
Wigner D matrix
$m_{s}$ is a good quantum number at $p=0$ :

$$
S_{z} H_{m_{s}}(0) S_{z}^{-1}=m_{s} H_{m_{s}}(0)
$$

$m_{s}$ is not good quantum number in general for $p \neq 0$ : in this case it denotes $m_{s}$ of corresponding $H_{m s}(p=0)$

## Non-practical choice of H : canonical fields $\mathrm{H}^{(\mathrm{c})}$

with correct transformation properties under $R$ and I

$$
H_{m_{s}}^{(c)}(p) \equiv L(p) H_{m_{s}}(0) \quad \mathrm{L}(\mathrm{p}) \text { is boost from } 0 \text { to } \mathrm{p} ; \quad \text { drawback: } \mathrm{H}^{(c)}(\mathrm{p}) \text { depend on } \mathrm{m}, \mathrm{E}, . .
$$

$$
\begin{aligned}
& V_{m_{s}=1}(0)=\frac{1}{\sqrt{2}}\left[-V_{x}(0)+i V_{y}(0)\right] \rightarrow V_{m_{s}=1}^{(c)}\left(p_{x}\right)=\frac{1}{\sqrt{2}}\left[-\gamma V_{x}\left(p_{x}\right)+i V_{y}\left(p_{x}\right)\right] \quad\left(\begin{array}{c}
-1 \\
i \\
0
\end{array}\right) \xrightarrow{\Lambda^{1}\left(p_{x}\right)}\left(\begin{array}{ccc}
\gamma & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
-1 \\
i \\
0
\end{array}\right)=\left(\begin{array}{c}
-\gamma \\
i \\
0
\end{array}\right) \\
& N_{m_{s}=1 / 2}(0)=\mathcal{N}_{1}(0) \rightarrow N_{m_{s}=1 / 2}^{(c)}\left(p_{x}\right) \propto \mathcal{N}_{1}\left(p_{x}\right)+\frac{p_{x}}{E+m} \mathcal{N}_{4}\left(p_{x}\right) \\
& \mathcal{N}_{\mu=1, ., 4} \text { are Dirac components in Dirac basis } \\
& \left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) \xrightarrow{\Lambda^{1 / 2}\left(p_{x}\right)}\left(\begin{array}{c}
1 \\
0 \\
0 \\
\frac{p_{x}}{E+m}
\end{array}\right)
\end{aligned}
$$

## Non-practical choice of H : canonical fields $\mathrm{H}^{(\mathrm{c})}$

with correct transformation properties under R and I

$$
H_{m_{s}}^{(c)}(p) \equiv L(p) H_{m_{s}}(0) \quad \mathrm{L}(\mathrm{p}) \text { is boost from } 0 \text { to } \mathrm{p} ; \quad \text { drawback: } \mathrm{H}^{(c)}(\mathrm{p}) \text { depend on } \mathrm{m}, \mathrm{E}, . .
$$

$$
V_{m_{s}=1}(0)=\frac{1}{\sqrt{2}}\left[-V_{x}(0)+i V_{y}(0)\right] \rightarrow V_{m_{s}=1}^{(c)}\left(p_{x}\right)=\frac{1}{\sqrt{2}}\left[-\gamma V_{x}\left(p_{x}\right)+i V_{y}\left(p_{x}\right)\right] \quad\left(\begin{array}{c}
-1 \\
i \\
0
\end{array}\right) \xrightarrow{\Lambda^{1}\left(p_{x}\right)}\left(\begin{array}{lll}
\gamma & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
-1 \\
i \\
0
\end{array}\right)=\left(\begin{array}{c}
-\gamma \\
i \\
0
\end{array}\right)
$$

$N_{m_{s}=1 / 2}(0)=\mathcal{N}_{1}(0) \rightarrow N_{m_{s}=1 / 2}^{(c)}\left(p_{x}\right) \propto \mathcal{N}_{1}\left(p_{x}\right)+\frac{p_{x}}{E+m} \mathcal{N}_{4}\left(p_{x}\right)$
$\mathcal{N}_{\mu=1, . ., 4}$ are Dirac components in Dirac basis

$$
\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) \xrightarrow{\Lambda^{1 / 2}\left(p_{x}\right)}\left(\begin{array}{c}
1 \\
0 \\
0 \\
\frac{p_{x}}{E+m}
\end{array}\right)
$$

## Practical choice of H

with correct transformation properties under R and ।

$$
\begin{array}{ll}
\qquad P(p)=\sum_{x} \bar{q}(x) \gamma_{5} q(x) e^{i p x} \\
V_{m_{s}= \pm 1}(p)=\frac{1}{\sqrt{2}}\left[\mp V_{x}(p)+i V_{y}(p)\right], \quad V_{m_{s}=0}(p)=V_{z}(p) & V_{i}(p)=\sum_{x} \bar{q}(x) \gamma_{i} q(x) e^{i p x}, i=x, y, z \\
N_{m_{s}=1 / 2}(p)=\mathcal{N}_{\mu=1}(p), \quad N_{m_{s}=-1 / 2}(p)=\mathcal{N}_{\mu=2}(p) & \mathcal{N}_{\mu}(p)=\sum_{x} \epsilon_{a b c}\left[q^{a T}(x) C \gamma_{5} q^{b}(x)\right] q_{\mu}^{c}(x) e^{i p x}, \quad \mu=1, . ., 4 \\
\text { These H are employed as building block in our HH operators } & \text { simple examples }
\end{array}
$$

## Required transformation properties of $\mathrm{O}=\mathrm{HH}$

$$
R O^{J, m_{J}}\left(P_{t o t}=0\right) R^{-1}=\sum_{m_{J}^{\prime}} D_{m_{J} m_{J}^{\prime}}^{J}\left(R^{-1}\right) O^{J, m_{J}^{\prime}}(0) \quad I O^{J, m_{J}}(0) I=(-1)^{P} O^{J, m_{J}}(0)
$$

relevant rotations: $\quad R \in O^{(2)}$ o with 24 el. for J=integer ; $\mathrm{O}^{2}$ with 48 elements for J=half-integer The group including inversion I: $\quad \mathrm{O}_{\mathrm{h}}$ with 48 el . for $\mathrm{J}=$ integer ; $\mathrm{O}_{\mathrm{h}}{ }_{\mathrm{h}}$ with 96 elements for $\mathrm{J}=$ half-integer

The representation $O^{\prime}$ reducible under $O^{(2)}$. Irreducible representations (irreps) are denoted by $\Gamma$ and rows $r$

$$
R O_{\Gamma, r} R^{-1}=\sum_{r^{\prime}} T_{r, r^{\prime}}^{\Gamma}\left(R^{-1}\right) O_{\Gamma, r^{\prime}} \quad R \in O^{(2)}, \quad I O_{\Gamma, r} I=(-1)^{P} O_{\Gamma, r}
$$

| J | $\Gamma\left(\operatorname{dim}_{\Gamma}\right)$ |
| :---: | :---: |
| 0 | $A_{1}(1)$ |
| $\frac{1}{2}$ | $G_{1}(2)$ |
| 1 | $T_{1}(3)$ |
| $\frac{3}{2}$ | $H(4)$ |
| 2 | $E(2) \oplus T_{2}(3)$ |
| $\frac{5}{2}$ | $H(4) \oplus G_{2}(2)$ |
| 3 | $A_{2}(1) \oplus T_{1}(3) \oplus T_{2}(3)$ |

## Method I: Projection operators

$$
O_{|p|, \Gamma, r, n}=\sum_{\tilde{R} \in O_{h}^{(2)}} T_{r, r}^{\Gamma}(\tilde{R}) \tilde{R} H^{(1), a}(p) H^{(2), a}(-p) \tilde{R}^{-1},
$$

$n=1, . ., n_{\max }$

Disadvantage:
not informative which continuum numbers (partial wave L or helicity ) each $\mathrm{O}_{\mathrm{n}}$ corresponds

This is remedied in next two method.s

VN in $\mathrm{H}^{-}, \mathrm{n}_{\max }=3:$
$O_{H-, r=1, n=1}=i N_{\frac{1}{2}}\left(e_{x}\right) V_{x}\left(-e_{x}\right)+i N_{\frac{1}{2}}\left(-e_{x}\right) V_{x}\left(e_{x}\right)+N_{\frac{1}{2}}\left(e_{y}\right) V_{y}\left(-e_{y}\right)+N_{\frac{1}{2}}\left(-e_{y}\right) V_{y}\left(e_{y}\right)$
$O_{H^{-}, r=1, n=2}=\ldots$
$O_{H^{-}, r=1, n=3}=\ldots$
Sasa Prelovsek

## Method II: Partial-wave operators

$\frac{\text { Starting annihilation operator }}{\text { (before subduction to irreps) }}$ Clebsch-Gordans $\quad$ Spherical Harmonics $\quad$ mentioned on slide 6 below

Proposed for NN in [Berkowitz, Kurth, Nicolson, Joo, Rinaldi, Strother, Walker-Loud, CALLAT, 1508.00886] There $Y_{I m}{ }^{*}$ appears where we have $\mathrm{Y}_{\mathrm{Im}}$

Proof (in our paper and backup slides): the correct transformation properties

$$
R_{a} O^{J, m_{J}, S, L} R_{a}^{-1}=\sum_{m_{J}^{\prime}} D_{m_{J} m_{J}^{\prime}}^{J}\left(R_{a}^{-1}\right) O^{J, m_{J}^{\prime}, S, L}
$$

follow from transformations of H (slide 4) and properties of $\mathrm{C}, \mathrm{Y}_{\mathrm{Im}}$ and D .

Example of PV operators

$$
\begin{aligned}
O^{|p|=1, J=1, m_{J}=0, L=0, S=1} & =\sum_{p= \pm e_{x}, \pm e_{y}, \pm e_{z}} \mathrm{P}(p) V_{z}(-p), \\
O^{|p|=1, J=1, m_{J}=0, L=2, S=1} & =\sum_{p= \pm e_{x}, \pm e_{y}} \mathrm{P}(p) V_{z}(-p)-2 \sum_{p= \pm e_{z}} \mathrm{P}(p) V_{z}(-p)
\end{aligned}
$$

Subduction to irreps discussed later on.

## Method III: helicity operators

[HH in continuum: Jacob, Wick (1959)]
[for single H on lattice: HSC, Thomas et al. (2012)]
[not widely used for HH on lattice yet]


- building blocks in partial-wave operators are $H_{m s}(p)$ and $m_{s}$ is not good for $p \neq 0$ :
- Helicity $\boldsymbol{\lambda}$ is projection of $S$ to $p$. It is good also for particles in flight

$$
h \equiv S \cdot p /|p|
$$

- Definition of single-hadron helicity operator
denoted by superscript h

$$
H_{\lambda}^{h}(p) \equiv R_{0}^{\downarrow_{0}^{\text {rotation from } \mathrm{p}_{\mathrm{z}} \text { to } \mathrm{p}}} H_{\substack{\operatorname{god} \mathrm{m}_{s}}}^{p}\left(p_{z}\right)\left(R_{0}^{p}\right)^{-1}
$$

- Helicity is not modified under $R$ (pand stransform the same way)

$$
R H_{\lambda}^{h}(p) R^{-1}=e^{i \varphi(R)} H_{\lambda}^{h}(R p)
$$

- Two-hadron O:

$$
O^{|p|, J, m_{J}, \lambda_{1}, \lambda_{2}, \lambda}=\sum_{R \in O^{(2)}} D_{m_{J}, \lambda}^{J}(R) R H_{\lambda_{1}}^{(1), h}(p) H_{\lambda_{2}}^{(2), h}(-p) R^{-1}
$$

$p$ is arbitrary momentum in given shell $|p| ; R$ does not modify $\lambda_{1,2}$, so $H_{1,2}$ have chosen $\lambda_{1,2}$ in all terms



$$
\begin{aligned}
& \mathrm{R}^{\prime}=\mathrm{R}_{\mathrm{a}} \mathrm{R} \\
& D\left(R_{1} R_{2}\right)=D\left(R_{1}\right) D\left(R_{2}\right)
\end{aligned}
$$

$=\sum_{m_{J}^{\prime}} D_{m_{J}, m_{J}^{\prime}}^{J}\left(R_{a}^{-1}\right) O^{J, m_{J}^{\prime}, \lambda_{1}, \lambda_{2}}$,

## Method III: helicity operators (continued)

Using definitions of $H_{\lambda}^{h}(p) \equiv R_{0}^{p} H_{m_{s}=\lambda}\left(p_{z}\right)\left(R_{0}^{p}\right)^{-1}$ and parity projection $\frac{1}{2}(\mathcal{O}+P I \mathcal{O} I)$

$$
\begin{array}{ll}
O^{|p|, J, m_{J}, P, \lambda_{1}, \lambda_{2}, \lambda}=\frac{1}{2} \sum_{R \in O^{(2)}} D_{m_{J}, \lambda}^{J}(R) & R R_{0}^{p}\left[H_{m_{s_{1}}=\lambda_{1}}^{(1)}\left(p_{z}\right) H_{m_{s_{2}}=-\lambda_{2}}^{(2)}\left(-p_{z}\right)\right. \\
& \left.+P I H_{m_{s_{1}}=\lambda_{1}}^{(1)}\left(p_{z}\right) H_{m_{s_{2}}=-\lambda_{2}}^{(2)}\left(-p_{z}\right) I\right]\left(R_{0}^{p}\right)^{-1} R^{-1} \\
\lambda=\lambda_{1}-\lambda_{2} &
\end{array}
$$

- $H$ are building blocks from slide 6 below: actions of $R$ and $I$ on $H_{m s}(p)$ are given in slide 4
- There are several choices of $R_{0}{ }^{p}$ which rotate from $p_{z}$ to $p$ :
- these lead to different phases in definition of $H_{\lambda}{ }^{h}$ : inconvenience
- but they lead to the same O above (modulo irrelevant overall factor): so no problem for such construction
- Simple choice for momentum shell $|p|=1: p=p_{z}$ and $R_{0}{ }^{p}=$ Identity
- paper provides details how to use functions from Mathematica for construction, also since Mathematica uses non-conventional defnition of $D$

$$
\begin{aligned}
& D_{m, m^{\prime}}^{j}\left[R_{\alpha \beta \gamma}^{\omega}\right]=F \cdot \text { WignerD }\left[\left\{j, m, m^{\prime}\right\},-\alpha,-\beta,-\gamma\right], \quad F=\{\begin{array}{l}
1: j=\text { integer } \\
\pm 1: j=\text { halfinteger, } \mathrm{F}(\omega+2 \pi)=-\mathrm{F}(\omega), \text { choice of sign in our paper } \\
\{\alpha, \beta, \gamma\}
\end{array}=\underbrace{\text { EulerAngles }[T]}_{\text {MATHEMATICA }} \quad T=\exp (-i \vec{n} \vec{J} \omega) \text { and }\left(J_{k}\right)_{i j}=-i \epsilon_{i j k}
\end{aligned}
$$

## one last step before reaching the results ... <br> Subduction of $O^{\prime}$ to irreducible representations

## subduction

| continum R subduction |  |  |
| :---: | :---: | :---: |
| Partial-wave operators | $\mathrm{O}^{\mathrm{J}, \mathrm{mJ}, \mathrm{L}, \mathrm{S}}$ | $O_{[p \mid, \Gamma, r}^{[J, S, L]}=\sum_{m_{J}} \mathcal{S}_{\Gamma, r}^{J, m_{J}} O^{\|p\|, J, m_{J}, S, L}$ |
| Helicity operators | $\mathrm{O}^{\mathrm{J}, \mathrm{mJ}, ~ \lambda 1, \lambda 2}$ | $O_{[p \mid, \Gamma, r}^{\left[J, P, \lambda_{1}, \lambda_{2}, \lambda\right]}=\sum_{m_{J}} \mathcal{S}_{\Gamma, r}^{J, m_{J}} O^{\|p\|, J, m_{J}, P, \lambda_{1}, \lambda_{2}, \lambda}$ |
|  |  | $\square$ |

The representation $\mathrm{O}^{\prime}$ is irreducible under continuum R .
But it is reducible under $R$ in discrete group lattice $\mathrm{O}^{(2)}$.
Operators that transform according to irrep $\Gamma$ and row $r$ obtained via subduction.

## Subduction matrices S

[Dudek et al., PRD82, 034508 (2010)
Edwards et al, PRD84, 074508 (2011)]

Single-hadron operators H: experience by Hadron Spectrum collaboration Phys. Rev. D 82, 034508 (2010)

- subduced operators $\mathrm{O}^{[J]}$ carry memory of continuum spin and dominantly couple to states with this J

Expectation for partial-wave and helicity operators HH obtained by subduction :

- $O_{[p, \Gamma, r}^{[J, S, L]}$ would dominantly couple to eigen-states with continuum (J,L,S)
- $O_{[p \mid, \Gamma, r}^{\left[J, P, \lambda_{1}, \lambda_{2}, \lambda\right]}$ would dominantly couple to eigen-states with continuum ( $J, \lambda 1, \lambda 2$ )
valuable for simulations give physics intuition on quant. num.


## $\mathrm{P}(1) \mathrm{V}(-1)$ operators, $\mathrm{T}_{1}{ }^{+}$, row= =1



Partial-wave and helicity operators expressed in terms of projection operators throughout.

## $\mathrm{N}(1) \mathrm{P}(-1)$ operators, $\mathrm{G}_{1}{ }^{+}$, row=e=1, p -wave

$$
\begin{aligned}
& \text { projection op. }\left\{\begin{aligned}
O_{G_{1}^{+}, r=1} & =N_{-\frac{1}{2}}\left(-e_{x}\right) \mathrm{P}\left(e_{x}\right)-N_{-\frac{1}{2}}\left(e_{x}\right) \mathrm{P}\left(-e_{x}\right)-i N_{-\frac{1}{2}}\left(-e_{y}\right) \mathrm{P}\left(e_{y}\right)+i N_{-\frac{1}{2}}\left(e_{y}\right) \mathrm{P}\left(-e_{y}\right) \\
& +N_{\frac{1}{2}}\left(-e_{z}\right) \mathrm{P}\left(e_{z}\right)-N_{\frac{1}{2}}\left(e_{z}\right) \mathrm{P}\left(-e_{z}\right)
\end{aligned}\right. \\
& \text { partial-wave op. }\left\{\begin{array}{rl} 
\\
O_{G_{1}^{\prime}, r=1}^{\left[J=\frac{1}{2}, m_{J}=\frac{1}{2}, L=1, S=\frac{1}{2}\right]}=O_{G_{1}^{+}, r=1} & \mathrm{JP}=1 / 2^{+}, \mathrm{S}=1 / 2, \mathrm{~L}=1
\end{array}\right. \\
& \text { helicity op. } \begin{cases}O_{G_{1}^{+}, r=1}^{\left[J=\frac{1}{2}, m_{J}=\frac{1}{2}, P=+, \lambda_{N}= \pm \frac{1}{2}, \lambda_{P}=0\right]}=O_{G_{1}^{+}, r=1} & \mathrm{JP}=1 / 2^{+}, \lambda_{\mathrm{N}}=1 / 2\end{cases}
\end{aligned}
$$

employed in lattice simulation of $\pi N$ scattering in $p$-wave
to study the Roper channel with $J^{P}=1 / 2^{+}$
[Lang, Leskovec, Padmanath, S.P., arxiv:1610.01422]

## Explicit expressions for all $H^{(1)}(p) H^{(2)}(-p)$



given in<br>[S. Prelovsek, U. Skerbis, C.B. Lang, arXiv: 1607:06738]

## Operators valuable to study resonances with heavy quarks

PV: meson resonances and QQ-like exotics (e.g. $\pi \mathrm{J} / \Psi, \mathrm{D} \underline{\mathrm{D}}^{*}$ for $\mathrm{Z}_{\mathrm{c}}$ )
PN: baryon resonances (e.g. $\pi \mathrm{N}$ for $\mathrm{N}^{*}, \mathrm{~K} N \ldots$...) and pentaquarks
NV: baryon resonances and pentaquarks (e.g. p $J / \psi$ for $P_{c}$ )
NN: nucleon-nucleon and deuterium, baryon-baryon

## Conclusions

I have discussed

- first study of charmonium resonance that takes into account its strong decay
- search for an exotic state $X(5568)$ that contains four different flavors in elastic scattering: we did not find evidence for it from lattice, in agreement with recent LHCb result
- construction of lattice operators for simulating scattering of two-hadrons with spin: neccessary to extract information on resonances that appear in PV, PN and VN, NN scattering


## Backup

## Lattice setup

PACS-CS

|  | Ensemble (1) | Ensemble (2) |
| :---: | :--- | :--- |
| $N_{L}^{3} \times N_{T}$ | $16^{3} \times 32$ | $32^{3} \times 64$ |
| $N_{f}$ | 2 | $2+1$ |
| $a[\mathrm{fm}]$ | $0.1239(13)$ | $0.0907(13)$ |
| $L[\mathrm{fm}]$ | $1.98(2)$ | $2.90(4)$ |
| $m_{\pi}[\mathrm{MeV}]$ | $266(3)(3)$ | $156(7)(2)$ |

- Wilon-clover quarks
- Fermilab method for c and b : [El Khadra, Kronfeld et al, 1997]

Rest hadron energies have sizable discretization errors but these largely cancel in splittings.
Only splittings with respect to a chosen reference mass are compared to experiment.

- evaluating Wick contractions to simulate scattering on the lattice is challenging and computationally intensive - that is part of the reason why a small number of studies have been made. We apply two methods
- distillation (Ensemble 1) [Peardon et. al., HSC, 2009]
- stochastic distillation (Ensemble 2) [Morningstar et al., 2011]

