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Lattice QCD studies considering scattering of two hadrons in the rest frame Hl(p)Hz(—p)

L charmonium resonances above open-charm threshold
[Lang, Leskovec, Mohler, S.P.,1503.05363, JHEP 2015]

JPC =1==: DD — (3770) — DD in p-wave
DO collaboration, 1602.07588

90 -

O lattice search for resonance X(5568) in B, it* scat. - o) DO Run I, 10.4 5'
[Lang, Mohler, S.P., 1607.03185, PRD 2016] -
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O aimed resonances that appear in scat. of hadrons with spin 20
construction of lattice operators [S.P., Lang, Skerbis, 1607.06738] "@# -

B, t* invariant mass  pgy,
vector-pseudoscalar (e.gJ/W m for Z_resonance)

vector-nucleon (e.g. )/ p for P_resonance)
pseudoscalar-nucleon (e.g. it p for Roper resonance)

lattice simulation of t N in the Roper channel with JP=1/2*
[Lang, Leskovec, Padmanath, S.P., arxiv:1610.01422]
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Lattice gives discrete energies of eigenstates: E,

Meson(like) system with given JPC is created by a number of interpolating fields

J*  o0-qTq, (q@Lq),; @Lq);, [GTgllalql.,..

Y(3770), 17 : ec, (cu)(uc)=DD,

l 1

C,0=(01g) g O|0) =Y Z' Z" ™', Z'=(0|g|n)

All physical states with given JP¢ appear as E, in principle (example: charmonium with 1**)

« “single-meson” states J/W M, =E; for P=0 (after extrapolations)

“two-meson” states DD,... E,, rigorously render two-hadron scattering matrix

(for example DD scattering matrix)
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Rigorous treatment of hadrons near or above threshold
scattering of two spin-less mesons in rest frame
DD o Y(3770) — DD

| i :
v analytic proposal: Luscher 1991 example

e «—>

# two mesons

in a lattice box

)

E(p) = /p? + m} + \/p? + m}

E(L)

3
&~
N
\V]
~
>

energies from lattice

scattering phase shifts 6( E)
at infinite volume

— . .
E( L) with spatial extent L
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Scattering of two mesons

one-channel (elastic) scattering with total momentum P=0: E=E_

Ml(p)l P
Luscher’s eq. .
E (L) > &(E) ()
Scattering matrix for partial wave / M,(-p) *”
. 1
S(E) =e*E) S(E)=1+4 2%T(E), T(E)=
(E) (E) = 1+ 2T(E), T(E) =
Bound state (B): Resonance (R) (of Breit-Wigner type):
: _ET p2ltl
cot[8(Ey)] =i, Eg<my+m, T(E) = I(E) =g

E2 —m%Jri ET’
Im[E]

Two types of plots will be shown:
. Re[E]
Locations of poles of T(E)

B
O I exp »
for res. and bound st. p—

* E(L) energies of lat. eigenstates

* mP"Y =m,, m, extracted from E(L)

ml+m2 O R
threshold 5



Charmonium
in particular

charmonium resonances
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Charmonia well below DD precisely known

[PDG]

1+ o+

see also:
FNAL/MILC, 1412.1057

The omission of charm
annihilation is the main
remaining uncertainty
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Excited charmonia within single-hadron approach

just cc interpolators used, strong decay of resonances above DD not taken into account

1500

Had. Spec. Coll, 1610.01073
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Resonance Y(3770) and bound st. Y(2S) from DD scattering in p-wave

o

Oic__,w =cl'c (16 operators) DD (-

OPP = [eysule;) wysc(—e;) — ysu(—e;) wyscle;)] + {u — d} iy (3770)
07 = [evsmiu(es) wysyie(—e) — eysyru(—e:) aysyec(e:)] + {u — d} 2Mp - e - P@S8) -~~~

- distillation [Peardon et. al., 2009]

./:\. /\. - stochastic distillation
'\:/ '\‘_/' [Morningstar et al., 2011]
r h J A

c quark le (18

u,d quarks

cc
- Wick contractions
. —1 +2 Y -
ce . evaluated using
G

First (exploratory) lattice simulation of a charmonium resonance above open-charm threshold

taking into account its strong decay DD —> ¢(3770) — DD

Lang, Leskovec, Mohler, S.P.,
S. Prelovsek, SFB meeting 2016 1503.05363, JHEP 2015 9



39
38

37

33
32

3.1

b,

Eigen-energies E, in finite volume
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PACS-CS
m, =266 MeV m, =156 MeV
L=2 fm [=2.9 fm
ensemble (1) ensemble (2) exp.
s __ 14
L \\ . —39
L \ [0) _
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Lang, Leskovec, Mohler, S.P.,
1503.05363, JHEP 2015 10



Resonance Y(3770) and bound st. Y(2S) from DD scattering in p-wave

3
E, — 6(E,) — p’°cotd(p)/v/s ¥(3770)
A 2Mp = 94 - P(28) - -
This quantity presented as it is approx. linear near simple BW resonance:
* BW fit (i): Ti(s) = VsT(s) B 1
N T s s —i/sT(s)  cotdy(s) —i
2 3 3
]_"‘(8) — g p p~ cot 6(8) _ 6_7T (p2 _p2)
61 s V5 g2 R
 fit (ii): captures also bound st.: 3
£_cotd1(s) = A+ Bp? + Cp* L r .
R : mg: zero, [ : slope near zero Vs Jly (1S
B:cot& =i p=ilp| — p*cots = (ilp|)*i = |p|> > 0
m,_ =266 MeV m_ =156 MeV

010_ II|IIII!IIII|III||IIII|I_Bwﬁt(i) 0-10—IIII|IIII IIII[III[]IIII|I_Bwﬁt(i)

0,05 - fit (i) 0,05 - fit (i)
T .00 2 1 < ooomm - T i
> . i - ] > 0. i == x\\ﬁ \ ]
é-o.os— - i-o.os— \ p3 cot 5
% 0.10- _ % 0.0 ]
£-0100 ] g 1 /s
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o | ] o - -
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-020 010 000 010 020 030 040 050 020 -010 0.00 010 020 030 040 050
v v ° [GeV'] P [GeV] Lang, Leskovec, Mohler, S.P.,
w(QS) S. Prelovsek, SFB meeting 2016 11
DD threshold 1503.05363, JHEP 2015



Resonance Y(3770) and bound st. Y(2S) from DD scattering in p-wave

Lat. Lat. Exp. .= D PC _ 1—-
m =266 MeV m =156 MeV O.cc,DD, J =~ =1
T f 3770, 12 DD scat. in p-wave is simulated
- " i
M m % e ] if 2m T-matrix is determined from E|
YT w ¥ o 37 Fit of T-matrix gives:
w(2S)
36 —3.6
% - _
o 33 13 BW resonance {(3770):
g345r 34 mg (magenta diamonds): 6=m/2
33 733 [ (given below): from slope near 6=m/2
32 3.2
L J/\lj i
3A= > e 3 Bound state {(2S) from pole in T:
: Y ) m, (Mmagetna triangles): cot &=i

extracted masses of hadrons

IR T o

Lat (m =266 Mev) 3774 +6210 19.7 +1.4 6 s
Lat (m =156 MeV) 3789 +68+10 28 + 21
Exp. 3773.15+ 0.33 18.7+1.4 Lang, Leskovec, Mohler, S.P.,

S. Prelovsek, SFB meeting 2016 1503.05363, JHEP 2015] 12



Search for resonance X(5568) in B, it* scattering
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DO coll. found resonance X(5568) in B, t* scattering

90
0wk a) DO Run II, 10.4 fb' DO collaboration
70 I?:.vl;?th background shape fixed february 2016
-------. Background
--------------- 1602.07588

N events / 8 MeV/c?
[*)]
o

Residuals (Data-Fit)

5._5 5.|55 516 5.€I55 517 5.|75 5.|8 5.t|35 5.9
m (B ) [GeV/c?]

B, " invariant mass

S. Prelovsek, SFB meeting 2016 14



: . : B, mt
Search for X(5568) in B, n* scattering

soon after DO result, several phenomenological studies appeared
those who could find support, suggested it has JP=0*
» if X(5568) is JP=0*:
- the only strong decay channel is B, rt*
- the next threshold is BK and it is 210 MeV above X(5568) !
- exotic resonance in elastic channel !? This is something lattice QCD can do!

[Lang, Mohler, S.P., 1607.03185, PRD 2016]

note: all other exotic candidates (Z,, Z,, ....) are resonances but lie

- next to a higher threshold } this is much more challenging

- above several thresholds that is why it is difficult to establish

those exotic states on lattice

S. Prelovsek, SFB meeting 2016
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Employed operators:
B. m*and BK

OES(O)W(O) = [EF]_,2S] (p = 0) [d_F]_,2U] (p = 0)

Oﬁg(l)w(—l) _ Z [EF1,2S] (p) [CZI‘1,2U] (—p)
p=ztexy z 2w/L

OﬁéO)K(O) = [l_)Fl,gu] (p = 0) [CZF]_,QS] (p = 0)

I'y =5 and 'y = v5¢

BK threshold 210 MeV higher;

the interpolators are employed just for completeness

[Lang, Mohler, S.P., 1607.03185, PRD 2016]

Analytic expectation for
E, if X(5568) exists

based on my and I, as measured by DO exp

- Bs(n)n(-n)
— BmK(n)
mB+mK
| my +/- T, /2
55 mp +m_
54+ -
33 '2|.5' . I3 . '3|.5' T4
L [fm]
_ ET(E) . p(E)ymk
5Bs7r(p) - a'ta’n [m%( _ E2] 9 F(E) - FXp(mX)E2
V/7pL
0p.»(p) = atan[
() 3 Zoo (1: (pL/2)%)
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Results of E, from
actual lattice simulation

l L=2.9 fm
Lattice Analytic
(if X exists)
59 5.9
It I . I
58— ._._._.o F —5.8
i E ] _—-—0—-—-—_ mB+mK
57 - —5.7
5.6 — 5.6
2. m, +/- T, /2
moF .
ss © o 5.5
54 - —5.4
- @71 ()7
53 53

Lattice result (obtained before march 22nd 2016 — see next slide).
* noindication of X(5568)

* interactions in B, t*and BK system are small

Analytic expectation for
_ E, if X(5568) exists

based on my and I, as measured by DO exp

- Bs(n)n(-n)
— BmK(n)

S I T I B T R
L [fm]
B ET(E) . p(E)ym%k
6B,x(p) = atan [—m?x — EQ] , T(E)= FXp—(mX)E?
V/7pL
55 - (p) = at
Bor(p) =8 an[zzoo(l;(pL/2w>2>

[Lang, Mohler, S.P., 1607.03185, PRD 2016] s. Prelovsek, SFB meeting 2016 17



Candidates / (1 MeV/c3)
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SEARCH FOR STRUCTURE IN THE

B.7* INVARIANT MASS SPECTRUM

LHCb-CONF-2016-004
http://cds.cern.ch/record/2140095/

Marco Pappagallo
University and INFN Bari

‘On behalf of the LHCb collaboration
[ ]

o
LHC Seminar, 22 March 2016, CERN

LHCb data published in
1608.00435: PRL 2016

[ Fit with signal component ]

[ Fit without signal component ]
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Previous two examples concerned scattering of two spinless hadrons:

pseudoscalar-pseudoscalar (DD and B, 1t*)

Lattice operators for scattering
of particles with spin

[S.P., Lang, Skerbis, 1607.06738]

S. Prelovsek, SFB meeting 2016
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Motivation

* Mainly PP scattering was simulated on lattice up to now =» scattering phase shift extracted (P has no spin)

«  H®HQ: where one or both H carry spin was explored mostly only for L=0

many interesting channels still unexplored, particularly for L>0

| will consider construction of H(1) H(2) interpolators

where H is one of P,V,N hadrons, which is (almost) stable with respect to strong decay:
P=psuedoscalar (J’=0") =mn,K,D,B,n,, ..

V=vector (JP=1%) =D* B* J/Y,Y,,B.,... (butnotdirectly applicable to p as is unstable...)
N=nucleon (IP=1/2") =p,n, A, A\, %, ... (but not directly applicable to N-(1535) as is unstable...)

| will consider interpolators for channels :

PV: meson resonances and QQ-like exotics (e.g. )/, D D* ..)
PN: baryon resonances (e.g. m N, KN ...) and pentaquarks
NV: baryon resonances and pentaquarks

NN: nucleon-nucleon and deuterium, baryon-baryon

Lattice operators for scattering of particles
with spin

Sasa Prelovsek 20



Motivation

* Mainly PP scattering was simulated on lattice up to now =» scattering phase shift extracted (P has no spin)

«  H®HQ: where one or both H carry spin was explored mostly only for L=0

many interesting channels still unexplored, particularly for L>0

| will consider construction of H(1) H(2) interpolators

where H is one of P,V,N hadrons, which is (almost) stable with respect to strong decay:

P=psuedoscalar (J’=0™) =m,K,D,B,n, ..

V=vector (J’=1%) =D* B* J/Y,Y,,B.,... (butnotdirectly applicable to p as is unstable...)
N=nucleon (JP=1/2"*)=p,n, A\, A\, Z, ... (but not directly applicable to N-(1535) as is unstable...)
| will consider interpolators for channels : (Ol(t)|0;(0)> — B, — §(F)

PV: meson resonances and QQ-like exotics (e.g. )/, D D* ..)
* O=HH needed to create/annihilate HH system

PN: baryon resonances (e.g. m N, KN ...) and pentaquarks _ [, related to phase shifts for HH scattering

NV: baryon resonances and pentaquarks - two spinless particles Luscher (1991):

- two particles with arbitrary spin

NN: nucleon-nucleon and deuterium, baryon-baryon - _
Briceno, PRD89, 074507 (2014)

(other authors: some specific cases)

Lattice operators for scattering of particles

Sasa Prelovsek . .
with spin



Some previous related work on lattice HH operators
for hadrons with spin and Lz0

Partial-wave method for HH:
Berkowitz, Kurth, Nicolson, Joo, Rinaldi, Strother, Walker-Loud, 1508.00886
Wallace, Phys. Rev. D92, 034520 (2015), [arXiv:1506.05492]

Projection method for HH:
M. Gockeler et al., Phys.Rev. D86, 094513 (2012), [arXiv:1206.4141].

Helicity operators for single-H:
Thomas, Edwards and Dudek, Phys. Rev. D85, 014507 (2012), [arXiv:1107.1930]

Some aspects of helicity operators for HH:
Wallace, Phys. Rev. D92, 034520 (2015), [arXiv:1506.05492].
Dudek, Edwards and Thomas, Phys. Rev. D86, 034031 (2012), [arXiv:1203.6041].

Which CG of H; and H, to H;H, irreps are nonzero; values of CG not published:
Moore and Fleming, Phys. Rev. D 74, 054504 (2006), [arXiv:hep- lat/0607004].

etc ...

However: for a lattice practitioner who was interested in a certain channel, for example
(PV scattering in L=2 or VN scattering with A,=1 and A =1/2)
there were still lots of puzzles to beat before constructing a reliable interpolator ..

Lattice operators for scattering of particles

Sasa Prelovsek . .
with spin



We restrict to total momentum zero
H(l)(p) H(Z)('p) ’ Ptot=0

Advantage of P, =0:

e parity P is a good number not true for P, #0
e channels with even and odd L do not mix in the same irrep

Building blocks H: required transformation properties of H

to prove correct transformation properties of HH

rotations R inversion |

RHy,(p) R = D3y (R)* Huy(Rp) ,  IHp,(p)I = (—1)" Hpn, (—p)
m/! \_'_J

annihilation field

Wigner D matrix

m, is a good quantum number at p=0: Sszs(O)Sz_l = mgHp, (0)

m. is not good quantum number in general for pz0: in this case it denotes m, of corresponding H,.(p=0)
Lattice operators for scattering of particles 5
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Non-practical choice of H: canonical fields H©)

with correct transformation properties under R and |

Hr(rf) (p) = L(p)Hp, (0) L(p) is boost from O to p;  drawback: H9(p) depend on m, E,..
© -1 Ay (7 0 0 -1
Vino=1(0) = 75 [=V2(0) + iV, (0)] = Viiia(p2) = J5[=7Va(Pe) + V(o)) i | =0 to)li|=
0 0 01 0
Nom=12(0) = N1(0) = N_ | (pe) o< NMi(pa) + 72 Na(pa) AU
0 0
0 Ez—):m

Nu=1,..,4 are Dirac components in Dirac basis

Lattice operators for scattering of particles
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Non-practical choice of H: canonical fields H©)

with correct transformation properties under R and |

Hr(ri) (p) = L(p)Hp, (0) L(p) is boost from O to p;  drawback: H9(p) depend on m, E,..
Vin=1(0) = 5[=Va(0) +iV,(0)] — Virli(p2) = 5[=7Va(ps) + iV, ()] i =0t o) =
0 0 01 0 0
Nim,=1/2(0) = Mi(0) = N (px) o< Ni(pe) + 225 Na(p) N (b
0 0
N . . . 0 Dz
Nuzl,__A are Dirac components in Dirac basis E4m
Practical choice of H
with correct transformation properties under R and |
P(p) = > q(z)ysq(z)e™
Ving=+1(p) = %[:F‘/x(p) +iVy ()], Vin=o(p) = Vi (p) Vi(p) = Zq(x)%q(w)eim, P =2,Y,2
Nooz12(p) = Nzt () Nopoee1/2(p) = Ny (p) Nu(p) = eareld™ (2)Crsd’ ()] gi(z) €7, p=1,..,4
These H are employed as building block in our HH operators simple examples
Lattice operators for scattering of particles
Sasa Prelovsek 6

with spin



Required transformation properties of O=HH

ROJmJ (Pto _O R— Z DmeJ )OJ’m,J (0) IOJ,mJ (O)I — (_1)POJ,mJ (0) continuum R

good parity since P,,=0 !

2
relevant rotations: R S O( ) O with 24 el. for J=integer ; 0% with 48 elements for J=half-integer

The group including inversion I: O,, with 48 el. for J=integer ; 0%, with 96 elements for J=half-integer

The representation O’ reducible under O, Irreducible representations (irreps) are denoted by I' and rows r

ROr,R™! = § Tr . (R")Orn ReO®,  IOr.I=(-1)"Or, discrete R
B
J I’ (dimr)
T(R) given for all irreps in 0 Ai(1)
Bernard, Lage, MeiRRner, Rusetsky, 1 G1(2)
JHEP 2008, 0806.4495 i Ty (3)
We use same conventions for rows.
3 H(4)
2| E@eTnE)
g H(4) ® G2(2)
3| A(1)eTi(3) ©T2(3)
Sasa Prelovsek Lattice operators for scattering of particles 7
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Method |: Projection operators

~

O|p|,F,r,n — Z TET(R) R H(l)’a(p) H(2),a(_p) R_l

)

R0 (2)
ReO;
L J
— Y
. . . “seed”: Each H2 can have any polarization m
T(R) given for all irreps in - e ] S
Bernard, Lage, MeiRner, Rusetsky, and direction p with given |p|. Different choices
JHEP 2008, 0806.4495 lead to different linearly independent O,

Some examples for |p|=1:
PVinT,* ,n__=2:

max_

OT1+,7'=3,'n,=1 = P(e;)Va(—e;) + P(—e.)V(ez)
Orst r—g 2 = P(€2)Va(—€s) + P(—€5)Vz(€a) + Pley)Va(—ey) + P(—€)Vz(ey)

PN inH", n_.=1:
Opr+ r=1 = —iNy (—€2)P(es) + Ny (ex)P(—es) — Ny (—ey)P(ey) + Ni(ey)P(—e,)

VNinH ,n 3:

O-r=tpn=1= 'iN% (ex)Va(—es) + iN% (—ez)Va(es) + N% (ey)%(_ey) + N% (_ey)Vy(ey)
OH‘,T:l,n=2 = e

max_

OH— r=1,n=3 — -+ - . .
r=Ln= Lattice operators for scattering of particles
Sasa Prelovsek P gotp

with spin

Disadvantage:

not informative which
continuum numbers
(partial wave L or helicity )
each O, corresponds

This is remedied in next two
method.s



Method Il: Partial-wave operators

building blocks H

Starting annihilation operator Clebsch-Gordans Spherical Harmonics mentioned on slide 6 below
(before subduction to irreps) L I ).
f i I | | i
pl,Jim,S,L _ Jm, Sms (o) O (2) (_
O _ CLmL,SmSCS1m31,Szm32 YL’m,L (Rp) Hmsl (Rp) Hmsg( Rp)
mr,ms,Ms1,Ms2 ReO

Proposed for NN in [Berkowitz, Kurth, Nicolson, Joo, Rinaldi, Strother, Walker-Loud, CALLAT, 1508.00886] There Y,,” appears where we have Y, ,

Proof (in our paper and backup slides): the correct transformation properties

_ _ /
RaOJ’mJ’S’LRa 1 _ § :DJ ) (Ral)OJ’mJ’S’L
J
my

mjym

follow from transformations of H (slide 4) and properties of C, Y, , and D.

=1,J=1,m;=0,L=0,5=1 _
Example of PV operators o " = Z P(p)V.(-p) ,
p==tez,Tey,Te.

OPIFLI=ms=0=25=t = % P(p)Va(—p) =2 ) P(p)Va(-p)

p==tez,Tey p==e,

Subduction to irreps discussed later on.

Lattice operators for scattering of particles

Sasa Prelovsek . .
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Method lll: helicity operators ‘04

[HH in continuum: Jacob, Wick (1959)] N(y
[for single H on lattice: HSC, Thomas et al. (2012)] -p 7
[not widely used for HH on lattice yet]

building blocks in partial-wave operators are H_.(p) and m_ is not good for p#0:

Helicity A is projection of S to p. It is good also for particles in flight h=5-p / |p|

rotation from p, to p

Definition of single-hadron helicity operator H;\l(p) = Rg Hmszk(pz) (Rg)_

denoted by superscript h good m,

h —1 (R h
He||C|ty is not modified under R (p and S transform the same way) RH}\ (p)R — eup( )H)\ (Rp)

Two-hadron O: | QbbJmsdded = N™ pJ (R) R HP" (p) HP" (—p) R
ReO®)

p is arbitrary momentum in given shell |p|; R does not modify A, ,, so H; , have chosen A, , in all terms

Proof: R,O7mMMR = N DI (R) R.R H}, (p)HY,(—p) R'R,
RecO®) RI=R R
= Y D} \(BS'R) R H} (p)H}(—p) R~ @
ReO®@)
D(RiR,) = D(Ry)D(R
= N D (RDL (R R HE()HE (—p) B (Fafy) = D(Br) D(Re)
R'€0® m/;

— D OJmJ A1,A2
§ : my, mJ )
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V(p) 2°
/ﬂ'pin

Method III: helicity operators (continued; «,

Using definitions of H}(p) = Rf Hm,—x(p:) (RE)™" and parity projection (O + PIOI)

m 1
OlpI,J, J,P’)‘l’)‘z’ _— Z DmJ, [H( ) —)\1 (pz)H’IS’lZ2——)\2(_pz)
ReO(2)

+PIH _, (p)HS _,,(=p2) 1] (R) 'R

m32—

A=A — X

H are building blocks from slide 6 below: actions of R and | on H,,(p) are given in slide 4

There are several choices of R,” which rotate from p, to p:

- these lead to different phases in definition of H," : inconvenience

- but they lead to the same O above (modulo irrelevant overall factor): so no problem for such construction
Simple choice for momentum shell |p|=1: p=p, and R,P=Identity

paper prOVideS details how to use functions from Mathematica for ConStrUCtion, also since Mathematica uses non-conventional defnition of D

1 : j = integer

| RY F -WignerD[{j,m,m'}, —a,—B,—7], F = _
m " [ aﬂv] & [{ } 7] +1: j = halfinteger, F(w + 27) = —F(w) , choice of sign in our paper

{o, 8,7} = EulerAngles[T]| T = exp(—iftJw) and (Jy)i; = —i€ijk
\_'_J

MATHEMATICA
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one last step before reaching the results ...

Subduction of Q' to irreducible representations

subduction

continum R m discrete R in discrete group 0?)

O[J’SaL] — E SI‘{’mJOlplaJ,mJ,SaL
NS

Partial-wave operators O™ L5 lp|,L,r -
J
[J,PA1,A2,A] Jmg Alpl,Jym g, PA1,A2,A
Helicity operators O mJ AL A2 OIpI,F,r = Sry O
my
The representation O’ is irreducible under continuum R. Subduction matrices S
But it is reducible under R in discrete group lattice O(?). [Dudek et al., PRD82, 034508 (2010)
Operators that transform according to irrep I' and row r obtained via subduction. Edwards et al, PRD84, 074508 (2011)]

Single-hadron operators H: experience by Hadron Spectrum collaboration Phys. Rev. D 82, 034508 (2010)

* subduced operators O carry memory of continuum spin and dominantly couple to states with this J

Expectation for partial-wave and helicity operators HH obtained by subduction :

. Ol[gl’%ﬁ] would dominantly couple to eigen-states with continuum (J,L,S) valuable for simulations
. I[Jl,P,/\Mz,)\] would dominantly couple to eigen-states with continuum (J,A1,A2) give physics intuition on quant. num.
pl,I\r

Lattice operators for scattering of particles
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P(1)V(-1) operators, T,*, row=r=1

T
3 OTf,r:l,n:l = P(es)Va(—es) + P(—ez)Vi(es)
projection op. 1 Opgpya = Pleg)Va(—e,) + P(—e,)Valey) + Plea)Va(—e2) + P(—e.)Va(e)

JP=1*,5=1,1=0
JP=1*,S=1,1=2

J=1,L=0,5=1]
. OVELE=0S=ll_ o\ 4O,y _
partial-wave op. - Ty r=1 Lir=ln=1 " 7Ty ,r=1n=2

= [J=1,L=2,5=1]
OT1+,7'=1 =—2 OT1+,7'=1,n=1 + C)TI+

,7r=1n=2

[J=1,P=+Ay=0Ap=0]
- Oty i = Orf et JP=1*, A,=0
helicity op. OU=LP=tAv=510p=0] _ r Ny
= Ot etz IP=1%, A=1
?

Partial-wave and helicity operators expressed in terms of projection operators throughout.

Lattice operators for scattering of particles
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N(1)P(-1) operators, G,*, row=r=1, p-wave

projection op .[ OGT,r:l = N—%(_em)P(ew) - N—%(em)P(_ew) - z'N_%(—ey)P(ey) + iN—% (ey)P(—¢ey)
' + N3 (—€2)P(ez) — Ny (ez)P(—e)

partial-wave op. '[ ol=hmi=h1=1,5=4] _ JP=1/2%,5=1/2,L=1

Gy r=1 =0Ogt r=1

P=1/2%, \y=1/2

[J=%,mJ=%,P=+,)\N=:E%,AP=O] .
{ OGT,T‘=1 _OGT"’:I

helicity op.

employed in lattice simulation of
1t N scattering in p-wave
to study the Roper channel with JP=1/2*

[Lang, Leskovec, Padmanath, S.P., arxiv:1610.01422]

Lattice operators for scattering of particles 14
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Explicit expressions for all HY(p)H?)(-p)

PV, PN, VN, NN —
all irreps, |p|=0,1 given in
p— [S. Prelovsek, U. Skerbis, C.B. Lang, arXiv: 1607:06738]

consistent results found
in three methods _

Operators valuable to study resonances with heavy quarks

PV: meson resonances and QQ-like exotics (e.g. mJ/Y, D D* for Z)
PN: baryon resonances (e.g. mt N for N*, KN ...) and pentaquarks
NV: baryon resonances and pentaquarks (e.g. p J/U for P)

NN: nucleon-nucleon and deuterium, baryon-baryon

Lattice operators for scattering of particles
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Conclusions

| have discussed
e first study of charmonium resonance that takes into account its strong decay

* search for an exotic state X(5568) that contains four different flavors in elastic scattering:

we did not find evidence for it from lattice, in agreement with recent LHCb result

e construction of lattice operators for simulating scattering of two-hadrons with spin:

neccessary to extract information on resonances that appear in PV, PN and VN, NN scattering

S. Prelovsek, SFB meeting 2016 35
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Lattice setup

PACS-CS
Ensemble (1) Ensemble (2)
N3 x Nt 16° x 32 32° x 64
Ny 2 241
a [fm] 0.1239(13) 0.0907(13)
L [fm] 1.98(2) 2.90(4)
mx [MeV] 266(3)(3) 156(7)(2)

Wilon-clover quarks

Fermilab method for c and b : [El Khadra, Kronfeld et al, 1997]

Rest hadron energies have sizable discretization errors but these largely cancel in splittings.

Only splittings with respect to a chosen reference mass are compared to experiment.

evaluati ng Wick contractions to simulate scattering on the lattice is challenging and computationally
intensive — that is part of the reason why a small number of studies have been made. We apply two methods

- distillation (Ensemble 1) [Peardon et. al., HSC, 2009]
- stochastic distillation (Ensemble 2) [Morningstar et al., 2011]
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