Letter of interest for

Hadron Spectroscopy with Lattice QCD

J. Bulava⁽¹⁾, R. Briceño⁽²⁾, M. Döring⁽³⁾ A. Francis⁽⁴⁾, F. Knechtli⁽⁵⁾, R. Lewis⁽⁶⁾, S. Prelovsek⁽⁷⁾ S. Ryan⁽⁸⁾, A. Rusetsky⁽⁹⁾, A. Szczepaniak⁽¹⁰⁾, S. Sharpe⁽¹¹⁾, C.E. Thomas⁽¹²⁾, M.Wagner⁽¹³⁾

SNOWMASS21-RF7_RF0-TF5_TF4-052

Sasa Prelovsek

University of Ljubljana
Jozef Stefan Institute
University of Regensburg

2th October 2020 townhall meeting Snowmass, RF7

Experimentally discovered exotic hadrons decay strongly

Most of conventional hadrons decay strongly

Non-perturbative theory approach: QCD on lattice

x,t (Minkovsky) $\rightarrow x, it$ (Euclidean)

$$L_{QCD} = -\frac{1}{4}G^a_{\mu\nu}G^{\mu\nu}_a + \sum_{q=u,d,s,c,b,t} \overline{q}i\gamma_\mu(\partial^\mu + ig_sG^\mu_aT^a)q - m_q\overline{q}q$$

input: g_s , m_q

output: hadron properties

hadron interactions

Evaluation of Feynman path integrals in discretized space-time

$$\int DG \ Dq \ D\overline{q} \ e^{-S_{QCD}/\hbar}$$

Conventional and exotic hadrons with lattice QCD

resonances:

- not QCD eigenstates
- inferred from decay products (like in exp)

$$H_1H_2 \rightarrow R \rightarrow H_1H_2$$

LoI:

- solved problems
- challenges to address

"Solved problems" in lattice QCD

Resonances that have only one strong decay channel

- masses
- widths $R \rightarrow H_1 H_2$

Hadrons that are slightly below threshold:

masses

Hadrons that can not decay strongly (well below threshold):

- masses
- transition matrix elements $\langle H_f | J | H_i \rangle$

Status

$$\mathsf{R} \to \mathsf{H_1}\,\mathsf{H_2}_{,}\,\mathsf{H_1}^{'}\,\mathsf{H_2}^{'}$$

"difficult": - decay via two or three channels:

T for coupled-channel scattering

[Hadron Spectrum collaboration

extracted coupled-channel T for several channels]

"too chalenging" (for now):

- decay to more than three channels
 (if none of them can be "neglected")
- if H₁ H₂ H₃ decays are important
 in addition to two-hadron decays

LoI: challenges to focus on

Identify certain exotic hadrons that could be studied reliably on lattice and in exp

exp. discovered exotic hadrons difficult for lattice QCD P_c , Z_c , X(6900), ... (several strong decay channels) some exotic hadrons identified on lattice \longrightarrow (too) difficult for experiment those two not discovered yet

hadrons that can decay via two or three channels, including those with heavy quarks

$$R \rightarrow H_1 H_2, H_1' H_2'$$

- hadrons that can decay via more than three channels
 - try to find simplifications
 - determine which channels could be treated as decoupled
- hadrons that have two-particle and three-particle decay channels:
 - try to simulate

$$R \rightarrow H_1 H_2 H_1' H_2' H_3'$$

- look for simplifications

LoI: challenges to focus on (continued)

- identify reliable criterion on the importance of molecular and diquark configurations
- can overlaps $\langle O_{\rm i}|n\rangle$ give rigorous info on structure of hadrons
- vary masses of quarks u/d, s, c, b
 explore position of the resonances with respect to thresholds
 (one can not do it in experiment)

 $m_1+m_2 \longrightarrow H_1 H_2$

currently

qualitative

- QQ... or QQ... systems: determine Born Oppenheimer potentials
 - V(r) on the lattice, r>a
 - V(r) analytically at small r<a

- Lattice study of a high-lying resonance R: all energy region below it has to be extracted
 - find some approach that could address just a certain higher-lying energy region
 - this does not seem viable with currently used lattice methods

LoI: challenges to focus on (continued) & relation to other efforts

• determine relevant $\langle R_f | J | H_i \rangle$ and $\langle H_f | J | R_i \rangle$ J=EM or weak current

```
only \langle \rho | J^{EM} | \pi \rangle determined [first by Had. spec. coll]
```

relation to other Snowmass efforts

```
{\rm B} \to K^* \ l^+ \ l^- (new physics search) , {\rm B} \to D^* \ l^+ \ l^- (lepton fl. universality) , {\rm D} \to \rho \ l \ v (semileptonic decays) \langle K^* | \ J \ | B \rangle \langle \rho | \ J \ | D \rangle
```

- Improve analytical methods to extract poles of scattering amplitudes relation to scattering amplitudes Snowmass efforts
- Relation to Theory Snowmass efforts
- Relation to Computational Snowmass efforts

Schedule

- march 2021: contact LoI authors and inquire who will actively contribute
- april 2021: discuss physics of white paper
- may, june 2021: write white-paper

What would I like to come out of the Snowmass process?

- contribute to a (partial) solution of at least few of the given challenges
- it would be very welcome if scientists seriously think about some suggested simplifications
 otherwise community will not be able to provide lattice QCD results for most interesting states soon
- identify some exotic hadrons that can be reliably studied in lattice and exp

Conclusions

- lots of very interesting results on exotic and conventional hadrons from experiment
- many urgent challenges to resolve in ab-initio theoretical studies of these states

Backup

lattice QCD extracts energies E_n of eigenstates

 $R \rightarrow H_1 H_2$

L, periodic b.c.

En.i. (in non-interaction limit)
$$H_1\,H_2 \text{ (cm frame)}$$

$$E^{\text{n.i.}} = \sqrt{m_1^2 + p^2} + \sqrt{m_2^2 + p^2}$$

$$p = n \, 2\pi/L$$

 $E=m_1+m_2$

one has to extract ALL eigen-energies below the energy of interest (can not focus on just particular higher-lying energy window like in exp)

exp (L=inf): continous spectrum above th., lat (L=finite): discrete spectrum

Example: channel Z_c , $J^P=1^+$

plot of non-interacting energies

$$\mathsf{E}^{\mathsf{n.i.}} = \sqrt{m_1^2 + p^2} + \sqrt{m_2^2 + p^2} \quad \text{, } p = n \; 2\pi/\mathsf{L}$$

challenge:

very accurate determination of E is needed higher E have larger statistical noise One needs to resolve

$$\Delta E = E - E^{n.i.}$$

Scattering matrix T can be determined only when ΔE are resolved

3.6

3.4

3.2

Resonance above one threshold

$$R \rightarrow H_1 H_2$$
 $T(E) \leftarrow E_n$

Luscher's method

Lattice simulation of one-channel scattering via Luscher's method: doable

Resonance above two or more thresholds

most of exotic hadrons are above more than one threshold:

for example Zc(4430), X(6900), Zb

$$R \rightarrow H_1 H_2, \ H_1' H_2'$$

$$\text{channel } a \colon H_1 H_2$$

$$\text{channel } b \colon H_1' H_2'$$

$$\text{channel } b \colon H_1' H_2'$$

$$\text{b->a}$$

$$\text{channel } a \Rightarrow b$$

$$T(E) = \begin{bmatrix} a \Rightarrow a & a \Rightarrow b \\ T_{aa}(E) & T_{ab}(E) \\ T_{ab}(E) & T_{bb}(E) \end{bmatrix}$$

$$\text{b->a}$$

$$\text{b->b}$$

$$det[T(E) - f(E)] = 0$$
: at given E: one equation, three unknowns