
Literatura: 
Simon Širca: Verjetnost v fiziki (cena 20 eur, večino poglavij od 1 do 13)
(to je glavni vir, ki mu večinoma sledi tudi pričujoča skripta)

Ivan Kuščer, Alojz Kodre: Matematika v fiziki in tehniki (poglavje 11)

1. Temeljni pojmi pri verjetnosti

1.1 Naključni poskusi in dogodki

Fizika je empirična veda. Poskus si lahko zamislimo kot proces, ki začetno stanje
 spremeni v končno stanje. Seveda si želimo, da bi bil ta poskus
nenaključen: ob meritvi si prizadevamo nadzorovati vse okoliščine — vhodne
podatke, merski proces in analizo izhodnih podatkov — zato pričakujemo, da
bomo ob vsaki ponovitvi poskusa z enakim začetnim stanjem in v enakih okoli-
ščinah prišli do enakega rezultata.

V naključnem poskusu (angl. random experiment) se, nasprotno, lahko zgodi,
da pri mnogokratnih ponovitvah poskusa z enakim začetnim stanjem in v enakih
okoliščinah dobimo različne rezultate. Za naključni poskus je torej značilno, da
ne moremo enolično napovedati natančnega izhodnega stanja na podlagi vhod-
nih podatkov.  To velja za večino poskusov na atomski skali že zaradi kvantne narave: na 
primer, koliko jeder bo v danem času razpadlo, kakšna je gibalna količina elektrona v 
vodikovem atomu ... . Velja pa tudi za številne poskuse na klasičnem nivoju: na primer, 
koliko plinskih molekul z dano hitrostjo se bo v določenem času zaletelo v steno posode (tu 
je naključnost posledica termičnega gibanja), ali število pik pri metu igralne kocke (kar je 
odvisno od podrobnega giba roke pri metu).   

Raje se vprašamo po pogostnosti določenega končnega stanja glede na število opravljenih 
poskusov. Zato naj bi bilo število opravljenih poskusov čim večje: privzeli bomo, da je 
mogoče naključni poskus neomejeno velikokrat ponoviti.
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Definicije nekaterih pojmov

Odnose med dogodki obravnavamo v jeziku množic: 
Med množicami lahko napravimo operacije unije, preseka,... 

Zgled: na začetku imamo 7 nevtronov (Z), 
       izmerimo število preostalih nevtronov po pol ure (K)                                       
     v vmesnem času so nevtroni radioaktivno razpadali                      Z: 7          K: ?

vzorčni prostor (sample space) končnega stanja 
              S={ 0,1,2,34,5,6,7} nevtrov
Nabor vseh možnih izidov (outcome) naključnega poskusa

elementaren dogodek (event) = posamezen izid (outcome) poskusa
primer: dogodek A: A={3} nevtroni

elementarne dogodke lahko združimo v sestavljen dogodek: 
primer: dogodek B: manj kot 4 nevtroni B={0,1,2,3}

Dogodek A je podmnožica vzorčnega prostora S: A ⊂ S 

Nemogoč dogodek N={} se ne more zgoditi v nobeni ponovitvi poskusa
primer N: 8 nevtronov  

G je gotov dogodek se zgodi v vseh ponovitvah poskusa
primer: v nasem primeru je G sestavljen dogodek G={0,1,2,....,7}

nasproten dogodek B = {4,5,6,7} nevtronov  : B ∩ B = N, B ∪ B = G

nezdružljiva dogodka: njun presek je prazen

poln sistem dogodkov: 
primeri: 
{B,B}={{0,1,2,3},{4,5,6,7}} , 
{sodo nevtronov, liho nevtronov}, 
{{0,4},{1,2,3},{5,6,7}}
{{0},{1},{2},..}=S

Sistem dogodkov {A1,..,An} je poln, če se pri vsaki ponovitvi poskusa zgodi natanko eden 
izmed teh dogodkov. V polnem sistemu dogodkov so ti dogodki  nezdružljivi (izključujoči) in 
zapolnijo vse možnosti. Izidi naključnega poskusa sestavljajo poln sistem dogodkov in 
vsota verjetnosti za te dogodke je enaka ena [(2.14)].
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Operacije med množicami dogodkov:        == označuje definicijo

produkt: AB==A ∩ B
              A in B se zgodita hkrati

vsota: A ∪ B 
          zgodi se vsaj eden izmed A in B

         Če sta A in B nezdružljiva, se v knjigi Verjetnost uporablja posebno prikladen zapis + :
         A+B == A ∪ B če sta A in B nerazdružljiva, kar pomeni da je njun presek nič. 
         Pozor: v knjigi se + uporabi tudi vcasih ko sta dogodka zdruzljiva, 
          takrat je na mestu previdnost, pri predavanjih se bomo tega poskusili izogniti

razlika: A-B== A ∩ B  
             dogodek kjer se zgodi A, vendar se ne zgodi B

Zgled: izrazimo A ∪ B 𝑡𝑒𝑟	A ∪ B ∪	C  kot vsoto nezdružljivih členov, 
                  saj bo to prikladno za izračun verjetnosti 

A ∪ B+ A+A B 
A ∪ B ∪ C =A+BA  + CB A  

                      (*): potrebovali bomo v naslednjem koraku

Zgled Dvakrat vržemo kovanec, ki pade na glavo (g) ali cifro (c). 

Vzorčni prostor tega naključnega poskusa je S ={cc,cg,gc,gg}. 

Dogodek A naj bo, da se v dveh metih vsaj enkrat pojavi cifra, torej A={cc,cg,gc}, 
dogodek B pa , da pri drugem metu dobimo glavo, torej B={cg,gg}.

 Dogodek, da se obenem zgodita A in B, je A∩B=AB={cg},
od koder vidimo, da se A in B ne izključujeta, sicer bi dobili AB = {} = N.

Dogodek, da se zgodi A, vendar se ne zgodi B, je 
A−B=A∩B={cc,cg,gc}∩{cc,gc}={cc,gc}.

Dogodku A nasprotni dogodek je A=S−A={gg}.



1.2 Osnove kombinatorike
boste ponovili pri vajah

1.3 Verjetnost in njene lastnosti

Pri naključnem poskusu smo v dvomu, ali se bo neki dogodek zgodil ali ne.
Kot mero za verjetnost, s katero smemo pričakovati določen dogodek, vzamemo
kar njegovo relativno pogostnost. 

Izračunamo jo lahko 
- “po pameti”: pri metu igralne kocke P(A=lih)=3/6=1/2
- pragmatično: kocko vržemo tisočkrat in ugotovimo, da smo dobili liho število pik v 

513 metih. Tako smo empirično določili relativno pogostnost za liho število pik 
P(A=lih)= 513/1000=0.513. Ta vrednost se bo seveda spremenila, če kocko vržemo še 
tisočkrat in še tisočkrat, na primer na 0.505, 0.477, 0.498 in tako dalje, pričakujemo pa, 
da se bo po velikem številu teh poskusov ustalila pri prej izračunani vrednosti 0.5.

Verjetnost P(A) dogodka A v naključnem poskusu definiramo torej kot število, pri katerem
se ustali relativna pogostnost dogodka A po velikem številu ponovitev poskusa.

Aksiomi verjetnosti (Kolmogorov 1933):
• P(A) je realen in 0=<P(A)=<1 za vsak dogodek A v prostoru dogodkov 
• P(G)=1 za gotovi dogodek 
• P(A ∪ B)=P(A)+P(B)   za nezdružljiva   A in B oz 
             P(A+B)=P(A)+P(B); zapis  A+B pomeni da sta dogodka nezdružljiva

Od tod sledijo seveda številne izpeljane lastnosti verjetnosti: 
bistveno: verjetnosti nezdruzljivih dogodkov bomo sesteli

• P(A)+P(A)=1 ker sta A in A nezdružljiva

• P(A-B)=P(A)-P(B) ker P(A-B)+P(B)=P(A-B+B) saj sta A-B in B nezdružljiva in A-B+B=A

• P(A ∪ 𝐵) = P(A) + P(B	A) = P A + P B G− A = P A + P B − P(AB)

•  P(A ∪	B ∪ C) = P(A) + P(B) + P(C) –P(AB)-P(AC)-P(BC)+P(ABC)    [*]

izpeljava: A ∪ B ∪ C =A+ BA  + CB A     verjetnost nezdružljivih dogodkov seštejemo

P(A ∪	B ∪ C)=  P(A) + P(BA) +P(CB A)

  P(C B A)= P(C) - P(CB) –P(CA)+P(ABC) iz Vennovega diagrama
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Zgled (str 7): 
 Merlina naprava za zaznavanje kozmičnih žarkov je sestavljena iz devetih manjših, 
neodvisnih detektorjev, ki so vsi usmerjeni v isto smer neba. 
Na napravo pade pljusk; definiramo naslednje dogodke:

dogodek E: zaznava pljuska v posameznem detektorju, P(E) = ε = 90%. 

dogodek X: zaznava pljuska na izhodu naprave

levo: Če zahtevamo, da pljusk zaznajo vsi detektorji hkrati (vezava v devetkratno 
koincidenco), je celotna verjetnost za zaznavo pljuska   enaka
P(X) = P(E)9 ≈ 0.387 

desno: Detektorje lahko zvežemo tudi v tri trojice, pri čemer ugoden izid v okviru posa- 
mezne trojice pomeni, da žarke zazna vsaj en detektor v trojici. Šele iz nastalih treh 
signalov nato tvorimo trojno koincidenco. V tem primeru je verjetnost X1,2,3 
da na izhodu X1,2,3  zaznamo pljusk enaka po zvezi [*] iz prejsnje strani enaka 
P(X123 )=P(E1 ∪E2 ∪E3) =(3ε−3ε2 +ε3) ≈0.999, koincidenca treh pa vodi do 
P(X)=0.999^3=0.997

1.4 Pogojna verjetnost

Če verjetnost za dogodek A tolmačimo pri določenem naboru pogojev B, 
temu pravimo pogojna verjetnost P(A|B). B je lahko dogodek v istem ali 
drugem poskusu. 

P(A|B) je pogojna verjetnost za A ob pogoju B 
 P(A|B) is conditional probability of A given condition B 

Pri n ponovitvah poskusa s povečanim naborom pogojev se dogodek B 
zgodi nB -krat, dogodek AB=A ∩ B pa nAB –krat. Relativno pogostost 
zdaj merimo glede na nB, zato je pogojna verjetnost
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Ker velja tudi obratno 

obe zvezi združimo v izrek o hkratni verjetnosti dogodkov AB

P(AB)=P(B|A)P(A)=P(A|B)P(B)

Prvi enačaj ubesedimo takole: verjetnost, da se zgodita A in B hkrati, je enaka
produktu verjetnosti, da se najprej zgodi A, in verjetnosti, da se zgodi B,
če vemo, da se je že zgodil A. Drugi enačaj preberemo analogno.

Od tod sledi Bayesova formula, ki izrazi pogojno verjetnost za B ob pogoju A s  tremi 
verjetnostmi.  O pomenu in uporabi Bayesovega teorema spregovorimo v naslednjem 
podpoglavju.   

Iz istega razloga velja:

P(A1 A2 A3)=P(A3|A1 A2) P(A2|A1) P(A1) =  P(A1) P(A2|A1) P(A3|A1 A2) 

Zgled (str 9, prilagojen)
V zabojniku v vinski kleti je 10 steklenic, od katerih so 4 pokvarjene. 
Iz zaboja vzamemo na slepo 3 steklenice. Kolikšna je verjetnost, 
da so vse tri izbrane steklenice dobre ? 

Označimo z Ai dogodek, da je i-ta izbrana steklenica dobra, in z A dogodek, da so dobre
vse tri. Vsi dogodki so tu del istega poskusa. Verjetnost, da je dobra prva steklenica, je 
P(A1)=6/10. Ker je bila prva steklenica dobra, je zdaj v zaboju še 9 steklenic in od teh je 5 
dobrih. Verjetnost, da bo dobra tudi druga steklenica, je torej P(A2|A1)=5/9. Verjetnost da 
bo dobra tretja steklenica, če sta bili prvi dve dobri je P(A3|A2 A1)=4/8. 

P(A)=P(A1) P(A2|A1) P(A3|A1 A2) =(6/10) (5/9) (4/8)= 1/6

P(A1)=6/10

P(A2|A1)=5/9

P(A3|A2 A1)=4/8
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KomentarČ Običajno se obravnava zglede kjer sta A in B dogodka v istem poskusu. Če 
sta A in B dogodka v različnih poskusih, vzorčni prostor v mislih razširimo, da 
obravnava oba poskusa obenem in po analognem vzorcu štejemo nAB ter nB. 



1.4.1 Neodvisni dogodki

Če sta dogodka A in B neodvisna, je verjetnost, da se A zgodi,
neodvisna od tega, ali imamo kakršno koli informacijo o B torej je P(A|B)=P(A). 
Verjetnost, da se takšna dogodka zgodita hkrati, je torej po P(AB)=P(A|B)P(B)
 enaka produktu verjetnosti, da se pripetita posamič: za neodvisna dogodka torej velja 
P(AB)=P(A)P(B). 

Zgled (str. 12, spini, dogodka A in B) 

n dogodkov A={A1,A2,...,An} je v celoti neodvisnih ce

                              = P(An)          ..                         P(A3)             P(A2)        P(A1) 

in podobno velja tudi za vsako kombinacijo (i1,i2,...,ik) k-tega (k=2,3,...,n) 
Da bi bilo n dogodkov v celoti neodvisnih v splošnem ni dovolj da so paroma neodvisni.

Zgled (str 12, prilagojen)
V dveh oddaljenih eksperimentih (1 in 2) fiziki merijo projekcijo spina na danem 
kvantnem sistemu. Ta je pri obeh eksperimentih  pred meritvijo v istem stanju, kjer 
ima spin z enako verjetnostjo projekcijo +1/2 (spin “gor”, ↑) ter −1/2  (spin “dol”, ↓) 

Dogodek A: “spin ↑ pri meritvi 1”
dogodek B:  “spin ↑ pri meritvi 2”
dogodek C: “obe meritvi pokažeta enako projekcijo spina”. 

Vpr: Ali so trije dogodki paroma neodvisni? 
Vpr: Ali so trije  dogodki v celoti neodvisni? 

Vzorčni prostor za izmerjene pare projekcij je S = {↑↑,↑↓,↓↑,↓↓}, 
izbranim trem dogodkom pa ustrezajo njegove podmnožice
A={↑↑,↑↓}, B={↑↑,↓↑}in C={↑↑,↓↓}. Od tod takoj razberemo ustrezne verjetnosti



1.4.2 Več o Bayesovi formuli

Zgoraj smo izpeljali ,da pogojno verjetnost P(B|A) lahko izrazimo z P(A|B), P(B) in P(A) 
prek Bayesove formule 

Brezpogojno verjetnost P(A) želimo izraziti s pogojnimi verjetnostmi za dogodek A. 

Kadar se neki dogodek A zgodi ob dveh različnih, med seboj izključujočih se pogojih
B in B, in poznamo pogojne verjetnosti za A ob obeh pogojih, lahko izračunamo tudi 
brezpogojno verjetnost za A, to je verjetnost dogodka samega, P(A).

Zgled: 
 Obravnavajmo najprej primer dveh pogojev ob klasičnem zavarovalniškem zgledu.
Zavarovalnica razvršča voznika v dva razreda: 
- boljši vozniki (B), ki jih je 85 % , 
      Za te je verjetnost da povzročijo nesrečo v prvem letu 1/10
- slabši vozniki (B), ki jih je 15 %.
      za te je verjetnost da povzročijo nesrečo v prvem letu 1/5. 
Določimo verjetnost, da bo sklenitelj povzročil nesreco v že prvem letu: 

V prvem letu se zgodi nesreča. Določimo verjetnost, da jo je povzročil ”boljši” voznik: 

Relativno velika verjetnost ni presenecenje, saj je boljsih voznikov več. 
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= 0.74
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Razmislimo še o primeru, ko izključujoža pogoja nista le dva, temveč jih je več.
Kadar se neki dogodek A zgodi ob različnih, med seboj izključujočih se pogojih,
in poznamo pogojne verjetnosti za A ob vseh teh pogojih, lahko izračunamo tudi
brezpogojno verjetnost za A, to je verjetnost dogodka samega, P(A).
V tem primeru jim pravimo privzetki ali hipoteze in jih označimo s Hi: 
Vse Hi  sestavljajo poln sistem, ta nabor izčrpa vse možnosti
zato velja formula za popolno verjetnost (angl. total probability formula)

P(A)= P(A H1)+P(A H2)+···+P(A Hn).
 P(A)= P(A|H1)P(H1)+P(A|H2)P(H2)+···+P(A|Hn)P(Hn),

Ko v zvezi z Bayesovo formulo govorimo o hipotezah in danem dogodku A imejmo 
v mislih, da so hipoteze Hi obstajale pred dogodkom A. Hipoteze dogodek A pogojujejo. 
Običajni razmisleki nam tipično podajo verjetnost za dogodek A ob predpostavki hipoteze 
Hi, torej P(A|Hi). Mi pa bi radi določili kaksna je bila verjetnost za izhodiščno hipotezo  ob 
kasnejsem izidu A, torej P(Hi|A). 

P(Hi|A) : verjetnost za izhodiščno hipotezo ob kasnejšem izidu A: 
aposteriorna verjetnost za hipotezo po izidu A

P(Hi): apriorne verjetnosti za hipotezo



Zgled (str 20)

Ob krvni preiskavi nas zanima ali imamo bolezen Zahodnega Nila. 
Verjetnost da naključno izbrani član celotne populacije zboli je 10−6

Krvni test pokaže pozitivni izvid (visoki titer V) v 99 % primerov, v katerih je bolezen prisotna: 
Krvni test pokaže negativni izvid (nizki titer N) v 95 % primerov, v katerih je bolezen ni prisotna

Hipoteza da je bolezen Nila prisotna (bolni): HB 
Hipoteza da bolezen Nila ni prisotna (zdravi): HZ

Test nam pokaze pozitivni izvid. Koliksna je verjetnost, da smo okuzeni s tem virusom?
Ta verjetnost je pravzaprav pogojna verjetnost da smo bolni ob pogoju da je test pokazal 
visoki titer, torej  P(H_B|V). 

zdravi: H_Z bolni: H_B

nizki titer N P(N|H_Z)=0.95 P(V|H_B)=1-0.99

visoki titer V P(V|H_Z)=1-0.95 P(V|H_B)=0.99

<latexit sha1_base64="W+HFVj/nvB/pJqzCq172U/+SZ9Y=">AAACKnicbZBNT8JAEIa3fiJ+VT162UhMICakNQa9mCBeOGIihQBNs122sGH7kd2tCSn9PV78K144aIhXf4gL9KDgJJu888xMZud1I0aFNIyZtrG5tb2zm9vL7x8cHh3rJ6eWCGOOSROHLORtFwnCaECakkpG2hEnyHcZabmjx3m99UK4oGHwLMcRsX00CKhHMZIKOfpDo1h3ahOrdN/zOMJJo2hNFCjBBS+lCVwhV8u8s8w7pdTRC0bZWARcF2YmCiCLhqNPe/0Qxz4JJGZIiK5pRNJOEJcUM5Lme7EgEcIjNCBdJQPkE2Eni1NTeKlIH3ohVy+QcEF/TyTIF2Lsu6rTR3IoVmtz+F+tG0vvzk5oEMWSBHi5yIsZlCGc+wb7lBMs2VgJhDlVf4V4iJRlUrmbVyaYqyevC+u6bFbKlaebQrWW2ZED5+ACFIEJbkEV1EEDNAEGr+AdfIBP7U2bajPta9m6oWUzZ+BPaN8/UV+iTg==</latexit>

P (HB |V ) =
P (V |HB)P (HB)

P (V |HB)P (HB) + P (V |HZ)P (HZ)

P(HB)=10 -6

<latexit sha1_base64="Zxs/xpxmEonNf17UUC24YWxXzck="></latexit>

P (Hi|D) =
P (D|Hi) P (Hi)P
j P (D|Hj) P (Hj)

Pogosto dogodek A predstavlja meritev podatkov D (data).  Ustrezno Bayesovo 
formulo za verjetnost hipoteze Hi ob dani meritvi podatkov zapišemo kot 

Dva pristopa k verjetnosti:
frekventistčnii pristop (frequentist view) : pri dani hipotezi Hi nas zanima pogojna 
verjetnost da bomo pri opravljeni meritvi dobili podatke D

Bayes pristop (Bayesian approach): po dobljeni meritvi podatkov D nas zanima 
verjetnost hipoteze Hi. 



motivacija za porazdelitve: P(dogodek) bi radi izrazili z P(stevilska vrednost); slednje nam 
bodo podajale verjetnostne porazdelitve. A najprej obravnavajmo porazdelitve na splosno.  



Delta je prikladna za  idealizacijo tockastega telesa. 



[delta(x)]=1/[x]

Funkcija delta izlušči tisto vrednost funkcije f kjer je argument delte enak nič. 

Funkcija delta izlušči tisto vrednost funkcije f kjer je argument delte enak nič. 



Jacobian

Funkcija delta izlušči tisto vrednost funkcije f kjer je argument delte enak nič. 





neobvezni dodatek

= ln(eps/4) +                         ln(2/aps)= ln(2/4)= - ln(2)

2

2

Integral dx/x na intervalu [-eps,eps] ali pa tudi na intervalu [-1,1] NI  Darbujevo integrabilen,  in tudi NI Riemanovo integrabilen

Josip Plemelj 

(1873-1967)Za Plemlja je izrek kljucen korak pri resevanju Riemann-Hilbertovega problema (1908)



(na splošno)





Primeri porazdelitev: porazdelitev mase, porazdelitev naboja, porazdelitev 
svetlobnega toka po valovni dolžini ali frekvenci,  porazdelitev sile po površini 
telesa, verjetnostna porazdelitev (kar bo naša glavna tema). Porazdelitev je 
prikladna za aditivne količine. 

A nekatere količine se ne dajo porazdeliti v analognem smislu in tedaj je uporaba 
besedne zveze porazdelitev zavajujoča. Temperaturna porazdelitev je nesmiselna: 
temperature 310 K po človeku se ne razdeli v dvakrat po 155 K za vsako njegovo 
polovico. Tu je bolj primeren izraz temeraturni profil ali temperaturno polje. 
Porazdelitev je bolj prikladna za aditivne količine. 

<latexit sha1_base64="Nx8SGOOg83bnX//6Xb4jmAe5w30=">AAACInicbVDLSsQwFE19O76qLt0EB2EEGdpBfCyEQTcuR3CcgbYOt2mq0fRhkgpDqb/ixl9x40JRV4IfY2as4OtA4HDOuUnu8VPOpLKsN2NkdGx8YnJqujIzOze/YC4uncgkE4S2ScIT0fVBUs5i2lZMcdpNBYXI57TjXx4M/M41FZIl8bHqp9SL4CxmISOgtNQzd50Lb88NBZC8U+TRaeNGFhvYvcogwI4bUK6g5nJ9XwDrX0FbBwvcM6tW3RoC/yV2SaqoRKtnvrhBQrKIxopwkNKxrVR5OQjFCKdFxc0kTYFcwhl1NI0hotLLhysWeE0rAQ4ToU+s8FD9PpFDJGU/8nUyAnUuf3sD8T/PyVS44+UsTjNFY/L5UJhxrBI86AsHTFCieF8TIILpv2JyDroGpVut6BLs3yv/JSeNur1Vt482q839so4ptIJWUQ3ZaBs10SFqoTYi6Bbdo0f0ZNwZD8az8foZHTHKmWX0A8b7BwqLo/k=</latexit>

[j] =
W

m2 s
, [�(�)] =

1

m

porazdelitev

kumulativna
porazdelitev



VERJETNOSTNE PORAZDELITVE

2.5 Enorazsežne  (1D) diskretne verjetnostne porazdelitve

X: naključna spremenljivka, ki lahko zavzame končno število različnih diskretnih vrednosti
     Naključne spremenljivke bomo označevali z velikimi tiskanimi črkami.  

xi , i=1,..,n : številska vrednosti naključne spremenljivke X, 
         te vrednosti označujemo z malo črko; verjetnosti namreč želimo izraziti kot funkcije  
         števil x, ki predstavljajo elemente vzorčnega prostora 

Bolj formalno: Spremenljivka X vsakemu izidu iz vzorčnega prostora S priredi število x. 

Zgledi
*) Pri metu ene igralne kocke z vzorčnim prostorom  
   nam naključna spremenljivka X=“število pik na kocki” sporoči številski izid poskusa 

*) Pri opazovanju plinskih molekul v posodi je vzorčni prostor hitrosti precejšen (to ni primer s končnim vzorčnim prost.) 

    Spremenljivka V=“velikost hitrost molekule” nam sporoči številski izid meritve V(       )=v=300 m/s
 
Pi =P(X =xi)=fX(xi): Verjetnost, da ima v določeni ponovitvi poskusa X vrednost xi

fX je diskretna verjetnostna porazdelitev (discrete probability distribution) 
        oziroma verjetnostna funkcija (probability function)

Lastnosti fX : Pi>0 -> fX(x)>0,  za poln sistem dogodkov xi (i=1,..,n) : 

Smiselno je definirati tudi verjetnost, da naključna spremenljivka X zavzame vrednost, 
ki je manjša ali enaka od neke vrednosti x. To verjetnost podaja 

FX(x) = P(X ≤ x) , −∞ < x < ∞ : FX je kumulativna porazdelitvena funkcija

           FX(x)=∑!"#! 	 𝑃"= ∑!"#! 	 𝑓$ 𝑥𝑖 .	 enota [P]=[F]=1 (vedno) , [f]=1 (za diskretno)
Zgled: met dveh igralnih kock: X=vsota pik iz obeh kock

n=36
x=2:  1/36  1+1
x=3:  2/36   2+1,1+2
..
x=12: 1/36    6+6

F(1)=P(X<=1)=0
F(2)=P(X<=2)=P2= 1/36
F(3)=P(X<=3)= P2  +P3  =1/36+2/36
..
F(12)=1

<latexit sha1_base64="Y1RiXtpnBnsQIznsrcHXv4pPaUI="></latexit>

m(M1 +M2) = m(M1) +m(M2) ce M1 \M2 = {}
P (A1 +A2) = P (A1) + P (A2) ce A1 \A2 = {}

mase je porazdeljena po delih delesa,    Mi: i-ti del telesa

verjetnost je porazdeljena po dogodkih, Ai: i-ti dogodek

<latexit sha1_base64="dpRExyMoCJ2fIKw8i01or+av8RQ=">AAACBnicbVDLSsNAFJ34rPUVdSnCYBHqwpKIVDdC0Y3LCvYBTQiTyaQdOpOEmYm0hLpx46+4caGIW7/BnX/jtM1CWw9cOJxzL/fe4yeMSmVZ38bC4tLyymphrbi+sbm1be7sNmWcCkwaOGaxaPtIEkYj0lBUMdJOBEHcZ6Tl96/HfuueCEnj6E4NE+Jy1I1oSDFSWvLMg9BrXzoy5R6FdY8+QCcgTKHy4GTg0WPPLFkVawI4T+yclECOumd+OUGMU04ihRmSsmNbiXIzJBTFjIyKTipJgnAfdUlH0whxIt1s8sYIHmklgGEsdEUKTtTfExniUg65rzs5Uj05643F/7xOqsILN6NRkioS4emiMGVQxXCcCQyoIFixoSYIC6pvhbiHBMJKJ1fUIdizL8+T5mnFrlaqt2el2lUeRwHsg0NQBjY4BzVwA+qgATB4BM/gFbwZT8aL8W58TFsXjHxmD/yB8fkD3YqYHQ==</latexit>

fX =
X

i

Pi �(x� xi)



Lastnosti kumulativne prazdelitvene funkcije:
 
    nepadajoča 

2.6 1D zvezne verjetnostne porazdelitve

X: naključna spremenljivka, ki lahko zavzame zvezne vrednosti
x: vrednosti naključne spremenljivke X (lahko v omejenem obmocju [xmin,xmax] ali na neomejenem –[inf, inf])

Pri zveznih verjetnostnih porazdelitvah nikoli ne moremo govoriti o “verjetnosti, da 
zvezna spremenljivka X zavzame vrednost x”. Ta verjetnost bi bila nična. Smisleno je 
govoriti o "verjetnosti da zavzame spremenljivka X vrednost x na intervalu [x1,x1+∆𝑥 ] ali 
na intervalu [x1,x2]. 

dP(x<=X<=x+ d𝑥)= fX(x) dx : fX  : verjetnostna gostota (probability density (function))

   fX(x) dx podaja verjetnost da je vrednost spremenljivke X na intervalu [x,x+𝒅𝒙 ]
      Ker je infinitizemalen interval dx, je tudi verjetnost infinitizemalna

 Lastnosti fX:                                                                              enote: [P]=[F]=1 -> [f]=1/[x]
  
Iz “delčkov verjetnosti” fX ( <𝑥) d <𝑥 dobimo verjetnost, da je X ≤ x

                                                                               FX : kumulativna porazdelitvena funkcija

Odvod integrala po zgornji meji je enak integrandu, zato sta verjetnostna gostota in 
kumulativna funkcija povezani preko spodnje zveze, kar se razbere tudi za x2=x1+ ∆𝑥 iz 
slike
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P (x1 < X < x2) =

Z x2

x1

fX(x)dx

<latexit sha1_base64="xNDnPVLv5ID4UuLRLazsalrlMgI="></latexit>

FX(x) = P (X  x) =

Z x

�1
fX(x̃)dx̃



Zgled: V =velikost hitrosti N2 molekule v posodi s plinov pri T=393 K (ima vlogo X)

            v=vrednost velikosti hitrosti (ima vlogo x)

        
FV(v)

[F]=1, [f]=1/[v]=1/(m/s)



2.7 Transformacije naključnih spremenljivk (1D) 

Naključni spremenljivki X naj ustreza porazdelitev z gostoto fX. Določimo porazdelitev fY 
naključne spremenljivke Y, ki je znana funkcija spremenljivke X: Y=h(X), y=h(x)

Če je funkcija h na celotnem območju x injektivna (monotona, ves čas naraščajoča ali 
padajoča): to je trivialen primer: verjetnost dP, da je x na intervalu [x,x+dx] je enaka 
verjetnosti na ustreznem preslikanem intervalu [y,y+dy] spremenljivke y

dP=fX(x) |dx| = fY(y) |dy|  , absolutni predznak ker so P,fX,fY po definiciji >= 0

                      vse izraženo z y                  vse izraženo z x

Če je funkcija h NI  injektivna ,več vrednosti x se preslika v določeno vrednost y, nas pa 
zanima verjetnostna gostota fY pri taki vrednosti y. Tedaj moramo sešteti po okolicah vseh 
xi , ki se preslikajo v dan y. 

dP=∑!"  fX(xi) |dxi | = fY(y) |dy| 

Ker inverz funkcije h v tem primeru ne obstaja (“funkcija” h-1(y) ki pri določenem y vodi do 
več vrednosti x pravzaprav ni funkcija), se opremo na izrek o inverzni preslikavi, ki pravi, 
da za odprte podmnožice območja okoli xi lahko tvorimo inverzno funkcijo gi=h-1

                          vse izraženo z y                  vse izraženo z x
 

h(x)=y
x=h-1(y)

<latexit sha1_base64="dOkqgahDQKHlIh9C+fa7hC6cbjA="></latexit>

fY (y) = fX(x) |dx
dy

| = fX(x)
1

| dydx |

= fX(h�1(y)) |dh
�1(y)

dy
| = fX(x)

1

|h0(x)|

h(x)=y

lokalno okoli xi: x=h-1(y)=gi(y)

<latexit sha1_base64="d0oXx2SQbR6wWITgmFrsDdwYyY0="></latexit>
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fX(x) |dx
dy

| =
X

xi

fX(x)
1
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=

=
X
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fX(gi(y)) |
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fX(x)
1

|h0(x)|
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2.10 Transformacije naključnih spremenljivk v dveh ali več razsežnostih

Spoznali smo, kako se transformirajo verjetnostne gostote pri transformaciji spremenljivk 
y=h(x) v 1D, zdaj bi to radi posplošili na transformacijo v D razsežnostih

𝑋⃗ ∈RD , 𝑌 ∈ RD  , med vektorjema naključnih spremenljivk X in Y slika vektorska funkcija ℎ
Tokrat imejmo zaradi preprostosti v mislih le bijektivne preslikave.

                             

Iz znane verjetnostne gostote 𝑓$ bi radi določili verjetnostno gostoto 𝑓%
 Verjetnost dnP  da je 
X	v	n	dimenzionalnem	volumskem	elementu	d𝑥⃗	je	enaka	verjetnosti,

da	je 𝑌	v	preslikanem	volumskem	elementu	d𝑦⃗

Tu je Jh Jacobijeva matrika totalnega odvoda

<latexit sha1_base64="lmeoicveIVEG2PWyUB1SCbfnPKw="></latexit>

dnP = f ~X(~x) |d~x| = f~Y (~y) |d~y|

f~Y = f ~X

1

| d~yd~x |
= f ~X

1

|J~h|
= f ~X |J~h�1 |

ponazoritev v 1D
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~y =

0

@
y(1)

...
y(D)

1

A =

0

@
h1(x(1), .., x(D))

..
hD(x(1), .., x(D))

1

A = ~h(~x)

<latexit sha1_base64="dWQrrUfgEfvsUlm7mXBJBqoPxaY="></latexit>

D razlicnih nakljucnih spremenljivk ~X = (X(1), .., X(D)) z vrednostmi ~x = (x(1), .., x(D))

D razlicnih nakljucnih spremenljivk ~Y = (Y (1), .., Y (D)) z vrednostmi ~y = (y(1), .., y(D))

<latexit sha1_base64="mOntHMRK4/9k6lz/bIrEoAR5aZY="></latexit>
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3. Posebne zvezne verjetnostne porazdelitve

Pogosto uporabne zvezne verjetnostne porazdelitve so Gaussova (normalna), enakomerna, 
Maxwellova, eksponentna in Lorentzova (Caucyjeva ali Breit—Wignerjeva) porazdelitev. 
Primere nekaterih bomo obravnavali potem, ko bomo spoznali pojem pričakovanih 
vrednosti. Na tem mestu se posebej posvetimo le eksponentni porazdelitvi, ker bi jo radi 
fizikalno utemeljili. V knjigi so v tretjem poglavju opisane tudi porazdelitev 𝜒& (chi-kvardat, 
fchi2), Studentova porazdelitev (fT) in porazdelitev F, ki so zelo uporabne, a na tem mestu še ni 
jasno čemu sluzijo. Mi jih bomo predstavili šele ko jih bomo potrebovali. 

3.1 Eksponentna verjetnostna porazdelitev

Z eksponentno verjetnostno porazdelitvijo opišemo procese, pri katerih je verjetnost za 
določen dogodek na časovno enoto konstantna. Zelo znan primer je  časovni potek
razpada radioaktivnih jeder,  druge primere pa bomo navedli kasneje v tem podpoglavju. 
Razpad nestabilnega atomskega jedra je naključni proces par excellence. Za eno samo jedro 
ne moremo napovedati trenutka njegovega razpada; verjetnost za razpad v nekem 
časovnem intervalu je odvisna samo od dolžine tega intervala, ∆t, ne pa od starosti jedra. 
Pravimo, da se jedra ne “starajo” in da je radioaktivni razpad proces “brez spomina”. 

Neobvezno: Preden se lotimo matematičnega opisa, 
vsaj grobo utemeljimo zakaj je tako. Preprost model 
jedrskega razpada alfa je gibanje alphfa delca v 
potencialu preostalega jedra. Ta ima privlačni del 
zaradi močne jedrske sile in odbojni del zaradi 
Coulomskega odboja med pozitivnimi protoni. 
Slednja povzroči bariero v potencialu, ki v klasični 
fiziki preprecuje delcu alfa, da zapusti jedro. V 
kvantni fiziki pa lahko alfa delec zapusti jedro le 
zaradi določene verjetnosti za tuneliranje skozi 
bariero. Ta verjetnost je odvisna le od višine bariere 
in kinetične energije alfa delca, in niodvisna od 
starosti jedra saj se razmere v jedru s časom ne 
spreminjajo. Zato je verjetnost za tuneliranje in tako 
tudi za razpad jedra neodvisna od starosti jedra. 

Oglejmo si analogijo eksperimenta, kjer je verjetnost za razpad na časovno enoto Δt 
konstantna.  Ta verjetnost naj bo kar ½ za kar bo poskrbel met kovanca. Razpad 50 jeder 
modelirajmo naključno tako, da vržemo 50 kovancev in “razpadla” so tista za katere je padla 
cifra. S preostalimi jedri zopet ponovimo poskus, ki ga ponavljamo v enakih casovnih 
razmikih  Δt. Opazujmo število jeder oz kovancev v odvisnosti od časa. 

https://www.youtube.com/watch?v=sc2caB0gc7Q

 

https://www.youtube.com/watch?v=sc2caB0gc7Q




Zdaj vse skupaj opredelimo se matematično:
 
T= naključna spremenljivka, ki predstavlja čas oziroma trenutek ob katerem jedro razpade

veretnost, da jedro do časa t še ni razpadlo

verjetnost dP, da jedro razpade ob trenutku T na intervalu [t,t+dt] je enaka dP=fT(t) t= dt

Število jeder ob času t=0 je N0,  in opazujemo njihovo število v odvisnosti od časa. Jedra so 
neodvisna, zato ustrezna števila preživetja in razpadov dobimo iz zgornjih verjetnosti, tako 
da jih zgolj pomnožimo z N0. 
 
Za vsako je verjetost, da do casa t še ni razpadlo podano z enačbo (3.3). Torej je število 
jeder, ki do časa t še ni razpadlo 

N(t)=N0 P(T>t)=N0 𝑒'().  (3.5)

Število jeder dN, ki v casovnem oknu razpade je podano z verjetnostjo dP=fT(t) dt (3.4)

dN(t)=- dP N0 = - fT(t) dt N0  = - 𝜆	𝑒'()	𝑑𝑡 = - 𝜆	N(t) dt.  oz dN(t)/N(t)= - 𝜆	 dt

kar je seveda enako kot če (3.5) odvajamo. Minus nastopa saj se stevilo jeder dN zmanjša.  
Zvezo dN(t)=- 𝜆	N(t) dt bi lahko seveda zapisali ze takoj ob predpostavki, da je število 
razpadov sorazmerno le s trenutnim številom delcev in dolžine časovnega okna dt. 



Drugi primeri eksponentne verjetnostne porazdelitve: 
T je tu trenutek ko se zgodi dogodek (razpad, trk, okvara,...)

Verjetnost za trk molekule plina v drugo molekulo na časovno enoto se s časom ne 
spreminja. Verjetnost, da je torej molekula potovala brez trka do časa t je torej 
porazdeljena P(T>t)=𝑒'()

Verjetnost za kemijsko reakcijo A+B-> C+D na časovno enoto je pri nespremenljivih 
okoliščinah je neodvisna od tega koliko časa reaktanm A in B že niso reagirali. Torej je za 
dane reaktante verjetnost da niso reagirali do časa t eksponentna P(T>t)=𝑒'()

Če pride do okvare neke naprave zaradi naključnih (na primer kvantno-mehanskih) 
procesov  in ne zaradi staranja, bo verjetnost za dobro delovanje naprave do časa t 
eksponentno P(T>t)=𝑒'()  Primer je življanski čas računalniškega diska ali žarnice LED. 

Če je pečenje avtomobila po cesm mimo določene točke naključno, in če se verjetnost 
prečenjaa na časovno enoto ne spreminja s časom, bo verjetnost za prehod do časa t 
zopet enaka P(T>t)=𝑒'()

Minizgled Opazujemo dva enaka izotopa s karakterismčnim razpadnim časom  𝜏 = *
(
=84 

s.  Eno jedro je pravkar nastalo, drugo pa je nastalo pred 3 minutami. Za katerega bo večja 
verjetnost, da bo razpadlo v naslednjih Δ𝑡 =30 sekundah? 

Ta verjetnost je za oba enaka. To vemo ze iz osnovne predpostavke, da verjetnost ni 
odvisna od starosm jedra. DN Preverite se računsko, da spodnja pogojna verjetnost res ni 
odvisna od starosm jedra t.Resitev je na str 58 knjige: V obeh primerih je verjetnost 0.035. 

Zgled, str 58 (strežbe na bančnih okencih -> pri predavanjih: okvare računalniskih diskov)



Zgled: str 59 : primer eksponentne verjetnostne porazdelitve, ki ni funkcija t temveč x 

Zgled: str 77, Primer jedrskega razpadnega niza, kjer vsako jedro razpade le na en način



4 Pričakovane vrednosti  (za zvezne 1D verjetnostne porazdelitve)

V tem poglavju obravnavamo izračun količin, ki jih smemo pri posameznih na-
ključnih spremenljivkah ali funkcijah teh spremenljivk — glede na verjetnostne
porazdelitve, ki te spremenljivke opisujejo — pričakovati po velikem številu po-
skusov: imenujemo jih pričakovane vrednosti naključnih spremenljivk. Najpo-
membnejša takšna količina je povprečna vrednost, ki je pričakovana vrednost
spremenljivke v osnovnem, najožjem pomenu besede, v nadaljevanju pa spo-
znamo še varianco=(standardni-odklon)2, pričakovane vrednosti višjih momentov itd...

4.1 Pričakovana (povprečna) vrednost same spremenljivke

Pričakovano vrednost zvezne spremenljivke X izračunamo tako, da njeno vrednost x
pomnožimo z verjetnostjo fX(x)dx, da ima ta spremenljivka po velikem številu poskusov 
to vrednost x na intervalu [x,x+dx]. Potem tako utežene prispevke seštejemo oziroma 
integriramo  po vseh vrednostih x 

pričakovana (povprečna) vrednost X

Tako E[X] kot X in µX pomenijo “operacijo povprečenja” nad spremenljivko X.

Komentar glede notacije : Za povprecje uporabljamo obe oznaki, poleg tega pa še µX. 
v poglavjih 4–6 vse tri  pomenijo eno in isto reč, medtem ko bomo v poglavjih 7–10 z X in x 
označevali povprečje vzorca, za pričakovano vrednost populacije 
(pravo povprecno vrednost kot jo obravnavamo v tem poglavju ) pa bomo uporabljali E[•].

4.4 Pričakovane vrednosti funkcij naključnih spremenljivk
 
Najpreprostejši funkciji naključnih spremenljivk sta vsota X+Y dveh spremen-
ljivk in linearna kombinacija aX+b, kjer sta a in b poljubni konstanti. Ker je
pričakovana vrednost zvezne spremenljivke, E[X], definirana z integralom, pri-
čakovani vrednosti E[X+Y] in E[aX+b] podedujeta vse lastnosti integrala, med
njimi linearnost: E[X+Y]= E[X]+E[Y], E[aX+b]=aE[x]+b, E[aX+bY]= aE[X]+bE[Y]

Določimo še povprečno vrednost spremenljivke Y=g(X) ob dani porazdelitvi fX(x). Vrednost 
naključne spremenljivje g(x) pomnožimo z njeno verjetnostjo pojavljanja fX(x)dx na 
intervalu [x,x+dx], in vse tako utezene vrednosti g(x) seštejemo/integriramo 

   
Sem sodi še komentar o zelo pogosto uporabljenem približku, ki je lahko grda
napaka ali pa dobra bližnjica do rešitve: to je aproksimacija

Bolj ko je porazdelitev fX spremenljivke X ozka,  boljši je ta približek. 
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g(X) 6= g(X), g(X) ' g(X)



4.5 Razpršenost (varianca) ter efektivni odmik (standardni odklon, standardna deviacija) 

Z izračunom pričakovane vrednosti naključne spremenljivke X nekaj izvemo
o tem, kje znotraj njenega definicijskega območja bodo pri mnogih ponovit-
vah naključnega poskusa večinoma pristale njene vrednosti. Zdaj nas zanima
še, kakšna je raztresenost (razpršenost) vrednosti okrog njihovega povprečja
E[X]=X. Mera za razpršenost je varianca (angl. variance), definirana kot

varianca 
(mera za razpršenost)

standardni odklon=
standardna deviacija

Velika varianca pomeni veliko razpršenost okrog povprečja in obratno. Pozitivni
kvadratni koren variance, imenujemo standardna deviacija (angl. standard deviation) — 
zlasti kadar imamo v mislih normalno porazdelitev — včasih pa tudi efektivni odmik ali 
standardni odklon.  

4.7 Momenti naključne spremenljivke

Povprečje in varianca sta posebna primera pričakovanih vrednosti, imenovanih
momenti. Uporabljata se dve definiciji p-tega momenta naključne spremenljivke

centralni 
p-ti moment  M 2=standardni odk.

algebrajski 
p-ti moment M 1’=povprecna vr.

Pričakovane vrednosti za primer naključne spremenljivke X, kjer ima ta diskretne vrednosti 
x1,..,xn določimo analogno, le da integral zamenjamo z vsoto sum_{i=1}^n, npr

 

                             

splošna definicija                                 za zvezno porazdelitev

splosna definicija              za zvezno porazdelitev
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standarni odklon za diskretno porazdelitev



T=čas (trenutek) ob katerem pride do okvare diska
DolociW moramo verjetnostno porazdelitev nakljucne spremenljivke T in fT(t)dt 
naj oznacuje verjetnost da se disk pokvari od trenutku T na intervalu [t,t+dt].
fT(t) dobimo iz verjetnosW P(T>t) zgoraj kot fT(t)dt=P(t)-P(t+dt)=-P’ dt torej je fT(t)=-P’(t) kar 
smo izpeljali tudi ze ob zacetku obravnave eksponentne porazdelitve. 

fT(t)=-P’(t)=

Nal: Določi povprecen T in  standardni odklon T, ter primerjaj povprečje(T^3) ter (povprečje(T))^3 za primer 
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0
fT (t) dt = 1 + 1� 1 = 1

Slednji sta zelo razlicni; pribliznega ujemanja 
ne pricakujemo ker je porazdelitev siroka
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zvezne verjetnostne porazdelitve v Wolframovi Mathematici
datoteke: posebne-zvezne-porazdelitve.nb

PDF: ProbabilityDensityFunction : fX(x)
CDF: CumulativeDensityFunction, FX(x)
InverseCDF :  FX

-1

za vse porazdelitve se uporablja enake 
funkcije PDF,CDF, InverseCDF,.. 



4.3  Kvantili, percentili

Vrednost naključne spremenljivke (𝒙𝒑), pod katero po mnogih poskusih najdemo 
določen delež vseh dogodkov (𝒑), imenujemo kvantil njene porazdelitve (lat. 
quantum, “koliko”). Za zvezno porazdelitev to pomeni, da je integral verjetnostne 
gostote od −∞ do xp enak p (slika 4.2). 

Primer: 0.90-ti kvantil normalne porazdelitve N(2,0.5) je enak x0.90 = 2.6. 

Za izražanje p-tega kvantila so smiselne vse vrednosti 0 ≤ p ≤ 1, vendar so v rabi še 
njegove logične izpeljanke za značilne vrednosti p: celoštevilskim vrednostim 
(izraženim v odstotkih) ustrezajo percentili. 

90-ti percentil normalne porazdelitve N(2,0.5) je enak x0.90 = 2.6.

0.70-ti kvantil eksponentne porazdelitve z lam=1 je enak x0.70 = 1.2.
 



4.2 Mediana in modus

Modus spremenljivke X je tista vrednost z največjo verjetnostjo (v intervalu z danim dx): 
mod[X]=Xmax  ,   df/dx |{x=Xmax}=0.

Motivacija za tovrstne pričakovane vrednosti izhaja predvsem pri obravnavi diskretnih 
naključnih spremenljivk pri statistiki, kjer se nekatere vrednosti  xi  v vzorcu močno 
razlikujejo od glavnine – pravimo jim ubezniki (eng outliers). Povprečje je lahko zelo 
občutljivo na take ubežnike, mediana in modus pa sta robustna na ubežnike.   



Tabela pricakovanih vrednosN za izbrane zvezne porazdelitve 

vaje , kasneje

kasneje

kasneje

enakomerna porazdelitev           eksponenta porazdelitev 

3.3 Normalna (Gaussova) porazdelitev

Po normalni (Gaussovi) porazdelitvi ali vsaj približno v skladu z njo so porazdeljene neštete 
količine iz sleherne sfere človeškega obstoja in narave. Normalno ali približno normalno so 
na primer porazdeljeni premeri navojev vijakov, ki v tisočih letijo iz stružnice, telesne mase 
ljudi, izpitne ocene in hitrosti plinskih molekul. Delne razlage in utemeljitve za to 
vseprisotnost Gaussove porazdelitve bomo deležni v razdelku 6.3 in zlasti poglavju 11, kjer 
bomo obravnavali centralni limitni teorem: ta v grobem pravi, da je povprečje velikega 
števila identičnih in neodvisnih naključnih spremenljivk (X(i)) porazdeljeno po Gaussovi 
porazdelitvi, četudi posamezne spremenljivke X(i) niso porazdeljene Gaussovo. 



Gaussova porazdelitev je dvoparametrične z verjetnostno gostoto

Že zgolj iz definicijskega območja je razvidno, zakaj je normalna porazdelitev 
mnogokrat le približek: telesne mase ne morejo biti negativne in izpitne ocene 
ne morejo biti neskončne. Porazdelitev je simetrična okrog vrednosti μ, širino 
njenega vrha pa določa standardna deviacija σ ; v točkah x = μ ± σ ima funkcija fX 
prevoj. Splošno sprejeta “kratica” za normalno porazdelitev je N(μ,σ2). 

μ je njeno povprečje, σ pa njeno standardna deviacija

Standardizirana normalna porazdelitev

F(z) =

funkcija napake (error function) je definirana kot: 

N(μ,σ2)

N(0,1)



V fiziki osnovnih delcev trdimo, da smo odkrili nov delec, če ga odkrijemo s statistično 
pomembnostjo 5σ ali več. Statistična pomembnost (eng. significance) 5σ pri odkritju 
novega delca pomeni, da je verjetnost, da je signal posledica statistične fluktuacije 
(in ne obstoja novega delca) enaka P=3x10-7. Pri tem imamo v mislih verjetnost za 
signal, ki je enak eksperimentalno opaženemu ali pa še večji. To  seveda nakazuje 
izredno majhno verjetnost, da je opažen signal zgolj statistična fluktiacija; imamo torej 
utemeljene razloge, da signal pripisemo obstoju novega delca. Komentar: Pri 
verjetnosti P=3x10-7  upostevamo le  moznosti, ki izhajajo vrednosti naključne 
spremenljivke nad povprečjem (torej povecan signal nad ozadjem). 

Opomba: pri Gassovski porazdelitvi je to ravno verjetnost da opazljivka X preseže 
povprecje za 5σ ali več. 

Tudi pri količinah, ki niso porazdeljene po Gaussovi porazdelitvi, se o odkritju z 
pomembnostjo 5σ,   ko je verjetnost, da je opažen signal (ali še večji) posledica 
statistične fluktuacije enaka P=3x10-7.  Statistična pomembnost 5σ je v tem primeru 
mera za pomembnost oz zanesljivost odkritja, ki se jo lahko uporablja in v grobem 
primerja pri vseh porazdelitvah. 

Več in bolj podrobno o tem bomo govorili v poglavju o statističnih testih in hipotezah. 
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Zgled (str 95) za pričakovano vrednost funkcije g pri dvorazsežni porazdelitvi;
 glede na notacijo iz prejsnje strani bi bili indeksi 1 in 2 za obe dolžini zgoraj



Slika 7.8: Ponazoritev korelacije na primeru dveh spremenljivk X(1) in X(2) ter končnih vzorcev. Slike 
ponazarjajo množice izmerkov (x(1) ,x(2)), ki jih je mogoče opisati z dvorazsežno porazdelitvijo 
spremenljivk X(1) in X(2), in ustrezne ocene za vzorčni korelacijski koeficient ρ= ρ12. 
[Zgoraj, od desne proti levi] Skoraj popolnoma korelirani podatki (ρ≈ 1), nekorelirani podatki (ρ ≈ 0) 
in skoraj povsem antikorelirani podatki (ρ ≈ −1). [Spodaj] Trije primeri realizacije nekoreliranih 
spremenljivk, ki med seboj nista statistično neodvisni. Pogoj ρ = 0 je zgolj potreben pogoj za 
statistično neodvisnost.

Zgled: posoda s plinom. 
Naključne opazljivke: tlak, število trkov na s, povprecna hitrost molekule,..
Te naključne opazljivke so korelirane, če jim merimo na steni iste posode s plinom.
Niso korelirane, če jih merimo na razlicnih posodah s plinom.  



4.8.2 Korelacija (correlation) ne implicira kavzalnosti (causality) 

Ničelni korelacijski koeficient spremenljivk X1 in X2 ne pomeni, da sta ti med seboj 
stohastično neodvisni: za vsako gostoto f X1 ,X2 , ki je soda funkcija odmikov x1 − μ1 in x2 
− μ2 , velja ρ12 = 0. Z drugimi besedami, ρ12 = 0 je zgolj potreben pogoj za neodvisnost, ni 
pa zadosten (glej spodnji del slike 7.8, ki ponazarja korelacijo ob primeru končnih 
vzorcev).
Čeprav med dvema spremenljivkama (naboroma vrednosti, meritvama, pojavoma) 
opazimo korelacijo, to ne pomeni nujno, da med njima obstaja neposredna vzročna 
zveza (causal relation): korelacija ne implicira kavzalnosti. Kadar imamo korelirani količini 
in med njima navidezno odvisnost, je najpogosteje vpleten neki skupni dejavnik. 



Zgled: sposobnost računanja in velikost majice pri otrocih sta pozitivno korelirani. 
A če otroku kupimo večjo majico ne bomo vplivali oziroma izboljšali njegovega 
matematičnega znanja. V ozadju je skupni dejavnik : starost otroka 

Korelacija in kavzalnost sta pojma iz različnih svetov: prvi pomeni ugotovitev na 
podlagi verjetnostne teorije, drugi pa opisuje strogo fizikalno reč, v katere ozadju sta 
čas in vzročna povezanost sedanjih dogodkov s preteklimi.





4.9 Širjenje napak     var[X(k) ±X(l) ] = var[X(k) ]+var[X(l) ]±2cov[X(k) ,X(l) ] (4.20)

V mislih imejmo naključne spremenljivke X(k), ki so relativno ozko porazdeljene okoli 
povprečne vrednosti zaradi napak pri meritvi. Če bi znali formulo (4.20) posplošiti na 
poljubno funkcijo poljubnega števila spremenljivk, bi odgovorili na pomembno 
vprašanje širjenja napak. Kaj sploh pomeni “napaka naključne spremenljivke”? V 
uvodnih razdelkih smo spoznali, da si vsako meritev neke količine lahko predstavljamo 
kot realizacijo naključne spremenljivke, katere vrednost statistično fluktuira. Tak 
naključen odklon od njene pričakovane vrednosti imenujemo statistična negotovost ali 
“napaka”. Z analizo širjenja napak želimo ugotoviti, kako se negotovosti vrednosti 
določenega nabora spremenljivk odražajo v negotovosti vrednosti funkcije teh spre- 
menljivk. Značilen primer je določitev moči na uporniku iz padca napetosti na njem: če 
je negotovost meritve napetosti ∆U, upornost R pa poznamo le na ∆R natančno, 
kolikšna je negotovost izračunane moči P = U2/R?







5. Posebne diskretne verjetnostne porazdelitve

V tem poglavju obravnavamo porazdelitve diskretnih naključnih spremenljivk, med 
katerimi sta najpomembnejši binomska in Poissonova. 

5.1 Binomska porazdelitev

Z binomsko porazdelitvijo imamo opravka, kadar sta pri danem številu (Z) naključnih, med 
seboj neodvisnih, poskusov možni samo dve vrsm izidov: nekaj se zgodi (verjetnost p, 
recimo temu “ugoden” izid oz dogodek A) ali pa se ne zgodi (verjetnost q = 1 − p, recimo 
vsemu ostalemu “neugoden” izid oz dogodek A). Pri metu kovanca pade grb ali cifra; rodi 
se deklica ali deček; pri metu kocke padeta 2 piki ali ne; jedro razpade ali ne; 
kvantnomehaniski proces se je zgodil ali ne. Takemu zaporedju neodvisnih poskusov 
pravimo tudi Bernoullijevo zaporedje. 

• Z: celotno število poskusov
•  N: naključna diskretna spremenljivka, ki šteje kolikokrat se je zgodil "ugoden" izid   

"mpa p", številska vrednost te nakljucne spremenljivke N je n. 

Verjetnost, da pri Z neodvisnih poskusih najprej n-krat zaporedoma dobimo ugoden izid in 
potem (Z-n)krat zaporedoma neugoden izid  je:  pn (1-p)Z-n. Verjetnosm smo kar zmnozili ker 
gre za neodvisne poskuse. 

Prestem moramo le se na koliko nacinov lako izmed Z poskusov izberemo n ugodnih in Z-n 
neugodnih: to je podano z Binomskim simbolom 

         
Utemeljimo:  prvi ugoden izid izbiramo med Z poskusi, dugi ugoden izid med preostalimi 
(Z-1), n-m ugoden izid med preostalimi (Z-n+1), torej smo našteli 
Z*(Z-1)* ... *(Z-n+1)=Z!/(Z-n)! načinov izbora. A pri tem smo šteli različna zaporedja 
izbranih izidov kot različna, pa so enaka enaka, zato moramo stevilo  načinov delim z n! 

Zaključimo: Verjetnost za n ugodnih izidov pri Z neodvisnih poskusih je

kjer je p verjetnost ugodnega izzida pri posameznem poskusu. Z in p sta parametra 
porazdelitve, ponavadi ju od argumenta locimo z dvopicjem.
Porazdelitev je seveda pravilno normirana  
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Zgornjih oznak se bova pri predavanjih in vajah z Miho Mihovilovicem drzala (vsaj skozi celotno poglavje 5). 
Kot ponavadi isto crko uporabljamo za doloceno spremenljivko v veliko zacetnico (N) in malo zacetnico (n).
Opozorilo:  zgornji N je v knjigi Verjetnost oznacen z X; zgornji Z je v knjigi Verjetnost oznacen z N.  
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Zgled Vržemo 12 poštenih igralnih kock. Kolikšna je verjetnost, da bo število pik 3  
nastopilo največ enkrat (N=<1)?
Verjetnost za ugodni izid “3 pike” pri vsakem metu je p=1/6, verjetnost za kateri koli
drugi izid pa q=1−p=5/6. Iskana verjetnost je

P(n≤1) = P(n=0)+P(n=1) =
Z=12

opomba: tu verjetnost p ni majhna, in tudi število poskusov čakanja v menzi (Z=6) 
ni majhno zato uporaba Poisonove porazdelitve namesto Binomske ni upravičena. 

DiscretePlot[PDF[ BinomialDistribution[12, 1/6] , n], {n, 0, 12}]
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če σN razumemo kot negovost izmerjenega števila dogodkov zapišemo kar 

N izm =N ± σN =Z p ± 𝑍	𝑝	𝑞 
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Zgled Merimo porazdelitev molekul po hitrosmh; pričakujemo rezultat, podoben sliki 
4.1 (desno). Meritve uredimo v histogram s k = 15 ekvidistančnimi razredi
 
1: [0, 100]m/s, 2: [100, 200]m/s   ... 15: [1400, 1500]m/s. 

V posamezni razred pade ni molekul; vsi razredi, v katere lahko pade posamezna 
hitrost, so med seboj neodvisni. Skupno preštejemo Z = n1 +n2 +· · ·+n15 molekul. 
Tak histogram — ob vsaki novi meritvi bo videm drugače — predstavlja mulmnomsko 
porazdelitev. Relamvna napaka na razmerju Ni

izm pada korensko z vecanjem stevila 
meritev Z. 
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fN (n; N̄) =
edini parameter binomske porazdelitve je povprecno stevilo 
ugodnih izidov ,𝑁 v danem stevilu neodvisnih poskusov

pogosto se povprečno število 
N označi N=𝜆
(tako je tudi v knjigi S.Sirca)

Povzemimo: Obravnavamo veliko število (Z) neodvisnih poskusov, kjer sta pri 
vsakem poskusu možni le dve vrsti izzidov: nekaj se zgodi (z verjetnostjo p) ali se pa 
ne zgodi (z verjetnostjo 1-p). V limiti velikega števila poskusov (Z→ ∞) in majhne 
verjetnosti p→0, je verjetnost za n ugodnih izzidov pri danem povprečju ugodnih 
izzidov ]𝑵 podano s spodnjo Poissonovo porazdelitvijo:  



fN(n)

  
FN(n)

n

n

Pricakovane vrednosti povprecja in variance za Poissonovo porazdelitev dolocimo kar iz 
vrednosti, ki smo jih dolocili za Binomsko porazdelitev, tako da uporabimo q=1-p~1. 
Vse bomo izrazili z N, ki je edini parameter te porazdelitve. 
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Zgled (str 116) Cepimo Z = 2000 ljudi. Verjetnost p za stranske učinke pri cepljenju je 
majhna, p = 0.001. V povprečju bosta torej stranske učinke opazila samo N = Zp = 2 
človeka. Kolikšna je verjetnost, da bo število ljudi s stranskimi učinki večje od 2? 
Verjetnost, da natanko n ljudi izkusi kak stranski učinek, je

Iskana verjetnost je torej P(n> 2) = P(3) + P(4) + · · · + P(2000). Računanju in seštevanju 
teh 1998 vrednosti se izognemo tako, da izračunamo verjetnost za nasprotni dogodek: 
P(n> 2) = 1 − P(0) − P(1) − P(2) ≈ 0.323. ▹

Zgled (str 116) Zemeljsko površje doseže v povprečju 25 meteoritov na dan. Kolikšna je 
verjetnost, da bo v desetih letih najmanj enega od  7·109 prebivalcev Zemlje zadel 
meteorit? Geometrijski presek človeškega telesa je priblizno S1 ≈ 0.2 m2, polmer Zemlje 
pa R=6400 km. 

Najprej poiscimo odgovor na zastavljeno vprasanje pragmaticno, ob predpostavki da je 
v igri Poissonova verjetnostna porazdelitev. Da je ta upravicena bomo utemeljili v 
naslednjem koraku. Poissonova porazdelitev je enoparametricna, z enim samim 
parametrom N. V tem primeru je relevanten 
 N= povprecno stevilo zadetkov meteoritev na clovestvo v desetih letih, 
 N =25  * (10 let / 1 dan) * 7·109  * S1/(4*Pi*R^2)=  9125 * 7·109  *S1/(4*Pi*R^2)=0.248 
             stevilo meteoritov  na 10 let = 25  * (10 let / 1 dan) = 91250
Nakljucna spremenljivka N z vrednostjo n  pa ustreza stevilu zadetkov meteoritev na 
clovestvo v desetih letih (stevilo "ugodnih izzidov" kar se tice razmisleka pri tej nalogi), 
verjetnost za N=n pa je  = fN(n)



Verjetnost, da zadane vsaj enega je 1 minus verjetnost da ne zadane nobenega  

P=P(n=1)+P(n=2)+....=1-P(n=0)=1 − ]𝑁.𝑒',//0! = 1-𝑒'..&12 ≈ 0.22

Zdaj še utemeljimo uporabo Poissonove porazdelitve, ki se jo za ta primer da 
utemeljiti na več različnih načinov. Vzemimo celotno obdobje t=10 let in vsak 
padec meteorita naj bo neodvisen "poskus". 
• Torej je v igri veliko stevilo Z= 25  * (10 let / 1 dan) = 91250 neodvisnih 

poskusov, kar utemeljuje prvo od predpostavk Poissonove porazdelitve. 
• Verjetnost p za "ugoden dogodek" (to je zadetek na clovestvo pri padcu enega 

meteorita)  za en poskus (to je padec enega meteorita) pa je p=7·109  * 

S1/(4*Pi*R^2)=2.7 *10-6. Torej je verjetnost za ugoden dogodek pri enem 
poskusu res p<<1 in je Poissonova aproximacija binomske porazdelitve 
utemeljena. 

Povprecno stevilo "ugodnih dogodkov" je torej N=Z p=0.248, kot prej, zgornji 
razmisek pa utemejuje uporabo Poissonove porazdelitve "ugodnih dogodkov". 

Z mislimi na prejsnji zgled izpeljimo splošnejso verjetnost za število n ugodnih dogodkov 
v času t. Z naj bo število vseh neodvisnih poskusov v tem času: primeri
• (a) Z=stevilo meteoritov (v t=10 let)
• (b) Z=stevilo jeder pri poksusu (vsako jedro predstavlja neodvisen poskus ker lahko razpade ali ne)
        predpostavka v nadaljevanju: stevilo Z ne upoade zaznavno v casu t, tako da se aktivnost ne spreminja
• (c) Z=  stevilo trkov proton–proton v LHC (na primer v t=1 dan)
Za vse te primere je Z velik in je Poissonova porazdelitev s tega stalisca upravicena. 
Verjetnost p za ugoden dogodek pri enem od Z poskusov naj bo majhna
   p=a1 * t , a1=aktivnost za en meteorit, jedro ali en kvantno-mehaniski proces= dN1/dt
• (a) aktivnost enega meteorita pri zadetku človestva 
• (b) a1=dN1/dt=aktivnost enega jedra=1/tau=lambda
• (c) a1=verjetnost za proces (p p -> končno stanje) pri trku enega para  na enoto casa   

Tedaj je verjetnost za n ugodnih dogodkov v času t podana s Poissonovo porazdelitvijo z 
N=p Z = a1 * t * Z= a*t  , kjer je a=Z*a1 aktivnost celotnega vzorca

To velja le, če se aktivnost uzorca v času t ne spremeni zaznavno. P(n) tu predstavlja  

<latexit sha1_base64="8x1J+9PlbiwvIIE06hHyPLjqoK8=">AAACD3icbVC7SgNBFJ2NrxhfUUub0aAkhWFXRG2EoI1lBPOAvJidzMYhs7PLzF0hLJsvsPFXbCwUsbW182+cPApNPHDhcM693HuPGwquwba/rdTC4tLySno1s7a+sbmV3d6p6iBSlFVoIAJVd4lmgktWAQ6C1UPFiO8KVnP71yO/9sCU5oG8g0HIWj7pSe5xSsBInewRLudl4bIJniI0dpJY7idDnCdQaEs8ZO34mECCcSebs4v2GHieOFOSQ1OUO9mvZjegkc8kUEG0bjh2CK2YKOBUsCTTjDQLCe2THmsYKonPdCse/5PgQ6N0sRcoUxLwWP09ERNf64Hvmk6fwL2e9Ubif14jAu+iFXMZRsAknSzyIoEhwKNwcJcrRkEMDCFUcXMrpvfEJAMmwowJwZl9eZ5UT4rOWdG5Pc2VrqZxpNEeOkB55KBzVEI3qIwqiKJH9Ixe0Zv1ZL1Y79bHpDVlTWd20R9Ynz8w2Zrg</latexit>

P (n) = 1
n! (at)

n e�at



• (a) n=število zadetkov meteoritov na clovestvo
• (b) n=število razpadov vseh jeder
• (c) n=število opaženih procesov p p -> končno stanje, torej določenih koncnih stanj
Vse to v danem času t

Verjetnost, da se ni zgodil noben razpad do časa t je v skladu z eksponentno porazdelitvijo, 
kjer pomnožimo Zkrat verjetnost za prezivetje vsakega izmed jeder

Klasični zgled V času t zabeležimo n jedrskih razpadov; naj bo n ≫ 1 (vsaj
nekaj deset). Ocena za pravo aktivnost vzorca a (število razpadov celotnega vzorca na 
časovno enoto) je a' = n/t, kjer crtica oznacuje da gre za oceno.  Izmerjeni n opleta okrog 
N= at za ±σN = ±sqrt(N) toda prave vrednosti a in N ne poznamo  zato naredimo priblizek 
σN~sqrt(n). Pisemo torej 

kjer smo desno enačbo dobili s tem, da smo izrazili N v levi enacbi. 

Po deljenju druge enačbe s t ugotovimo, za koliko se v povprečju razlikuje prava aktivnost 
a od izmerjene vrednosti a':

Če hočemo izmeriti aktivnost vzorca na 1 % natančno, moramo torej prešteti 104 
razpadov. Ta mlinski kamen nam visi okrog vratu pri vseh poskusih, kjer kar koli “štejemo”. 
Za k-kratno zmanjšanje statistične napake moramo prešteti k2-krat več dogodkov oziroma 
meriti k2-krat dlje.
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Zgled: vrnimo se k zgledu 
meritve števila molekul v 
določenem hitrostnem razredu: 
če  izmerimo ni molekul v i-tem 
hitrostnem razredu, povprečje Ni 
določimo po zgornji zvezi 
Ni=ni +- sqrt(ni) kjer smo privzeli 
da je qi=1-pi~1. 



5.4 Aproksimacija binomske in Possonove porazdelitve z normalno

Če je  Z velik in niti p niti q nista preblizu nič, je mogoče binomsko porazdelitev zelo dobro 
aproksimirati z normalno , čeprav je prva diskretna, druga pa zvezna! Ta približek uteleša 
Laplaceov limitni izrek, ki ga ne bomo dokazali (dokazan je v dodatku B.3.1). 

Z drugimi besedami, standardizirana binomska spremenljivka 

je asimptotsko porazdeljena po normalni porazdelitvi, 
kar v praksi dobro deluje že pri Zp, Zq> 5.

Ker je Poissonova limita binomske porazdelitve, to velja tudi za Poissonovo porazdelitev za 
dovolj velik N=Zp, v praksi deluje dovolj dobro že za N>5. 
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Zgled: Jpična dolocitev napake 
pri eksperimenJh v trkalnikih.
Ce izmerimo v v razdelku (binu) histograma 
n  procesov (p p -> doloceno koncno stanje) 
dolocimo napako na pravem povprecnem 
stevilu dogodkov N kar po prejsnji formuli 
N=n +- sqrt(n).  Tako so dolovčne 
najverjetneje tudi napake v levih histogramih 
(ki predstavljajo signal za eksoJcni hadron in 
Higgsov delec)





datoteke: konvolucija.nb

Najverjetnejse in povprecno stevilo vsote pik pri metu D kock je vedno D*3.5, kar je v skladu 
z pricakovanjem glede na met ene koncke, kjer je povprecno stevilo 1/6*sum_{i=1}^6 =3.5













Fourierove transformacije in Fourierov integral

Pri dokazu Centralnega Limitnega Teorema (CLT) bomo potrebovali Fourierove 
transformacije in Fourierov integral. Ker boste to obravnavali pri matematiki sele v 2. 
semestru 2. letnika, se tej na splosno zelo pomembni temi  posvetimo na tem mestu. 

Zaradi boljše predstavljivosti obravnavajmo f(x), ki si jo predstavljamo kar kot obicajno 
funkcijo (ne verjetnostno gostoto). Naj f(x) naj primer predstavlja odmik vala na vodi v 
odvisnosti od koordinate x v nekem trenutku, odmiki pa naj bodo odvisni le od x (in ne od 
y,z) – torej imamo v mislih eno dimenzionalni problem. Koordinata x naj ima enoto meter.  

                       slike prikazujejo realni del f(x)

Fourierova analiza ponuja odgovor na vprasanje kateri valovni vektorji k= ⁄&3
(

so zastopani pri dani funkciji f(x).  Tu ima k enoto [k]=1/m. Na spodnji sliki sklepamo da je 
zastopan le en valovni vektor, na zgornji sliki pa gotovo ni zastopan le en valovni vektor,  
temveč linearna kombinacija valovnih vektorjev. Kako močno je zastopan valovni vektor k 
naj oznacuje tildef(k). Na splosno niso zastopane le diskretne vrednosti valovnega 
vektorja, temveč so lahko zastopane vrednosti porazdeljene zvezno. Spodaj f(x) zapisemo 
kot linearno kombinacijo valovnik vektorjev k : 

tildef(k) pravimo fuorierova transformiranja funkcije f(x) v prostor valovnih vektorjev k. 
Pricakujemo da bo tildef(k) na spodnji  sliki vseboval le en k, na zgornji pa vec k. 
Fourierova analiza nam pove, da se Fourierovo transformiranko tildef(k) doloci na 
naslednji nacin 

Spodaj si oglejmo najprej nekaj konkretnih primerov, potem pa jih z izpeljavami na podlagi 
zgornjih dveh zvez utemeljimo vsakega posebej. 
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izpeljave k zgornji sliki









Verjetnostna gostota fZ skupne mase vzorca Z, ki je prav tako naključna spremenljivka, je 
konvolucija tridesetih gostot oblike (6.7); to število je dovolj veliko za veljavnost centralnega 
limitnega izreka, zato je gostota fZ skoraj normalna, s povprečjem Z = 30M = 150 m0 in 
varianco σZ

2 = 30σM
2 = 150 m0

2:



Svarilni zgled

Katera predpostavka centralnega limitnega teorema tu ni bila upravičena? Varianca te 
porazdelitve je neskončna! Končna varianca in povprečna vrednost izhodiscne f(x) pa sta 
pogoj za veljavnost CLT. Izkaze se, da so tudi vsi višji momenti Caucijeve porazdelitve f 
neskončni. 

porazdelitev enega izmerka         porazdelitev povprecja Y za N izmerkov





7. Statistično sklepanje na podlagi vzorcev

Primer neskončne populacije je tudi N=inf metov kocke, da bi določili verjetnostno porazdelitev po številu 
pik za to kocko.  Ali pa N=inf eksperimentov, da bi dolocili verjetnostno porazdelitev lege elektrona v 
vodikovem atomu v okviru kvantne mehanike. 

Primer končne populacije je na primer populacija N=2*106  Slovencev. Kasneje bomo 
napravili zgled za populacijo z N=5 elementi xj=1,..,5={2,3,6,8,11}  

Povzetek:

populacija:    N elementov,   xj=1,..N      ,  zanima nas   populacijsko povprecje   𝜇
                                                                                            populacijska varianca    𝜎&
                                                                                      verjetnostna porazdelitev populacije  fX(x)=?

vzorec:           n elementov,    xi=1,..n ,        dolocimo lahko "le" vzorcno povprecje  𝑥̅
                                                                                                         vzorcno varianco     sX

2

V tem poglavju imamo v mislih neodvisne nakljucne spremenljivke Xi, kar bomo uporabili 
pri izpeljavah, razen kadar bomo eksplicitno poudarili, da spremenljivke niso neodvisne. 

vrednosti nakljucne 
spremenljivke X



7.1  Statistike in cenilke

Funkcijska oblika  cenilke seveda ni poljubna: cenilko poskušamo zasnovati predvsem 
tako, da spostuje dve načeli: nepristranskost (unbiased) in doslednost (consistent), ki sta 
opredeljeni v nadaljevanju:

• Zelimo, da je cenilka nepristranska (unbiased). To  

• Želimo tudi, da je cenilka dosledna (consistent). To za nepristranske cenilke v praksi 
pomeni, da ocena  i𝜃 z vecanjem števila meritev n konvergira k pravi vrednosti θ in 
gre varianca cenilke za beskoncno velike vzorce proti nic: 

E[*] pomeni pričakovano vrednost pri povprečenju preko vseh vzorcev velikosti n iz 
populacije z N elementi: število vzorcev označimo z Nvzorcev  (sample): to število  
običajno ni enako številu elementov v populaciji (N) ali številu elementov v vzorcu(n). 

Tu var[*] pomeni varianco izracunano  preko vseh Nvzorcev  vzorcev velikosti n iz 
populacije z N elementi . 

cenilka za parameter 
populacije theta



7.1.1 Vzorčno povprečje in vzorčna varianca

Parametra, ki nas slej ko prej zanimata pri verjetnostni porazdelitvi sleherne naključne 
spremenljivke, sta povprečje in varianca. Vrednosti obeh teh količin za poljuben vzorec 
se v splošnem razlikujeta od njunih vrednosti za populacijo. 

Zato najprej uvedemo oznake da bomo oboje razlikovali 

                                               E[*]: pričakovana vrednost

Pozor: črta nad simbolom zdaj pomeni vzorčno povprečje, medtem ko smo jo v prejšnjih poglavjih 
uporabljali kot alternativno oznako za pričakovano vrednost. 
Doslej so X , mu in E[X] oznacevali isto rec.  

• Mislimo si, da iz populacije z N elementi zajamemo vzorec n vrednosti, in sicer tako, da se lahko 
vsaka vrednost ponovi večkrat. V primeru s telesnimi višinami ljudi to pomeni, da naključno 
izberemo osebo, ji izmerimo višino — to je vrednost spremenljivke X — in jo “vrnemo” v populacijo, 
od koder jo lahko po naključju znova “izberemo” v isti vzorec. Pravimo, da vzorec nabiramo z 
nadomeščanjem oziroma vračanjem v populacijo; tako je v danem vzorcu lahko veckrat ista oseba 
oziroma isti element. Tedaj lahko iz koncne populacije z N elementi naberemo tudi vzorce z 
n=neskocno elementi (saj lahko vzorec na primer naberemo tudi neskoncno enakih elementov). 
Prednost takega nabiranja vzorcev je, da so posamezni elementi vzorca lahko tedaj neodvisni od 
drugih (saj ni potrebno paziti da se isti element ne ponovi)

• Pri nabiranju vzorcev brez vracanja v populacijo (brez nadomescanja) pa elementi niso neodvisni saj 
moramo paziti da drugi element ne more biti enak prvemu.  Takega primera nabiranja ne bomo 
obravnavali. 

  Sicer pa pričakujemo, da za N ≫ n ni  bistvene razlike ali elemente vzorca vracamo v 
populacijo ali ne   

• Pokazali bomo da je nepristranska in dosledna cenilka za populacijsko povprecje 
       (to velja tudi za spremenljivke ki niso neodvisne)  

• Pokazali bomo, da je nepristranska in dosledna cenilka 
       za populacijsko varianco za primer neodvisnih spremenljivk Xi (torej ta velja za 
vzorce nabrane z vračanjem v populacijo, ne pa za vzorce brez vracanja v populacijo)
 

• Cenilka za katero bi naivno pricakovali da bo cenilka za populacijsko varianco pa ni    
         nepristranska, zato slednja ni optimalna cenilka (je pa tildesX prakticno enaka sX za
         velik n, zato je v tem primeru pogosto uporabljena)
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Zgled (str 160, razsirjen): populacija eksoticnega plazilca na nekem otoku je sestavljena iz 
N=5 plazilcev, in ti imajo visine xi={2,3,6,8,11} (merjetno v decimetrih). 

•  Doloci populacijsko povprecje in varianco za nakljucno spremenljivko visine
•  Preuci primere za vzorce s stevili plazilcev n=2,3,4. 
       Obravnavaj primer ko pri nabiranju vzorca plazilca vsakic sproti plazilca vrnes v 
populacijo, tako je v danem vzorcu lahko veckrat isti plazilec, npr v vzorcu [11,11]   z n=2 je 
dvakrat najvecji plazilec. Tako nabrani vzorci imajo neodvisne elemente. 
      Doloci statistike teh cenilk in razisci ali so nepristranske in dosledne. 
 
S tem preucis kaj manjsi vzorci povedo o populaciji in dobis informacijo o verjetnostni 
porazdelitvi visine v populaciji:  verjetnost je enaka 1/5 za vseh pet visin xi={2,3,6,8,11} 

Zgled je obravnavan na prosojnicah.

V knjigi je obravnavan tudi primer ko pri nabiranju vzorcev plaziclev ne vračas v populacijo, 
torej vzorec (11,11) ni zastopan. Elementi v tako nabranem vzorci niso neodvisni in nekateri 
koraki pri izpeljavi cenilke za vzorcno varianco niso vec upraviceni, zato mora biti cenilka za 
vzorce brez vracanja drugacna kot za vzorce z vracanjem; cenilka  za povprecje pa je ista  za 
vzorce z vracanjem.  (glej knjigo)

• Cenilka za populacijsko povprecje

        Pri dokazu za nepristranskost in doslednost E[*] in var[*] določimo po vseh Nvz  vzorcih.

        Ko pri izracunu E[X1]  precesemo vse vzorce, precese X1 tudi vse vrednosti v populaciji,
      zato je E[X1] po vseh vzorcih enaka populacijski vrednosti mu, kar smo uporabili zgoraj. 

To velja le za vzorce kjer so Xi neodvisni, kar je naša predpostavka za primer nabiranja 
vzorcev z vračanjem v populacijo. 

Preden dokažemo doslednost in nepristranskost cenilk za populacijsko povprečje in varianco, 
napravimo konkreten zgled za populacijo z N=5 elementi, kjer bomo lahko dejansko 
izvrednotili  pričakovane vrednosti in variance po vseh vzorcih, kar je potrebno  za dokaz 
doslednosti in nepristranskosti. 



• Dolocitev cenilk za populacijsko varianco 
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s̃2X

koncna (nepristranska) cenilka
 za populacijsko varianco

Ta korak je upravicen le za vzorce kjer so Xi neodvisni, torej za vzorce nabrane 
z vracanjem v populacijo. Za vzorce, ki temu ne zadoscajo, moramo uporabiti 
drugačno cenilko. 

videli bomo da je to pristranska cenilka
 za populacijsko varianco

koncna (nepristranska) cenilka
 za populacijsko varianco



• cenilka za varianco vzorcnega povprecja (estimator for variance of sample mean)

Želimo zapisati se cenilko za varianco vzorčnega povprečja. To je tista varianca, ki se z 
vecanjem vzorca manjša, in  je njena prava vrednost (ko seštejemo po vseh vzorcih) enaka  

            želimo cenilko za to pravo vrednost 

A ker prave vrednosti populacijske variance sigma^2 ne vemo, tvorimo cenilko za zgornjo 
količino tako, da sigma^2 nadomestimo z njeno cenilko sX

2 , torej cenilko  za pop. varianco

      cenilka za varianco 
      vzorcnega povprecja  

od tod pa s korenjenjem še negotovost ali “napako” povprecja (error of the mean). 
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V poglavju o intervalih zaupanja  bomo zgornjo grobo formulacijo "zmotili smo se nemara za .." 
kvantitativno opredelili na z izjavo ki se nanasa na verjetnosti. 



• raztresenost (varianca) vzorcne variance  

Primerjava te približne ocene 2 sigma^4/n za varianco vzorcne variance z dejansko varianco 
vzorcne variance za zgled z N=5 plazilci je na prosojnicah. Dejanska varianca pada z n, ni pa 
povsem enaka 2 sigma^4/n, saj tudi približki niso upraviceni: n=2,3,4 ni velik in porazdelitev 
Xi za populacijo ni normalna.  



7.2 Primeri pomembnih vzorčnih porazdelitev
   - 7.2.1 vzorčna porazdelitev vsot in razlik
  -  7.2.2 vzorčna porazdelitev varianc 𝑠̃$&

7.2.1 Vzorčna porazdelitev vsot in razlik
Denimo, da imamo opravka z dvema neskončnima populacijama s povprečjema μ1 in μ2 
ter variancama σ1 in σ2. Iz prve populacije izberemo vzorec velikosti n1, iz druge pa 
neodvisno od prve še vzorec velikosti n2 ter izračunamo vzorčni povprečji X1 in X2. 
Zanima nas porazdelitev vsote vzorcnih povprecij X1+X2 za velika vzorca n1 in n2. 

za velik n1 je porazdelitev povprecja X1 normalna: 
za velik n2 je porazdelitev povprecja X2 normalna: 

Kaj vemo o  vsoti ali razliki X1+X2, kjer sta X1 in X2 dve neodvisni spremenljivki? 

Poleg tega vemo, da je vsota X1+X2 dveh neodvisnih spremenljivk podana s konvolucijo 
obeh porazdelitev. Konvolucija dveh normalnih porazdelitev pa je zopet normalna (tega 
ne bomo dokazali). Zato je vsota porazdeljena

analogno pa velja za razliko 

Reskalirana naključna spremenljivka Z pa je porazdeljena po standardizirani normalni 
porazdelitvi N(0,1). 

 

+

<latexit sha1_base64="j9WCuTQhuLSAb8yyrEK/2OIc9UM=">AAACF3icbZDLSgMxFIYz9VbrrerSTbAIFaROiqgboejGlVSwF+jUIZNm2tAkMyQZoQx9Cze+ihsXirjVnW9jehG0+kPg4z/ncHL+IOZMG9f9dDJz8wuLS9nl3Mrq2vpGfnOrrqNEEVojEY9UM8CaciZpzTDDaTNWFIuA00bQvxjVG3dUaRbJGzOIaVvgrmQhI9hYy8+XQj/1Aqxg00fD4jftn10VPZH46MDTrCuwj27Lh9L6fr7gltyx4F9AUyiAqap+/sPrRCQRVBrCsdYt5MamnWJlGOF0mPMSTWNM+rhLWxYlFlS30/FdQ7hnnQ4MI2WfNHDs/pxIsdB6IALbKbDp6dnayPyv1kpMeNpOmYwTQyWZLAoTDk0ERyHBDlOUGD6wgIli9q+Q9LDCxNgoczYENHvyX6iXS+i4hK6PCpXzaRxZsAN2QREgcAIq4BJUQQ0QcA8ewTN4cR6cJ+fVeZu0ZpzpzDb4Jef9CwAhnU0=</latexit>

fX̄1
(X̄1) = N(µ1,�

2
1/n1)

<latexit sha1_base64="uy/yFhQ4MMGNPc9x+G25DTh4iHQ=">AAACF3icbZDLSgMxFIYz9VbrbdSlm2ARKkidGUTdCEU3rqSCvUCnDpk004YmmSHJCGXoW7jxVdy4UMSt7nwb04ug1R8CH/85h5PzhwmjSjvOp5Wbm19YXMovF1ZW19Y37M2tuopTiUkNxyyWzRApwqggNU01I81EEsRDRhph/2JUb9wRqWgsbvQgIW2OuoJGFCNtrMAuR0Hmh0jCZuANS9+0f3ZV8nkaeAe+ol2OAu/WOxTGD+yiU3bGgn/BnUIRTFUN7A+/E+OUE6ExQ0q1XCfR7QxJTTEjw4KfKpIg3Edd0jIoECeqnY3vGsI943RgFEvzhIZj9+dEhrhSAx6aTo50T83WRuZ/tVaqo9N2RkWSaiLwZFGUMqhjOAoJdqgkWLOBAYQlNX+FuIckwtpEWTAhuLMn/4W6V3aPy+71UbFyPo0jD3bALigBF5yACrgEVVADGNyDR/AMXqwH68l6td4mrTlrOrMNfsl6/wIICZ1S</latexit>

fX̄2
(X̄2) = N(µ2,�

2
2/n2)

<latexit sha1_base64="hkjvUO5BdzmkbggYLfrM8dFldTA="></latexit>

fX̄1+X̄2
(X̄) = (fX̄1

⇤ fX̄2
)(X̄) = N(µ1 + µ2, �2

1/n1 + �2
2/n2)

<latexit sha1_base64="rii612SGaCzRkjHohZpqUozlfIQ="></latexit>

fX̄1�X̄2
(X̄) = N(µ1 � µ2, �2

1/n1 + �2
2/n2)



7.2.2 vzorčna porazdelitev varianc : porazdelitev 𝜒! 

Vzorčne porazdelitve varianc dobimo, ko zajamemo iz populacije vse možne naključne 
vzorce velikosti n in izračunamo varianco za vsak vzorec. Iz variance populacije, σ2, in 
vzorčne variance 𝑠̃$&	 (v pristranski obliki) tvorimo naključno spremenljivko

<latexit sha1_base64="hVvGzoLQ5Xjg1RUcY0CqS+EU4is=">AAACW3icbZBPb9MwGMadDFgpAwqIExeLCmkcqJIKsV0mTXDhOCS6RarbyHHetNZsJ9hvJior+5Cc4MBXQbh/DmzjlSw9ep7nle1f0SjpMEl+RfHevfsP9nsP+48OHj95Onj2/NzVrRUwEbWqbVZwB0oamKBEBVljgetCwUVx+WmdX1yBdbI2X3HVwEzzhZGVFByDlQ8sE0s5H7N6XQL0DOE7+hKqrvMMvrXyinbXrLJceEOvGUpVAnV5Nh+H3MmF5kHRE+ZanXt5knZzQ7f1wyyX71jBLc3e3mjng2EySjZD74p0J4ZkN2f54Acra9FqMCgUd26aJg3OPLcohYKuz1oHDReXfAHTIA3X4GZ+w6ajb4JT0qq24RikG/ffDc+1cytdhKbmuHS3s7X5v2zaYnU889I0LYIR24uqVlGs6Ro0LaUFgWoVBBdWhrdSseSBDAbS/QAhvf3lu+J8PEo/jNIv74enH3c4euQVeU0OSUqOyCn5TM7IhAjyk/yJ9qNe9Dvei/vxwbYaR7udF+TGxC//AhJktog=</latexit>

�2 def⌘ n s̃2X
�2

=
nX

i=1

(Xi � X̄)2

�2

chi^2 je naključna spremenljivka, ki zavzame različne vrednosm za različne vzorce. 
Imenujmo jo Y=𝜒& , torej naključna spremenljivka Y zavzame različne vrednosm y. 

Velja izrek, ki ga bomo dokazali/nakazali:  Če naključne vzorce velikosN n zajemamo iz 
normalno porazdeljene populacije, je porazdelitev fY(y) naklju;ne spremenljivke Y=𝝌𝟐 
po vrednosN y podana s porazdelitvijo "hi—kvardrat" (chi square)  z 𝝂=n-1 
prostostnimi stopnjami, torej   

Y=𝜒!
<latexit sha1_base64="tr9dv3A5+xyPkH2e15fEmeW3bHc="></latexit>

f�2(y; ⌫)
def⌘ 1

2⌫/2
1

�(⌫/2)
y⌫/2�1e�y/2, y > 0

<latexit sha1_base64="147q8vSI9Ig5LD6pNcVuoFRrYCI=">AAACD3icbVDLSsNAFJ3UV62vqEs3U4vSLixJERWkUHTjsoJ9SFPDZDpph04mYWYihNA/cOOvuHGhiFu37vwbp4+FVg9cOJxzL/fe40WMSmVZX0ZmYXFpeSW7mltb39jcMrd3mjKMBSYNHLJQtD0kCaOcNBRVjLQjQVDgMdLyhpdjv3VPhKQhv1FJRLoB6nPqU4yUllzz0Hdvi0mp6rupgwf0rjIqJufQ4bGTrzp57uSPnLxdgq5ZsMrWBPAvsWekAGaou+an0wtxHBCuMENSdmwrUt0UCUUxI6OcE0sSITxEfdLRlKOAyG46+WcED7TSg34odHEFJ+rPiRQFUiaBpzsDpAZy3huL/3mdWPln3ZTyKFaE4+kiP2ZQhXAcDuxRQbBiiSYIC6pvhXiABMJKR5jTIdjzL/8lzUrZPinb18eF2sUsjizYA/ugCGxwCmrgCtRBA2DwAJ7AC3g1Ho1n4814n7ZmjNnMLvgF4+MbZBKZsA==</latexit>

fY (y) = f�2(y; ⌫=n�1)

<latexit sha1_base64="L+eBFepNhTQlp4qOaBFse33k9S0=">AAAB/HicbVBNS8NAEJ34WetXtEcvi0Wol5IUUcFL0YvHCvYDmlo22027dLMJuxshhPpXvHhQxKs/xJv/xm2bg7Y+GHi8N8PMPD/mTGnH+bZWVtfWNzYLW8Xtnd29ffvgsKWiRBLaJBGPZMfHinImaFMzzWknlhSHPqdtf3wz9duPVCoWiXudxrQX4qFgASNYG6lvl4J+5pERe6hNKukV8kRyivp22ak6M6Bl4uakDDkaffvLG0QkCanQhGOluq4T616GpWaE00nRSxSNMRnjIe0aKnBIVS+bHT9BJ0YZoCCSpoRGM/X3RIZDpdLQN50h1iO16E3F/7xuooPLXsZEnGgqyHxRkHCkIzRNAg2YpETz1BBMJDO3IjLCEhNt8iqaENzFl5dJq1Z1z6vu3Vm5fp3HUYAjOIYKuHABdbiFBjSBQArP8Apv1pP1Yr1bH/PWFSufKcEfWJ8/LnGT0A==</latexit> f �
2
(y
;⌫

) PDF[ChiSquareDistribution[nu], y]

Lastnosti pomembne porazdelitve chi2:

za velik nu: porazdelitev postane podobna normalni porazdelitvi
 

<latexit sha1_base64="gdWnY/L0/OIUHwFdYCxq71w2A8w="></latexit>

E[Y ] =

Z 1

0
f�2(y; ⌫) y dy = ⌫

var[Y ] =

Z 1

0
f�2(y; ⌫) (y � ȳ)2 dy = 2⌫

mod[Y ] = max[f�2(y; ⌫)] = max(0, ⌫ � 2)

𝜈=število 
prostostnih stopenj

<latexit sha1_base64="aNBIUkKEw+ChiMONAqD9tYI/1RY=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cq1hbaUDbbTbt0swm7EyGE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmlldW19o7xZ2dre2d2r7h88mjjVjLdYLGPdCajhUijeQoGSdxLNaRRI3g7GN1O//cS1EbF6wCzhfkSHSoSCUbTSPcn61Zpbd2cgy8QrSA0KNPvVr94gZmnEFTJJjel6boJ+TjUKJvmk0ksNTygb0yHvWqpoxI2fzy6dkBOrDEgYa1sKyUz9PZHTyJgsCmxnRHFkFr2p+J/XTTG88nOhkhS5YvNFYSoJxmT6NhkIzRnKzBLKtLC3EjaimjK04VRsCN7iy8vk8azuXdS9u/Na47qIowxHcAyn4MElNOAWmtACBiE8wyu8OWPnxXl3PuatJaeYOYQ/cD5/AD9IjS0=</latexit>y



Preverimo ali razumemo njeno povprecje te porazdelitve: v ta namen določimo  pricakovano 
vrednost chi2  po vseh vzorcih 

Kjer smo uporabili pricakovano prednost variance v pristranski obliki. Ugotovimo da je 
pricakovana vrednost Y res enaka pricakovani vrednosti chi2 porazdelitve: to je nu=n-1 za 
vzorec velikosti n.  

Zgled:  V veliki populaciji (N=10 000) lisic je teža porazdeljena približno normalno z 
povprečjem mu=10 kg in standardnim odklonom sigma=2 kg. Iz nje zajemaj vzorce za 
razlicnimi stevili elementov n=3,8,100 in razisci statistike oziroma porazdelitve vzorcnih 
varianc. Za n=3 in 8 obravnavaj Nvz=100 vzorcev, za n=100 pa Nvz=1000 vzorcev. Zgled je 
obravnavan na prosojnicah. 

Opozorilo: Zgled iz knjige (str 162) zajema iz populacije N=5 eksoticnih zivali, kjer njihove 
visine ={2,3,6,8,11} niso porazdeljene po normalni porazdelitvi. Zato chi2 porazdelitev ni 
upravičena. Pri  zgledu z lisicami pa je teza porazdeljena normalno in je chi2 porazdelitev 
upravicena. 

<latexit sha1_base64="3lGc/xCIfrbLENuHvTn9aN65A4I="></latexit>

E[Y ] = E[
ns̃2X
�2

] =
n

�2
E[s̃2X ] =

n

�2

(n� 1)�2

n
= n� 1 = ⌫

+

+

V grobem je raztresenost vsakega elementa v vzorcu velikostnega reda sig2, 
vsak clen v vsoti v grobem prispeva 1, zato je chi2 velikostnega reda n oziroma bolj 
natancno nu=n-1 (kar pa pokaze sele natancen racun zgoraj) 



redisual = odstopanje

g

g





2)

3)



<latexit sha1_base64="orU+mNO2auqJL0OEWUcD189vqf0=">AAACwXicjVFNj9MwEHXC11K+Chy5WFQgLpSkQsAJrdgLx0Wiu5XqbuQ4k9Za28naE6TKCj+SE/wb3NYS3Y8DI1l6ejPvzXimbJV0mGV/kvTW7Tt37x3cHzx4+Ojxk+HTZyeu6ayAqWhUY2cld6CkgSlKVDBrLXBdKjgtz482+dMfYJ1szHdct7DQfGlkLQXHQBXD30ys5Nmk8IyrdsXfTXqm4IKy2nLhDUOpKqCumJ1Nes+cXGoeEN3VRGX+9p+WDV7HFy2Yu7Dozc9LTn2kb3DoY/9tK7o3y38Z7dkUw1E2zrZBr4M8ghGJcVwMf7GqEZ0Gg0Jx5+Z51uLCc4tSKOgHrHPQcnHOlzAP0HANbuG3F+jpq8BUtG5seAbplt1XeK6dW+syVGqOK3c1tyFvys07rD8tvDRth2DErlHdKYoN3ZyTVtKCQLUOgAsrw6xUrHhYGIajD8IS8qtfvg5OJuP8wzj/9n50+CWu44C8IC/JG5KTj+SQfCXHZEpE8jmpEp2Y9CiVaZvaXWmaRM1zcilS/xcAMtxw</latexit>
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7.3.2 Interval zaupanja za populacijsko varianco

Začnimo s populacijsko varianco, saj je ta neposredno povezana z porazdelitvijo chi2, 
ki smo jo pravkar spoznali.

Zanima nas interval, na katerem bo vzorčni χ&	 zastopan z verjetnostjo 
1-𝛼	če	meritev	vzorca	velikokrat	ponovimo. Pri	tem	izvzamemo	 delež
6
&
najmanjsih	χ&	in	delez 7

&
	največjih	χ&.	

Verjetnosti 1- 𝛼 pravimo stopnja zaupanja (conwidence level = CL)
Iz podrazdelka 7.2.2  že vemo, da ima spremenljivka χ2 = n𝑠̃$& /σ2 po- razdelitev χ2 z ν = n − 1 
prostostnimi stopnjami

	

Od tod dobimo interval zaupanja, na katerem se populacijska varianca nahaja z vnaprej 
predpisano verjetnostjo 1- 𝛼 (ki	ji	pravimo	stopnja	zaupanja	oz conwidence level = CL)	
 

7.3 Intervali zaupanja (confidence intervals)

Zelimo dolociti kvantitativno merilo za koliko smo se utegnili zmotiti pri dolocitvi 
populacijske variance na podlagi danega vzorca. 

interval zaupanja za populacijski 
standardni odklon sigma
pri stopnji zaupanja 1 − 𝛼 =CL

𝛼	=stopnja tveganja, 1- 𝛼 = stopnja	zaupanja

= CL



Zgled Vzemimo spet zgled z vzorcem n=8 lisic in dolocimo interval zaupanja za varianco pri 
stopnji zaupanja 1-alpha=0.8. Pri prejsnjem zgledu smo ze dolocili da bodo vzorcne 
variance 𝑠̃$&	 oz pripadajoc  chi2 na intervalu  

Nas pa iz izracunanega 
𝑠̃$&	za	dan	vzorec	bolj	zanima	kaksen	je	interval	zaupanja	za	populacijsko	varianco	σ2

Primer za vzorce z n=8 lisicami je na prosojnicah. Za vsak od 100 vzorcev dolocimo interval 
zaupanja za sigma, in za vsak vzorec potem preverimo ali je pravi populacijski sigma res na 
tem intervalu. Izkaze se, da to drzi v priblizno delezu 1-alpha, kot bi pricakovali.   

<latexit sha1_base64="2VLuLYxcdogf16MVN1lEIlIP/Gk="></latexit>
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interval zaupanja za vzorcno varianco pri 
stopnji zaupanja (confidence level) 1-alpha=0.8

interval zaupanja za populacijsko varianco sig^2 pri 
stopnji zaupanja (confidence level) 1-alpha=0.8

Zgled: Pricakujemo da pri vecjih vzorcih dobimo manjse obmocje intervala zaupanja, 
torej  da je populacijska varianca bolj natancno dolocena. To preverimo za vzorce n=100 
lisic na prosojnicah. 

Zgled: 
+

Z verjetnostjo 0.8 je populacijski standardni odklon sigma za ucinkovino  
na intervalu, s cimer imamo v mislih: pri mnogkratni meritvi vzorcev bo v 
80% vzorcev dejanska populacijska varianca znotraj vzorcnega intervala 
zaupanja. Pri tem se seveda populacijska varianca od vzorca do vzorca ne 
spreminja, interval zaupanja pa se od vzorca do vzorca spreminja.   



7.3.1. Interval zaupanja za populacijsko povprečje 

V tem odstavku govorimo o vzorcnem povprecju, v naslednjem pa zelimo nasloviti populacijsko povprecje. 



<latexit sha1_base64="pS1fqvm+GZusuSVDN7U2J3YKWLE=">AAACBHicbVDLSsNAFJ3UV62vqMtuJhahLiyJiAoiFN24rNAXNCFMppN26GQSZiZCCV248VfcuFDErR/hzr9x2mah1QMXDufcy733BAmjUtn2l1FYWl5ZXSuulzY2t7Z3zN29toxTgUkLxywW3QBJwignLUUVI91EEBQFjHSC0c3U79wTIWnMm2qcEC9CA05DipHSkm+WQz9rTqrqEro8da0r1+KudexazhGEvlmxa/YM8C9xclIBORq++en2Y5xGhCvMkJQ9x06UlyGhKGZkUnJTSRKER2hAeppyFBHpZbMnJvBQK30YxkIXV3Cm/pzIUCTlOAp0Z4TUUC56U/E/r5eq8MLLKE9SRTieLwpTBlUMp4nAPhUEKzbWBGFB9a0QD5FAWOncSjoEZ/Hlv6R9UnPOas7daaV+ncdRBGVwAKrAAeegDm5BA7QABg/gCbyAV+PReDbejPd5a8HIZ/bBLxgf34NslWw=</latexit>

fT (t; ⌫=n�1)

Studentovo porazdelitev navedemo zopet brez dokaza, za velik nu je zelo podobna N(0,1):

Integral ver-

interval zaupanja za 
populacijsko povprecje mu 
pri dani stopnji zaupanja 1-alpha

= CL

<latexit sha1_base64="pS1fqvm+GZusuSVDN7U2J3YKWLE=">AAACBHicbVDLSsNAFJ3UV62vqMtuJhahLiyJiAoiFN24rNAXNCFMppN26GQSZiZCCV248VfcuFDErR/hzr9x2mah1QMXDufcy733BAmjUtn2l1FYWl5ZXSuulzY2t7Z3zN29toxTgUkLxywW3QBJwignLUUVI91EEBQFjHSC0c3U79wTIWnMm2qcEC9CA05DipHSkm+WQz9rTqrqEro8da0r1+KudexazhGEvlmxa/YM8C9xclIBORq++en2Y5xGhCvMkJQ9x06UlyGhKGZkUnJTSRKER2hAeppyFBHpZbMnJvBQK30YxkIXV3Cm/pzIUCTlOAp0Z4TUUC56U/E/r5eq8MLLKE9SRTieLwpTBlUMp4nAPhUEKzbWBGFB9a0QD5FAWOncSjoEZ/Hlv6R9UnPOas7daaV+ncdRBGVwAKrAAeegDm5BA7QABg/gCbyAV+PReDbejPd5a8HIZ/bBLxgf34NslWw=</latexit>

fT (t; ⌫=n�1)



njami. Mejna vrednost t* je msta pod katero se t realizira z  0.95 odstotno verjetnostjo 
 (5% spodaj, 5% zgoraj), torej  

t*=F-1(0.95,nu=10)=InverseCDF[StudentTDistribumon[10], 0.95]=1.812. 

Iskani interval zaupanja za populacijsko povprecje μ je torej

Z verjetnostjo CL=0.9 je  populacijsko povprecje mase delca na zgornjem intervalu
s cimer imamo v mislih: pri mngokratni meritvi vzorcev bo v 90% vzorcev dejanska masa 
delca znotraj vzorcnega intervala zaupanja. Pri tem je seveda dejanska masa od vzorca 
do vzorca nespremenjena, interval zaupanja pa se od vzorca do vzorca spreminja.   







verjetnost

dobljenih podatkov



Velja: MLE cenilke !𝜃	so nepristranske v limiti velikih n, drugace pa so v splosnem 
pristranske  (brez dokaza, a bomo to osvetlili v 8.3)

E[..] je pricakovana 
vrednost po vseh vzorcih

Zgled Tocke na sliki ponazarjajo izmerke 
{x1, x2, . . . , x6}= {0.9995, 0.9996, 0.9999, 1, 1.001, 1.0013}
za katere domnevamo, da izvirajo iz populacije, porazdeljene po Cauchyjevi porazdelitvi 
širino s = 0.0001 in neznanim povprecjem μ. Nal: Izracunajmo na podlagi tega vzorca 
oceno za povprecje {μ po metodi maksimalnega verjetja!+

pokazali bomo da so dosledne

<latexit sha1_base64="n+71zASHRzmjIMrVS/Jq/juwFfc="></latexit>

E[✓̂] = ✓0 za n ! 1
E[✓̂] = ✓0 +O(1/n) za velik n

lim
n!1

var[✓n] = 0
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+

utez (wight wi) za i-ti izmerek je 
obratno sorazmerna z njegovo 
varianco. Tisti z navecjo varianco 
bodo prispevali najmanj. 



8.3 Pričakovana vrednost in varianca cenilke i𝜃 za parameter 𝜽  

<latexit sha1_base64="wbnA7WzElKXIvb1uIz169nM1ONg=">AAACFnicbVDLSgNBEJz1GeMr6tHLYBC8JOyKqBch6MVjBPOAbAi9k9nskNkHM71CWPIVXvwVLx4U8Sre/BsnyR40saDpoqqbmS4vkUKjbX9bS8srq2vrhY3i5tb2zm5pb7+p41Qx3mCxjFXbA82liHgDBUreThSH0JO85Q1vJn7rgSst4ugeRwnvhjCIhC8YoJF6pQqlbgBIXQw4wtWs9Wxaoa6vgGUuyCSAceZ6Rh/3SmW7ak9BF4mTkzLJUe+Vvtx+zNKQR8gkaN1x7AS7GSgUTPJx0U01T4ANYcA7hkYQct3NpmeN6bFR+tSPlakI6VT9vZFBqPUo9MxkCBjoeW8i/ud1UvQvu5mIkhR5xGYP+amkGNNJRrQvFGcoR4YAU8L8lbIATBxokiyaEJz5kxdJ87TqnFedu7Ny7TqPo0AOyRE5IQ65IDVyS+qkQRh5JM/klbxZT9aL9W59zEaXrHzngPyB9fkDJf+eyw==</latexit>

✓̂ = ✓0 �
↵

�

<latexit sha1_base64="cNPpoVygnc+U6Xq9/EIcuO3fQi4=">AAACJnicbVDLSgMxFM3UV62vqks3wSK4kDojom4KRRFcVrAP6AzlTpq2oZmHyZ1CKf0aN/6KGxcVEXd+iuljYVsPhBzOPYfkHj+WQqNtf1upldW19Y30ZmZre2d3L7t/UNFRohgvs0hGquaD5lKEvIwCJa/FikPgS171u3fjebXHlRZR+IT9mHsBtEPREgzQSI1sgdL7utsBpC52OIJXmN4Nm55R9zmBJu2BmnO4sYpijKhzbvI5O29PQJeJMyM5MkOpkR25zYglAQ+RSdC67tgxegNQKJjkw4ybaB4D60Kb1w0NIeDaG0zWHNITozRpK1LmhEgn6t/EAAKt+4FvnAFgRy/OxuJ/s3qCrRtvIMI4QR6y6UOtRFKz5Lgz2hSKM5R9Q4ApYf5KWQcUMDTNZkwJzuLKy6RykXeu8s7jZa54O6sjTY7IMTklDrkmRfJASqRMGHkhb2REPqxX6936tL6m1pQ1yxySOVg/vycmpGY=</latexit>

E[✓̂] = ✓0, var[✓̂] / 1/n

Količini α in β imata naključno naravo, saj sta odvisni od vsakokratnega vzorca x, 
theta0  pa je vrednost parametra v populaciji.  Zanima nas pričakovana vrednost 
cenilke in varianca. Pokazali bomo da za velike n velja

V ta namen moramo sešteti po vseh vzorcih (x1,..,xn). Ker so xi med seboj v 
skladu z obravnavano predpostavko  neodvisni to pomeni, da moramo sešteti po 
vseh vrednostih xi neodvisno : sum_i xi oziroma v zvezni limiti integrirati po vseh 
vrednostih x. Torej, za velike n lahko vsoti nadomestimo z integraloma: vlogo 
uteži 1/n pred vsoto prevzame verjetnostna gostota. Tedaj lahko zapišemo  

Varianca cenilke i𝜃	𝐯	𝐥𝐢𝐦𝐢𝐭𝐢	𝐯𝐞𝐥𝐢𝐤𝐢𝐡	𝐯𝐳𝐨𝐫𝐜𝐞𝐯

       8.3.1  varianca cenilke i𝜃 𝐳𝐚 en parameter theta, vsi fXi=fX enaki

Izpeljimo izraz za varianco cenilke za en parameter za primer ko so vsi elementi vzorca 
porazdeljeni z enako verjetnostno gostoto fXi=fX (na koncu pa jo bomo posplosili)  
Želimo izpeljati l''=-1/var[theta] kot smo navedli v podpoglavju "načelo maksimalnega verjetja".  

<latexit sha1_base64="em4ezcd2pghu7QmwZLYiNnVL/nQ="></latexit>

E[↵] =

Z
d log fX

d✓
fX dx

�

✓0



odvodi 
so po 
theta

Varianca cenilke po metodi maksimalnega verjetja res pada z n!

S tem smo utemeljili E[l'']=-1/var[theta] kar smo zapisali v podpoglavju "načelo maksimalnega verjetja"

kjer smo v zadnjem enačaju uporabili (8.9). To lahko izrazimo z  E[l''], ker l v našem primeru 
vsebuje n enakih verjetnostnih gostot in ker so xi neodvisni 

Tako dobimo koncen izraz za varianco cenilke

<latexit sha1_base64="l2sSS5rjhGOEqNRsmQ96f3uYjDw=">AAACOnicbVBNSxxBFOwxJprN1yYec2lcAuthlxkJ6kWQiOBRwdWFmXF50/tmt7GnZ+h+IyzD/K5c8ityy8GLB0VyzQ+w9+Ogawq6Karq0f0qKZS05Pt/vJVXq6/frK2/bbx7/+Hjp+bnL+c2L43AnshVbvoJWFRSY48kKewXBiFLFF4kV4dT/+IajZW5PqNJgXEGIy1TKYCcNGietq/BhNEYiEc0RoJ467LqBPV+5yhUl1VUGJnh/K5jvs87XPOjsB2pfMTTQdWvt5ZDg2bL7/oz8JckWJAWW+Bk0PwdDXNRZqhJKLA2DPyC4goMSaGwbkSlxQLEFYwwdFRDhjauZqvX/JtThjzNjTua+Ex9OlFBZu0kS1wyAxrbZW8q/s8LS0r34krqoiTUYv5QWipOOZ/2yIfSoCA1cQSEke6vXIzBgCDXdsOVECyv/JKcb3eDnW5w+r118GNRxzr7yjZZmwVslx2wY3bCekywn+yG3bF775d36z14f+fRFW8xs8Gewfv3CNL/rOg=</latexit>

(var[✓̂])�1 = �E[l00] = �nE[(log fX)00]

<latexit sha1_base64="Kwd+3Y6/ONGkdQzkitPFEqJdMKY=">AAACUHicbVFPSyMxHP1N1V2tunb16CVYhHopMyLqpSBKwWMFWwsz45BJMzWYZIYks2wZ6jf04s3P4cWDoukfUVsfJHm890KSlzjjTBvXfXRKC4tLv34vr5RX19b/bFT+bnZ0mitC2yTlqerGWFPOJG0bZjjtZopiEXN6Fd+ejfyrf1RplspLM8hoKHBfsoQRbKwUVfpNn18XQaaYoJN5GDaafqBzERWs4Q2vJaoFPO2jJOrW/kdsb282jhoISXTX9D+D85moUnXr7hhonnhTUoUpWlHlIeilJBdUGsKx1r7nZiYssDKMcDosB7mmGSa3uE99SyUWVIfFuJAh2rVKDyWpskMaNFa/7iiw0HogYpsU2NzoWW8k/uT5uUmOw4LJLDdUkslBSc6RSdGoXdRjihLDB5Zgopi9KyI3WGFi7B+UbQne7JPnSWe/7h3WvYuD6snptI5l2IYdqIEHR3AC59CCNhC4hyd4gVfnwXl23krOJPqxwhZ8Q6n8Digys84=</latexit>

E[l00] = E[
nX

i=1

(log fX(xi))
00] = n E[(log fX)00]

<latexit sha1_base64="t4EJSwFEiwiGXz6zqvdeF/9HkXg="></latexit>

� 1

n E[ d2

d✓2 log fX ]✓0





Uvod v zgled s Paretovo porazdelitvijo (3.5), ki je pogosto prikladna za kolicine:
• katerih vrednosti se razprostirajo prek več redov velikosti,
• z veliko verjetnostjo za majhne vrednosti in majhno verjetnostjo za velike vrednosti 

ustreznih naključnih spremenljivk

+

odvod tega clena po a je nic, zato ta clen ne prispeva 
(v nasprotnem primeru bi morali izracunati pricakovano vrednost po porazdelitvi)



V primeru p-parametrov theta nas zanima celotna pxp kovariancna matrika ,  ki je 
posplositev variance var[theta] za en parameter. Ta je po metodi maksimalnega verjetja 
in v skladu z enakimi priblizki enaka (brez dokaza)

Izraz za en sam parameter ocitno preide v  prejsnji izraz iz poglavij 8.3.1 in 8.3.2. 

S tem smo nakazali zakaj je drugi odvod po l povezan z kovariancno matriko parametrov, 
kar smo zapisali v podpoglavju "nacelo maksimalnega verjetja"

 

8.3.3  Varianca cenilke "𝜃 𝑧𝑎 več parametrov 𝜃" , razlicni fXi. 

<latexit sha1_base64="tgI3b2ElhHuMg5mQ7yA/zsFPu1M="></latexit>

(⌃�1

~̂✓
)kl = (cov[~̂✓]�1)kl = �E


@

@✓k

@

@✓l
l

�
pxp covariancna matrika za p parametrov theta

Zgornja izepljava se po analoginih korakih posplosi tudi na primer razlicnih verjetnostnih 
gostot, kjer pac pricakovane vrednosti E[..] po vseh vzorcih dobimo z integracijami po        
fxi (xi). Izkaze se, da dobimo analogen razultat za varianco cenilke theta

ki ocitno preide v prejsni izraz ko je za vseh n elementov fXi enak.

8.3.2  Varianca cenilke "𝜃 za en parameter 𝜃, posplositev na razlicne fXi

<latexit sha1_base64="ogF6VJYYe/aLFfNYq5O6QtgXrco="></latexit>

(var[✓̂])�1 = �E[l00] = �E[
nX

i=1

(log fXi)
00]odvodi 

so po 
theta



Zgled za kaj bomo to na primer uporabili; 
funkcija g je lahko tudi nelinearna funkcija parametrov theta









Zgled:

+

Zgled

Veliko zgledov za prilagajanje; naloge iz poglavja 7 v knjigi (a v vecini primerov 
kovariancne matrike zacetnih podatkov in koncnih parametrov niso podane) 

+

[Desno]. Premica, ki ustreza pravima 
vrednostma θ1 in θ2, z verjetnostjo 1 − e−1/2 

leži znotraj te pahljače. 
V naslednjem podpoglavju bomo opredelili 
kako to dolocimo. manjka rezultat za 

korelacijo koncnih parametrov. 



<latexit sha1_base64="hXcJL9+Cx3mQNM9vQ0xbKo6EA7E=">AAACbnicbVFdS8MwFE3r9/yaCj4oYnAoPszRDlFfCkMRfFRwKix1pGnqgmlak3QwSh/9g775G3zxJ5huQ9R5IXA4596Tm5Mg5Uxpx3m37Knpmdm5+YXK4tLyymp1bf1OJZkktE0SnsiHACvKmaBtzTSnD6mkOA44vQ+eL0r9vk+lYom41YOU+jF+EixiBGtDdauv8ACJzBNHqYdirHsyzsMkKhCqHKCXDIfwsoNIjz02fQ+aRliHIxpFEpP8WyxyIxbeJPvDs/Dc+mi4j+W3a7O07VZrTsMZFpwE7hjUwLiuu9U3FCYki6nQhGOlOq6Taj/HUjPCaVFBmaIpJs/4iXYMFDimys+HcRVw3zAhjBJpjtBwyP6cyHGs1CAOTGe5vvqrleR/WifT0ZmfM5FmmgoyuijKONQJLLOHIZOUaD4wABPJzK6Q9LCJTJsfqpgQ3L9PngR3zYZ70nBvjmut83Ec82Ab7IFD4IJT0AJX4Bq0AQEf1pq1ZW1bn/amvWPvjlptazyzAX6VffgFq1W6sQ==</latexit>

⌫ = n� p = dof

E[�2] = ⌫,
E[�2]

⌫
=

E[�2]

dof
= 1, var[�2] = 2⌫

Kako dobro je prilagajanje? Za ta namen je relevantna porazdelitev naključne spremenljivke  
𝜒& (po različnih vzorcih  𝑥⃗ ) 
Za vsak vzorec lahko dolocimo parametre 𝜃⃗ = i⃗𝜃, in	posledično bo vrednost naključne 
spremenljivke 𝜒& varirala od vzorca do vzorca. Pričakujemo, da bo ta naključna 
spremenljivka porazdeljena v skladu z porazdelitvijo chi2 z nu=n-p prostostnimi  stopnjami : 

 
To pričakujemo v skladu z izpeljavami iz poglavja 7 
- če so izmerki xi res porazdeljeni v skladu z normalno porazdelitvijo z danimi var[xi]
 - če funkcijska odvisnost g(t;theta) res  dobro opisuje pricakovano vrednost xi
- če smo s prilagajanjem res dolocili prave parametre
 - če so xi neodvisni in smo uporabili chi2=sum_i (xi-g)^2/sigma_i^2: 
   (za ta primer smo utemeljili chi2 porazdelitev v poglavju 7)
- zgornja porazdelitev z nu=n-p je relevantna tudi za primere koreliranih xi 
   ce uporabimo koreliran chi2= (x-g)^T Sigma_x^(-1) (x-g) kjer je Sigma kovariancna matrika

Pričakovana vrednost porazdelitve chi2 in njena varianca sta  

<latexit sha1_base64="tSGJP+wbB2FfdqfxJetkpiqKY8Y=">AAACDHicbVDNSgMxGMzWv1r/qh69ZC1CBS27RdSLUPTisYL9gWYt2TRrQ7PZJckKZekDePFVvHhQxKsP4M23MW33oK0DIcPMfCTf+DFnSjvOt5VbWFxaXsmvFtbWNza3its7TRUlktAGiXgk2z5WlDNBG5ppTtuxpDj0OW35g6ux33qgUrFI3OphTL0Q3wsWMIK1kbrFEgy6KSJ9dlcdlaf3ERIJsi+QLZB9jOz40KScijMBnCduRkogQ71b/EK9iCQhFZpwrFTHdWLtpVhqRjgdFVCiaIzJAN/TjqECh1R56WSZETwwSg8GkTRHaDhRf0+kOFRqGPomGWLdV7PeWPzP6yQ6OPdSJuJEU0GmDwUJhzqC42Zgj0lKNB8agolk5q+Q9LHERJv+CqYEd3bledKsVtzTintzUqpdZnXkwR7YB2XggjNQA9egDhqAgEfwDF7Bm/VkvVjv1sc0mrOymV3wB9bnDy1HmSQ=</latexit>

f�2(�2, ⌫=n�p)

: čtevilo prostostnih stopenj (number of degrees of freedom=dof)

V primerih, kjer so upravičene predpostavke iz zgornjih alinej, pricakujemo,  da bo 
reduciran chi-kvadrat ( �𝝌𝟐

𝝂) v popvrečju enak 1. Ali obratno: če pri prilagajanju na vzorcu 
dobimo chi2/nu priblizno enak 1 v grobem sklepamo, da so bile zgornje predpostavke 
upravičene. 

Če pa dobimo 𝜒& /nu veliko večji od 1, običajno določimo kolikšna je verjetnost (to 
verjetnost imenujemo vrednost-p = p-value) da bo 𝝌𝟐 tako ekstremen kot ga je dala 
minimizacija na vzorcu (imenujmo tega  𝝌𝒗𝒛𝟐 ) ali se bolj ekstremen 

Velik chi2/nu ali zelo majhna vrednost p nakazujeta na slabo kakovost prilagajanja. 
S zadnjo zvezo torej ocenimo kakovost prilagajanja (goodness if fit). Več o tem bomo 
spregovorili v poglavju o testiranju hipotez. 

reduciran 𝜒& 

<latexit sha1_base64="wtE4x7NLVfGTZMZzRbWfF5gxQWg="></latexit>

vrednost�p = P (�2 � �2
vz) =

Z 1

�2
vz

f�2(�2;n� p) d�2 (p�value)



Prilagajanje konstante (9.1.8) 



Ogromen chi2/nu že sam po sebi nakazuje na to, da je bila ena od predpostavk (iz alinej na 
prejsnji strani) napa;na. Verjetnost (p-value) za tako velik ali se večji chi2 je izjemno majhna, 
tako majhna da Mathematica vrne 0 

Če opustimo ubezni vrednosti x4 in x7, dobimo                                                           in zmerno 
vrednost p, kar kaže na ustrezno prilagajanje

a seveda le, če obstaja utemeljen razlog, da smo dva ubežna podatka zavrgli. 

<latexit sha1_base64="4BMcO2B7wdi/szTLjO6E0L2y26k="></latexit>

p�value = P (�2 � 36.5 · 9) =
Z 1

328.5
f�2(�2; 9) d�2 = 0.00000⇤

=1 - CDF[ChiSquareDistribution[9], 36.5*9]=0.0000*

<latexit sha1_base64="kupqMasoOwveMl0yVJME7reZaBc=">AAACUHicbZFLa9wwFIWvp4+k09ekXXajdCikixo7DZlCCYR20+UUOklgNDGyfD0jIsuOdB0YjPMPs8muv6ObLlpazaPQJr0g9HHuuUg6SiutHEXR16Bz5+69+xubD7oPHz1+8rS39ezIlbWVOJKlLu1JKhxqZXBEijSeVBZFkWo8Ts8+LvrHF2idKs0Xmlc4KcTUqFxJQV5KelNeCJrZoqn49hu+fSF0je3BcIfLmTrd5VM8Z3EYc5mVxAav2QHjylDSDMJBe+oxpznLk2blbtdT773xMluxn4jCt/ss6fWjMFoWuw3xGvqwrmHSu+ZZKesCDUktnBvHUUWTRlhSUmPb5bXDSsgzMcWxRyMKdJNmGUjLXnklY3lp/TLElurfE40onJsXqXcunu9u9hbi/3rjmvJ3k0aZqiY0cnVQXmtGJVukyzJlUZKeexDSKn9XJmfCCkn+D7o+hPjmk2/D0W4Y74fx573+4Yd1HJvwAl7CDsQwgEP4BEMYgYQr+AY/4GdwHXwPfnWClfXPDs/hn+p0fwNcm7BP</latexit>

p�value = P (�2 � 1.1 · 7) =
Z 1

7.7
f�2(�2; 7) d�2 = 0.36

x i

x i

x4      x7

xi
x4     x7

+

<latexit sha1_base64="b/njoPaGHYnsgCf3115sv/jR10w=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lE1GPRi8cK9gOSUDbbTbN0sxt2J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZelAluwHW/ncra+sbmVnW7trO7t39QPzzqGpVryjpUCaX7ETFMcMk6wEGwfqYZSSPBetH4bub3npg2XMlHmGQsTMlI8phTAlbyg4QADiBhQAb1htt058CrxCtJA5VoD+pfwVDRPGUSqCDG+J6bQVgQDZwKNq0FuWEZoWMyYr6lkqTMhMX85Ck+s8oQx0rbkoDn6u+JgqTGTNLIdqYEErPszcT/PD+H+CYsuMxyYJIuFsW5wKDw7H885JpREBNLCNXc3oppQjShYFOq2RC85ZdXSfei6V01vYfLRuu2jKOKTtApOkceukYtdI/aqIMoUugZvaI3B5wX5935WLRWnHLmGP2B8/kDCX2RGQ==</latexit>

✓̂

<latexit sha1_base64="b/njoPaGHYnsgCf3115sv/jR10w=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lE1GPRi8cK9gOSUDbbTbN0sxt2J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZelAluwHW/ncra+sbmVnW7trO7t39QPzzqGpVryjpUCaX7ETFMcMk6wEGwfqYZSSPBetH4bub3npg2XMlHmGQsTMlI8phTAlbyg4QADiBhQAb1htt058CrxCtJA5VoD+pfwVDRPGUSqCDG+J6bQVgQDZwKNq0FuWEZoWMyYr6lkqTMhMX85Ck+s8oQx0rbkoDn6u+JgqTGTNLIdqYEErPszcT/PD+H+CYsuMxyYJIuFsW5wKDw7H885JpREBNLCNXc3oppQjShYFOq2RC85ZdXSfei6V01vYfLRuu2jKOKTtApOkceukYtdI/aqIMoUugZvaI3B5wX5935WLRWnHLmGP2B8/kDCX2RGQ==</latexit>

✓̂

<latexit sha1_base64="YzkBaHoFFgA9Ezjpdv4zeHlVYLs=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Rj04jGCeUCyhNnJbDJmdmaZ6RVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNqzPDeJ1pqU0ropZLoXgdBUreSg2nSSR5MxreTv3mEzdWaPWAo5SHCe0rEQtG0UmNDg440m6p7Ff8GcgyCXJShhy1bumr09MsS7hCJqm17cBPMRxTg4JJPil2MstTyoa0z9uOKppwG45n107IqVN6JNbGlUIyU39PjGli7SiJXGdCcWAXvan4n9fOML4Ox0KlGXLF5oviTBLUZPo66QnDGcqRI5QZ4W4lbEANZegCKroQgsWXl0njvBJcVoL7i3L1Jo+jAMdwAmcQwBVU4Q5qUAcGj/AMr/Dmae/Fe/c+5q0rXj5zBH/gff4Ape+PLg==</latexit>

✓



9.1.9 Ali smemo kakšen podatek preprosto zavreči?

Med razloge, zaradi katerih smemo določeno meritev ali posamezen
izmerek zavreči, po merilih skupine Particle Data Group sodijo [5]: 
• obstaja kasnejša meritev, ki je boljša od prejšnje ali vključuje prejšnjo kot svojo 
podmnožico; 
• negotovost izmerka ni podana;
• meritev temelji na vprašljivih predpostavkah; 
• meritev ima nizko razmerje med signalom in šumom, ima majhno statistično pomembnost 
ali je tudi sicer slabše kakovosti kot druge meritve; 
• izmerek je očitno neskladen z drugimi rezultati, ki so videti zanesljivejši; 
• meritev ni neodvisna od ostalih rezultatov. 

Slika prikazuje povprečne vrednosti razpadnega časa nevtrona, kakršne smo poznali v letih 
med 1960 in 2015. (Vsako leto je bilo narejenih več neodvisnih meritev; prikazana so letna 
povprečja.) Razmisli, katero od navedenih vrednosti je smiselno uporabiti danes, če 
upoštevaš našteta merila!



Zgled Drugacno zadrego prikazuje 
slika 9.4 (desno). V tem primeru 
dobimo X2/9 = 12.9 . Ce smo 
prepricani, da naj bi količino dobro 
opisovala konstanta, za velik 
izračunani X2 niso krivi posamezni 
ubežniki, temveč izmerki očitno 
vsebujejo neko neznano, 
podcenjeno sistematično napako. 

V takšnih primerih včasih mersko napako reskalirajo (če so utemeljeno izključili druge 
moznosti za velik chi2):

+

<latexit sha1_base64="R44id/KAtrTZNDHs+OETHCMU8hg=">AAACDnicbVDJSgNBEO2JW4zbqEcvjSHgKcyIqBch6MVjBLNAZgg1nU7SpGexuyYQhnyBF3/FiwdFvHr25t/YWQ6a+KDg8V4VVfWCRAqNjvNt5VZW19Y38puFre2d3T17/6Cu41QxXmOxjFUzAM2liHgNBUreTBSHMJC8EQxuJn5jyJUWcXSPo4T7IfQi0RUM0Ehtu+Rp0Quh7WGfI1x5+kFhNgTV8vqAdKb647ZddMrOFHSZuHNSJHNU2/aX14lZGvIImQStW66ToJ+BQsEkHxe8VPME2AB6vGVoBCHXfjZ9Z0xLRunQbqxMRUin6u+JDEKtR2FgOkPAvl70JuJ/XivF7qWfiShJkUdstqibSooxnWRDO0JxhnJkCDAlzK2U9UEBQ5NgwYTgLr68TOqnZfe87N6dFSvX8zjy5IgckxPikgtSIbekSmqEkUfyTF7Jm/VkvVjv1sesNWfNZw7JH1ifP1BqnOg=</latexit>
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9.1.3 Intervali zaupanja za optimalne parametre

Z verjetnostjo CL=1-alpha se prava vrednost populacijskega parametra theta_j  nahaja 
na zgornjem intervalu. S tem imamo v mislih: pri mngokratni meritvi vzorcev bo v delezu 
CL=1-alpha vzorcev dejanska populacijska vrednost parametra znotraj vzorcnega 
intervala zaupanja. Pri tem se seveda dejanska populacijska vrednost parametra od 
vzorca do vzorca ne spreminja, interval zaupanja pa se od vzorca do vzorca spreminja.   

= CL

Zelimo določiti interval zaupanja za parameter theta_j^0 v populaciji. Poznamo pa vzorčno 
vrednost cenilke za theta in pripadajočo vzorčno varianco. Določili smo ju iz izmerkov  
(t_i,x_i), kjer so x_i porazdeljeni normalno.  Nakljucna spremenljivka T je zopet 
porazdeljena po Studentovi porazdelitvi (brez dokaza) 
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9.2 Metoda maksimalnega verjetja in priblizek z metodo najmanjsih kvadratov 
za histogramirane podatke 

Funkcija verjetja je podana z Multinomsko funkcijo

V primeru, ko je v vsakem od N razredov veliko število izmerkov (ni>>1, i=1,..,N),
pa multinomska porazdelitev po centralnem limitnem primeru preide v multivariantno 
Normalno porazdelitev z zgorjno kovariančno matriko. Določanje optimalnih parametrov v 
tem primeru lahko torej izvedemo z minimizacijo chi2. 
Zaradi normalizacijskega pogoja (9.24) je matrika Σ singularna (det Σ = 0). Vendar lahko 
ravno zaradi tega pogoja nalogo najmanjših kvadratov vseeno formuliramo. En razred — 
na primer k-tega — lahko namreč izločimo, saj je nk = n − n1 − n2 − · · · − nk−1. Tako dobimo 
nesingularno matriko Σʹ dimenzije (k − 1) × (k − 1), s katero iščemo minimum mere 
odstopanja

<latexit sha1_base64="u168AjudLMGAALG4z/R/M9WHvw4=">AAACDXicbVC7SgNBFJ31GeMramkzGIXYhF0RtRGCNhYWEcwDsiHMTm6SIbMPZu4Gwpp8gI2/YmOhiK29nX/j5FFo4oELh3Pu5d57vEgKjbb9bS0sLi2vrKbW0usbm1vbmZ3dsg5jxaHEQxmqqsc0SBFACQVKqEYKmO9JqHjd65Ff6YHSIgzusR9B3WftQLQEZ2ikRuaQ0tuc6zPsKD+JwibDrhgMH4ZuDzh1sQPIji8bmaydt8eg88SZkiyZotjIfLnNkMc+BMgl07rm2BHWE6ZQcAmDtBtriBjvsjbUDA2YD7qejL8Z0COjNGkrVKYCpGP190TCfK37vmc6R3frWW8k/ufVYmxd1BMRRDFCwCeLWrGkGNJRNLQpFHCUfUMYV8LcSnmHKcbRBJg2ITizL8+T8kneOcs7d6fZwtU0jhTZJwckRxxyTgrkhhRJiXDySJ7JK3mznqwX6936mLQuWNOZPfIH1ucPJhuboA==</latexit>

L(podatki | ~✓) =

Knjiga obravnava tudi kako se ta primer nadalje rešuje (mi tega ne bomo nadalje obravnavali). 
V knjigi je stevilo razredov oznaceno z N (tu je oznaceno z k) 

<latexit sha1_base64="t/2+yxVkQU7N3swaXqxInvAIiO8="></latexit>

P (X1=n1, .., Xk=nk) =

✓
n

n1, .., nk

◆
pn1
1 pn2

2 · ... · pnk
k

<latexit sha1_base64="Z/SACk048zNkz6uXa2mcjV0ToEA="></latexit>

⌃ =

0

BB@

np1(1�p1) �np1p2 ... �np1pk
�np2p1 np2(1�p2) ... �np2pk

.. ... ... ...
�npkp1 �npkp2 ... npk(1�pk)

1

CCA

k

k

k

k                k

<latexit sha1_base64="nFdOKbNjKt/9DCDjUTljoVkcf5k="></latexit>

�2(~✓) = [~n� n~p(~✓)]T
1

⌃0 [~n� n~p(~✓)], ~n = (n1, .., nk�1)

k

E[ni]=



10. Preizkušanje hipotez in statistični  testi

V poglavjih 7, 8 in 9 smo opisali metode, s katerimi na podlagi naključnih vzorcev 
sklepamo na lastnosti populacij in ocenimo parametre njihovih porazdelitev. V tem 
poglavju spoznamo orodja za presojo o tem, ali je s statističnega vidika dobljeni model ali 
hipoteza o populaciji s statisticnega vidika sprejemljiva ali ne. O tem presojamo glede na 
izmerjene podatke v vzorcu. 

10.1 Ničelna hipoteza H0 in alternativna hipoteza H1

Za presojo o veljavnosti modela uporabljamo hipoteze o lastnostih populacije oziroma 
njene verjetnostne porazdelitve. 

Osnovno hipotezo, ki jo preverjamo, imenujemo ničelna (angl. null hypothesis) in jo 
označimo s H0. Glede na izid statističnega testa lahko ničelno hipotezo sprejmemo ali 
zavrnemo — vendar je namesto “hipotezo sprejmemo” bolje reči “s statističnega vidika 
nimamo dovolj podatkov v vzorcu, da bi jo zavrnili”; v nadaljevanju obdržimo to subtilno 
razliko v mislih. Glavna naloga statističnega testa je torej presoja o tem ali glede na dane 
vzorčne podake lahko hipotezo H0 zavržemo ali ne. 

Strogo rečeno nikoli ne presojamo o ničelni hipotezi sami po sebi, temveč vselej glede na 
alternativno hipotezo (angl. alternative hypothesis), ki jo označimo s H1.  
Alternativne hipoteze so lahko v različnih povezavah z ničelnimi hipotezami. A bomo tu 
zaradi preprostosti imeli v mislih le H1, ki se izključujejo s H0, in kjer unija H0 in H1 
vsebujeta vse možnosti. Torej bo v naših primerih H1 komplement H0.

Vrednosti, ki jih testiramo pri hipotezah, se seveda nanašajo na celotno populacijo 
možnih meritev (in ne le na merjen vzorec)

Primeri:
a) vzorec: večkratni met določene kocke; populacija: neskončno metov te kocke
     H0: kocka je poštena
     H1: kocka ni poštena 

b) vzorec: večkratna meritev temperature sredstva (ob predpostavki, da se temperatura 
sredstva ne spreminja); populacija: dejanska temperatura po neskončno meritvah
     H0: T=15C (temperatura sredstva)
     H1: T!= 15C 
  
c) H0: T>=15C (temperatura)
     H1: T< 15C

d) vzorec: vrednost določenega parametra pri krvnem testu 
     H0: pacient je zdrav (ni okužen z danim virusom)
     H1: pacient je bolan (je okužen z danim virusom )

+



+

e) vzorec: večkratna meritev kvantnomehanske opazljivke O; populacija: neskončno 
meritev te opazljivke bi dalo pricakovano vrednost 𝜇. 
     H0: 𝝁=𝝁𝟎 ∶ opazljivka O ima vrednost 𝜇=𝜇. ,  kjer je 𝜇. vrednost kot jo napoveduje  
obstoječa veljavna teorija (na primer Standardni Model osnovnih delcev). Glavna naloga 
testa je presoja o tem ali lahko z danimi podatki veljavno teorijo (torej H0) ovrzemo s 
statisticnega vidika – to je ena glavnih nalog eksperimentov. 
    H1: 𝝁 ≠ 𝝁𝟎 	 ∶ opazljivka O ima vrednost 𝜇 ≠ 𝜇. ,  ki ni v skladu z  napovedjo  obstoječe 
veljavne teorije. Šele če smo iz statističnega vidika utemeljeno zavrgli veljavno teorijo, 
lahko sklepamo na upravičenost ene od novih teorij. 
 
f) vzorec: večkratna meritev hitrosti (v) neznanega delca v vakuumu  
     H0: v<=c0 (hitrost neznanega delca v vakuumu, kjer je c0 svetlobna hitrost)
     Tu je seveda ključno vprasanje kako zanesljivo lahko iz statističnega (in
sistematicnega!) vidika zavrnemo to dobro utemeljeno hipotezo. Krsitev le te bi bila 
seveda nepričakovana znanstvena revolucija.  
      H1: v>c0 

g) vzorec: meritev števila dogodkov N pri nekem procesu in energiji E v trkalniku, 
kjer iščemo signal za nov delec, npr p p -> foton foton 
    H0: N=N(b) število dogodkov je skladno z ozadjem (b=ozadje=background) 
N(b)=napoved za število dogodkov v okviru teorije, ki ne vključuje Higgsovega bozona. 
Glavno vprašanje je ali lahko statistično signifikantno to ničelno hipotezo zavrnemo. 
    H1: N=N(b+s):  število dogodkov je skladno z ozadjem(b) + signalom(s); po tej hipotezi  
dotlej veljavna teorija brez Higgsovega bozona ni pravilna; prava teorija mora vsebovati 
Higgsov bozon ali kako drugo "novo fiziko"; šele ko z dovolj veliko zanesljivostjo zavrnemo 
H0 lahko utemeljeno presojamo o novih delcih in pojavih 

10.2  Stopnja zaupanja statističnega testa (confidence level) CL=1-alpha

Osredotočimo se na vprašanje ali lahko na podlagi podatkov zavržemo ničelno hipotezo 
H0 ali je ne moremo zavreči. 

Naj 𝜶 označuje verjetnost, da zavrnemo H0 v primeru, ko bi bila H0 resnična.
•  𝜶	=statistčna pomembnost testa (statistical significance)
• 1- 𝜶	=stopnja zaupanja=confidence level=CL
Vrednost alpha si vnaprej izberemo in potem presojamo o tem ali pri tej statistični 
pomembnosti testa H0 zavrnemo ali ne. 

Bolj podrobno: 
• v primerih, ko H0 predstavlja določeno moznost (npr T=15C, mu=mu0, N=b): alpha 

označuje verjetnost, da zavrnemo H0 v primeru, ko bi bila  H0 resnicna.
• v primerih, ko H0 predstavlja več moznosti (npr obmocje T>=15C, v<=c0): alpha 

oznacuje verjetnost, da ob predpostavki veljavne H0 zavrnemo H0 v najbolj 
ekstremnem  primeru (na primer zavrnemo T=15C kar pomeni da so T>15C še manj 
verjetne od T=15C: ogledali si bomo zglede).



Opomba: Spomnimo se, da je pri intervalih zaupanja alpha označeval verjetnost, da je prava 
populacijska vrednost neke kolicine  (npr populacijsko povprecje, varianca ali parameter) 
izven intervala zaupanja. Torej sta definiciji alpha tu in tam kar se da skladni.

• Pogosto pri tesmh določimo še "vrednost-p" ("p-value"). "vrednost-p" je verjetnost, da 
je vrednost naključne spremenljivke tako ekstremna ali bolj kot je bila ob meritvi, kjer 
te verjetnosN določimo ob predpostavki da je H0 pravilna. Vrednosm-p, ki je  manjsa od 
izbranega 𝛼 botruje zavrnitvi hipoteze H0. Pogosto uporabljeni kolicini 𝛼 in p-value sta 
tako tesno povezani. Opomba: p-value ne smemo mesam z indeksom p ki je uporabljen 
pri t_p in z_p spodaj, res pa oba p predstavljata doloceni verjetnosm).  

• Dobljeno vrednost p-value se pogosto pretvori v ekvivalentno številsko vrednost 
standardnih deviacij normalne porazdelitve N(0,1). Na primer, dobljeni vrednosm 3.5 
standardnih deviacij pri zavrnitvi H0, pravimo zavrnitev s significanco 3.5 gaussovih 
sigma (ker se sigma nanasa na gausovo porazdelitev).  Namen slednje pretvorbe je lažja 
primerjava signifikanc pri razlicnih porazdelitvah.  Odkritje novega delca, na primer, 
lahko trdimo, če nicelno hipotezo H0 (kjer novega delca ni) zavrnemo s signifikanco 5 
gausovih sigma, kar ustreza p-value=1-F[5]=2.8*10-7 ali  dvakrat toliko (odvisno od tega 
ali je območje zavrnite na enem ali obeh koncih porazdelitve – s to podrobnostjo si ne 
bomo preveč belili glave)

10.3   Test za vrednost populacijskega povprečja v primeru normalno porazdeljenih spremenljivk 
(10.2.1 v knjigi)

Posvemmo se hipotezam ki govorijo o vrednosm populacijskega povprecja mu0

Če poznamo vzorčno povprečje barX in populacijsko varianco sigma, bomo presojali po 
stamsmki spremenljivke Z, ki je porazdeljena normalno N(0,1)

Če poznamo vzorčno povprečje barX in nepristransko vzorčno varianco sX, bomo presojali po 
stamsmki spremenljivke T, ki je porazdeljena po Studentovi porazdelitvi

 
Opomba: za primere, ko je nu dovolj velik (npr nu>=30), je Studentova porazdelitev 
prakmčno enaka N(0,1) in lahko uporabimo tudi normalno. 

Dogovorimo se, da zp označuje vrednost, pod katero se naključna spremenljivka z nahaja z 
verjetnostjo p, torej p-m kvanml porazdelitve: 
P(z<=zp)=p oziroma drugimi besedami zp=F-1(p)=InverseCDF[NormalDistribumon[0,1],p]

Podobno naj tp označuje vrednost pod katero se t nahaja z verjetnostjo p, torej p-m kvanml: 
P(t<=tp)=a oziroma tp=F-1(p)=InverseCDF[StudentTDistribumon[n-1],p]
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Zgled: Z dvanajstimi enakimi termometri (n=12) izmerimo temperature 
x ={13.6, 13.8, 13.9, 13.3, 13.9, 14.7, 13.7, 13.5, 14.5, 12.7, 12.2, 16.3} 
Glede na razprsenost rezultatov so termometri precej slabe kakovosti ...
Preden se lotimo hipotez, dolocimo  

xbar=13.84 C (vzorcno povprecje) , sX=1.03 (vzorcna varianca), sX/sqrt{n}=0.30 (var vz. povprecja)

Populacijsko povprecje mu torej pricakujemo v grobem na intervalu 13.84+-0.30
Zdaj testirajmo razne hipoteze pri stopnji zaupanja=1-alpha=CL=0.95, 

a) H0: 𝝁 = 𝝁𝟎  = 13 C
     H1: 𝝁 ≠ 𝝁𝟎 

    Ker poznamo vzorcno povprecje, uporabimo za test hipoteze H0 Studentovo 
porazdelitev z nu=12-1=11 prostostnimi stopnjami.  O zavrnitvi ali sprejetju hipoteze H0 
sklepamo ob predpostavki, da je ta pravilna, torej da je temperatura dejansko mu0. 
Tedaj z verjetnostjo alpha zavrnemo H0 ce se nakljucna spremenljivka t_vz za merjen 
vzorec nahaja izven obmocja [t_{alpha/2},t_{1-alpha/2}]=[t_0.025,t_0.975]=[-2.2,2.2]. 
Dejanska izmerjena temperatura vzorca da vrednost t_vz=(xbar-mu0)/(sX/sqrt(n))=(xbar-
13)/(sX/sqrt(n))= 2.8 kar je izven zgornjega obmocja, zato hipotezo H0 zavrnemo ob 
stopnji zaupanja 0.95. p-vrednost je verjetnost da je t bolj ekstremna kot izmerjena 
vrednost, torej 

Ker je p-value pod privzeto vrednostjo alpha=0.05 tudi ta sklep vodi v zavrnitev H0; oba 
sklepa sta pravzaprav enakovredna. Ta vrednost-p ustreza signifikanci 2.4 gausovih sigma. 
Pravimo, da smo H0 zavrnili z signifikanco 2.4 gausovih sigma (k=2.4).  
Opomba: V knjigi na str 230  je H1 nekoliko drugacna, zato je obmocje zavrnitve drugacno.

b) H0: 𝝁 = 𝝁𝟎  = 13.6 C
     H1: 𝝁 ≠ 𝝁𝟎

    Ista vzorcna temperatura da pri tej nicelni hipotezi t_vz=(xbar-mu0)/(sX/sqrt(n))= (xbar-
13.6)/(sX/sqrt(n))= 0.8 kar je tokrat znotraj obmocja [t_{alpha/2},t_{1-alpha/2}]=[-2.2,2.2] 
in hipotezo H0 ob stopnji zaupanja CL=0.96 sprejmemo, kar pravzaprav ne pomeni da je 
temperatura res 13.6C temvec da dane meritve niso dovolj natancne da bi hipotezo H0 
zavrnili.
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c) H0: 𝝁 ≥ 𝝁𝟎  = 14.5 C
     H1: 𝝁 < 𝝁𝟎 

     Ce H0 pri dani stopnji zapanja zavrzemo za najnizjo temperaturo mu0 iz obmocja pri H0, 
potem bo avtomaticno H0 zavrzena tudi pri visjih temperaturah, saj je izmerjena povprecna 
temperatura xbar=13.84 nizja od mejne temperature 14.5C. Testirajmo torej ali H0 zavzemo 
pri mejni temperaturi, kar se zgodi ce bo xbar mnogo manjsi od mu0, oziroma ce bo t_vz 
manjsi od mejnega t_alpha=-t_{1-alpha}=-1.8. Vrednost nakljucne spremenljivke t_izm ob 
predpostavki da velja H0 z mejno temperaturo je t_vz =(xbar-14.5)/(sX/sqrt(n))=-2.2 , kar je 
manjse od -1.8 zato H0 zavzemo. To je v skladu z definicijo, da H0 zavzemo pri mejni 
temperaturi z verjetnostjo alpha=0.05. Vrednost-p, da je meritev temperature tako nizka kot 
xbar ali se nizja pri mejnem primeru H0 je vrednost-p=0.025 kar je manjse od alpha, tako da 
tudi iz tega stalisca zavrnemo H0. Pravimo, da smo H0 zavrnili z signifikanco 1.9 gausovih 
sigma (k=1.9).

Bolj preprosto povedano: T visja ali enaka 14.5C  dejansko ni zelo verjetna ob dani meritvi 
povprecne temperature 13.84C z varianco povprecja 0.3 C. Je pa temperatura 14.5 vseeno 
lahko prava temperatura “populacije” z verjetnostjo p-value=0.025, a je bila izmerjena 
povprecna temperatura 13.84C tako nizka ker je bila meritev izpostavljena statisticni 
fluktuaciji.    
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Zgled: rezultat za vrednost-p pri dejanskem eksperimentu ki poroca o pomembnem odkritju

+

Ob hipotezi brez Higgsovega bozona je verjetnost za opazeno  stevilo dogodkov ali se vecje 
stevilo dogodkov enaka vrednosm-p=1.7x10-9, kar je izjemno malo. Hipotezo H0 so zavrgli  s 
signifikanco 5.9 gaussovskih sigma.  



10.4   Test za vrednost variance v primeru normalno porazdeljenih spremenljivk
(10.2.2 v knjigi)

Testirajmo komplementarni hipotezi za vrednost populacijske variance 𝜎&	, na	primer
H0: 𝜎& = 𝜎.&    ali         H0: 𝜎& ≤ 𝜎.&
H1: 𝜎& ≠ 𝜎.&                  H1: 𝜎& > 𝜎.&             

Pri testiranju variance na podlagi vzorca x = {x1 , x2 , . . . , xn } iz normalno porazdeljene 
populacije X ∼ N(μ,σ2) spet ločimo dva primera: da je pravo populacijsko povprečje μ 
znano ali ne.

• Če pravega populacujskega povprecja μ ne poznamo, hipotezo H0 preverjamo s 
statistiko chi2, ki je porazdeljen po porazdelitvi chi2 z n-1 prostostinimi stopnjami 

• Če populacijski μ poznamo, hipotezo H0 preverjamo s statistiko chi2, ki je 
porazdeljen po porazdelitvi chi2 z n prostostinimi stopnjami 
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10.5   Test H0 proti H1 v primeru danih 
splošnih porazdelitev fX (x|H0) in fX (x|H1)          
 
Zdaj obravnavajmo primer, ko sta verjetnostni 
porazdelitvi relevantne naključne spremenljivke x, 
ki jo merimo, znani in točno določeni za ničelno 
hipotezo H0 in alternativno hitopezo H1. Zopet imejmo 
v mislih primere ko H0 in H1 izcrpata vse moznosti. Da 
bomo bolj nazorni imejmo v mislih konkreten primer

H0: pacient je zdav (ni okužen z določenim virusom);
vrednosti opazljivke x pri krvnem testu x so  
porazdeljene z verjetnostno gostoto f(x;th0)

H1: pacient je bolan (je okuzen z dolocenim virusom);
vrednosti opazljivke x pri krvnem testu x so  
porazdeljene z verjetnostno gostoto f(x;th1)

Obe verjetnostni porazdelitvi tu torej pripadata 
točno dolocenima vrednostima parametra theta,
v tem primeru theta0 in theta1 (za razliko od 
nekaterih prejsnjih primerov ko sta H0 in H1 
pripadali razponu vrednosti parametrov, 
npr H0:  mu>=mu0; H1: mu<mu0). 

Kako pri danem alpha izberemo mejno vrednost 
x* krvnega testa za presojo o tem ali je pacient 
zdrav ali bolan že vemo: Ob predpostavki, da je pacient 
zdrav, mora biti verjetnost, da smo ga razglasili za 
bolnega, enaka alpha. Temu ustreza zgornji graf, kjer 
pacienta s krvnim testom x pod mejno vrednostjo x* 
razglasimo za zdravega. Z verjetnostjo alpha smo 
seveda s tem zgrešili napačno presojo, zato želimo čim 
manjši alpha.

Ker tokrat alternativni hipotezi H1 pripada točno 
določena verjetnostna porazdelitev za naključno 
spremenljivko x, določimo verjetnost, s katero 
opredelimo bolnega paciena kot bolnega 

Verjetnostna gostota, ki ustreza 
ničelni hipotezi s parametrom θ0 
(zgoraj) in alternativni hipotezi s 
parametrom θ1 (sredina). Senčenje 
označuje območji zavrnitve pri 
stopnjah pomembnosti α oziroma β. 
Kritična točka je označena z x∗. 
spodaj: Primer: Porazdelitev po 
izidih krvnega testa v zdravi in bolni 
populaciji. Možni so pravilni pozitivni 
(PP), napačni negativni (NN), pravilni 
negativni (PN) in napačni pozitivni 
(NP) izidi. 

zdravi

bolni

občutljivost testa
(sensitivity)

zato seveda želimo, da je 1-beta čim večji. To verjetnost moramo določiti seveda po 
porazdelitvi, ki ustreza H1. 

(10.1 v knjigi)



Želimo torej čim večji alpha in čim večji 1-beta. Oba odvisna od mejnega x*, 
torej sta soodvisna. Tipična soodvisnost je prikazana na spodnji sliki, ki kaze tako 
imenovano krivuljo  ROC (Receiver Operating Characteristics). V prej prikazanem 
primeru se alpha in 1-beta manjsata z vecanjem x*. C ˇim bolj se krivulja približa 
zgornjemu levemu kotu, tem večjo napovedno moč ima test; v skrajnem primeru (točka 
(α, 1 − β) = (0, 1)) sta populaciji povsem ločeni. 



Dodatek k poglavju o intervalih zaupanja:
Zgornje in spodnje meje na količine, ko signala ne zaznamo

Če signala ne zaznamo, ali pa je merjena količina precej blizu napovedi za ozadje, 
običajno postavimo zgornjo ali spodnjo mejo na določeno opazljivko. 

Zgled 
Oglejmo si kar preprost zgled kjer  merimo število radioaktivnih jeder,  a v času 
meritve T ne zaznamo nobenega razpada, zato želimo določiti spodnjo mejo za 
razpadni čas tau pri CL=1-alpha-95% stopnji zaupanja. Obravnavali bomo primer brez 
ozadja in z ozadjem. Zaradi preprostosti imejmo v mislih, da je čas meritve T mnogo 
manjsi od razpadnega casa tau. 
 
(a)    N0=1000 (zacetno stevilo jeder)
        T=100 s (cas opazovanja), 
         nvz=0 (opazeno stevilo razpadnih produktov v vzorcu)
         predpostavimo da ni ozadja

     Verjetnost je porazdeljena po poissonovi porazdelitvi 
 Ta podaja verjetnost za n razpadov ob pogoju, da je  povprecno stevilo razpadov v 
tem casu barN, kjer je povprecno stevilo razpadov edini parameter porazdelitve. Nasa 
prva naloga je torej da dolocimo mejno vrednost parametra ]𝑁∗, pri katerem bo 
verjetnost, da opazimo  n_vz ali se manj dogodkov (torej tako ekstremno malo 
dogodkov ali se manj) enaka alpha=0.05: 

P(n<=nvz | ]𝑁∗) = 𝛼

 V nasem primeru je v vzorcu nvz tako ali tako 0, tako da P(n=0 | ]𝑁∗) = 𝛼=0.05 = 
exp(]𝑁∗) 	→ ]𝑁∗ = 3.0. 	Ker	nismo	opazili	nobenega	dogodka,	zakljucimo da je 
dejansko pricakovano populacijsko povprecje 	𝑁 	razadov v tem casu manjse od 3.0, 
torej smo ob 95% stopnji zaupanja dobili interval zaupanja za opazljivki barN in tau

interval	zaupanja	 ]𝑁 <= ]𝑁∗ =3.0 -> 𝜏 >= 𝜏*= 9.3 h        pri CL=95%

Pri tem smo uporabili, da je povprecno stevilo razpadov	barN	za	T<<tau	povezano		s	
tau	preko	zpodnjih	zvez,	kjer	Npr(t)	oznacuje	preostalo	stevilo	nerazpadlih	jeder:
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(b)    N0=1000 (začetno število jeder)
        T=100 s (cas opazovanja), 
         nvz=0 (opazeno stevilo razpadnih produktov v vzorcu)
 . 	 ]𝑁>= 0.5 : pri tej meritvi pricakujemo v povprecju 0.5  dogodkov ozadja –
                      to je zaznanih produktov,  ki niso posledica razpada temvec suma, kozmicnih zarkov,

Tudi za ozadje pricakujemo Poissonovo porazdelitev stevila dogodkov nb okoli povprecne 
vrednosti ]𝑁>:	P(n_b| ]𝑁>). Konvolucija dveh Poissonovih porazdelitev je poissonova 
porazdeltive zato pricakujemo n dogodkov z verjetnostjo P(n |]𝑁 + ]𝑁>) kjer 
]𝑁 	se	vedno	oznacuje	povprecno stevilo dejanskih razpadov. Po vzoru prejsnjega zgleda 
zdaj dobimo meje 

P(n<=nvz | ]𝑁∗ + ]𝑁>) = 𝛼 -> ]𝑁∗ + ]𝑁> = 3.0	 →	 ]𝑁∗ = 3.0 − ]𝑁> = 3.0 − 0.5	

interval	zaupanja	 ]𝑁 <= ]𝑁∗ = 2.5 -> 𝜏 >= 𝜏*= 11.1 h        pri CL=95%

(c)    N0=1000 (zacetno stevilo jeder)
        T=100 s (cas opazovanja), 
         nvz=1 (opazeno stevilo razpadnih produktov v vzorcu zdaj ni nic a ni dosti vecje kot pricakujemo za ozadje)

 . 	 ]𝑁>= 0.5 : pri tej meritvi pricakujemo v povprecju 0.5  dogodkov ozadja –
                      to je zaznanih produktov,  ki niso posledica razpada temvec suma, kozmicnih zarkov,

P(n <=nvz | ]𝑁∗ + ]𝑁>) = 𝛼  -> P(n=0 ,1| ]𝑁∗ + ]𝑁>) = 𝛼 -> ]𝑁∗ + ]𝑁> = 4.7	 →	 ]𝑁∗ = 4.2

interval	zaupanja	 	𝑁 <= ]𝑁∗ = 4.2 -> 𝜏 >= 𝜏*= 6.6 h        pri CL=95%

Zgornji intervali zaupanja povedo da je  z verjetnostjo CL=0.95 dejanski razpadni cas vecji 
od danes spodnje meje 𝜏*, s cimer imamo v mislih: pri mngokratni meritvi vzorcev bo v 
95% vzorcev dejanski razpadni cas  nad vzorcno mejo  𝜏*. Pri tem je dejanski razpadni cas 
od vzorca do vzorca nespremenjen,  zpodnja meja𝜏∗ pa se od vzorca do vzorca spreminja.   

+



Zgled: rezultat za zgornjo mejo na relevanten parameter (moc signala mu) 
 pri dejanskem eksperimentu, ki poroca o pomembnem odkritju



13. Metoda Monte Carlo 

Metoda oziroma simulacija Monte Carlo (MC) je generično ime za kakeršen koli postopek, 
pri katerem s pomočjo žrebanja naključnih števil in statističnih vzorcev približno 
izvrednotimo neko matematično količino ali izraz, na primer določeni integral ali sistem 
enačb, z njim pa lahko rešujemo tudi bistveno splošnejše matematičnofizikalne probleme 
[1]. Poudarek je na besedi ‘približno’: kakovost rešitve je odvisna od velikosti vzorcev, ki si 
jih pri računu lahko privoščimo. Vendar metoda Monte Carlo z vidika obvladljivosti in 
natančnosti računa — zlasti pri integraciji v več dimenzijah z zapletenimi integracijskimi 
mejami in pri kompleksnih matematičnih modelih — ponuja v primerjavi s standardnimi 
numeričnimi metodami edino razumno pot. 

Numerična integracija v več kot D=10 dimenzionalnem prostoru 𝑥⃗ z diskretizacijo in 
običajnim sestevanjem po vseh D dimenzijah praktično ne pride v poštev v svoji 
najpreprostejsi obliki spodaj, pa tudi njene bolj dodelane različice v ta namen nikakor niso 
smotrne 

Premnogi fizikalni in nefizikalni problemi zahtevajo integracijo v mnogo več 
dimenzionalnem prostoru kot je na primer D=10.  Pri statistični termodinamiki seštevamo 
na primer po vseh konfiguracijah sistema in jih utežimo z Boltzmanovim faktorejm, kar 
predstavlja neke vrste D-dimenzionalno vsoto ali integral. Fizikalni problemi, ki jih na 
primer rešujem sama z namenom studija močne interakcije med kvarki, zahtevajo tipično 
integracijo v okoli D~10 000 000 dimenzionalnem prostoru (komentar: toliko  je namreč 
točk v diskretiziranem prostoru-času, ki ga simuliramo pri obravnavi kvantne teorije polja 
na mreži). Daleč najpomembneši in najbolj uporaben pristop k numerični integraciji v 
D>10 dmenzionalnih prostorih je Mote Carlo metoda. 

13.1. Numericna integracija in pomembnostno vzorčenje (13.2, 13.3 v knjigi ) 

Metoda Monte Carlo je ključna na najrazličnejsih področjih in pri najrazličnejših 
problemih, a oglejmo si jo na primeru numerične integracije. Kot je navedeno v uvodu, je 
skoraj neobhodno potrebna pri integraciji v mnogo-dimenzionalnem prostoru, a zaradi 
preprostosti si oglejmo njeno uporabo na primeru integracije v 1 dimenziji, ki jo lahko 
sicer opravimo tudi druge preprostejse načine, morda celo analitično.

Izračunati želimo določen integral oblike (poglavje 13.2 za f(x)=1)

To z metodo Monte Carlo  storimo tako, da ga najprej izrazimo z uporabo neke 
verjetnostne gostote p(x), ki ji pravimo pomembnostna funkcija (importance function) 
Ta  ima običajne lastnosti verjetnostne gostote p(x)>=n0 ter int_a^b p(x) dx=1. 
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Izbira p(x) je načeloma poljubna, a učinkovitost Monte Carlo metode močno zavisi od izbire 
p(x). Pokazali pa bomo, da so za bolj ucinkovito dolocitev integrala primerni p(x) z vecjo 
verjetnostno gostoto tam kjer je g(x) vecja, in p(x) z manjso verjetnostnostno gostoto tam 
kjer je g(x) majhna. 

Za priblizno dolocitev imntegrala izzrebamo N vrednosti xi (i=1,..,N) ki so porazdeljene v 
skladu z verjetnostno gostoto p(x). Kako to napravimo je seveda poglavje zase, a primerne 
metode so na primer povezane z verigami Markova (poglavje 13.4 in predvsem Metropolis 
Hastingsov algoritem 13.4.1), nam pa to na primer omogoca tudi funkcija 
ProbabilityDistribution[p[x], {x, a, b}] v Wolframovi Mathematici. 

Integral theta ni nic drugega kot pricakovana vrednost funkcije 
g(x)/p(x) glede na verjetnostno gostoto p
                                                
priblizno pa jo ocenjuje  za vzorec z N elementi xi cenilka

 Lastnosti te cenilke theta:

(*) Cenilka je nepristranska saj 
        E[hat theta]=1/N sum_i E[g(xi)/p(xi)]=1/N  N E[p(x)/g(x)]=theta

(*) predvsem nas zanima varianca cenilke, za katero zelimo da bo cim manjsa pri dani 
velikosti vzorca, kar bo nase vodilo pri izbiri pomembnostne funkcije p(x)

saj E[g(X)/p(X)]=theta. Zelimo najti p(x) ki minimizira to varianco. Kljuc v zmanjsanju 
variance cenilke je v clenu E[g^2/p^2], spodnjo mejo tega clena pa narekuje   Jensenova 
neenakost 

 

Spodnja meja E[g^2/p^2] oziroma enakost
 neenacbi je dosezena pri 

Toda točne vrednosti integrala v imenovalcu ne poznamo, sicer je sploh ne bi računali! V 
praksi zato iščemo funkcijo p(x), ki je čim bolj podobna funkciji|g(x)|, torej takšno p(x), da 
je razmerje |g(x)|/p(x) po vsem integracijskem območju približno konstantno.  
Pomembnostno funkcijo p(x) torej izberemo tako, da bo z večjo verjetnostjo vzorčila 
območja, kjer je |g| velik in manj vzorcila obmocja z majhnim |g| - temu pravimo
pomembnostno vzorcenje (importance sampling) 
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Zgled (str 290): Kot preprost zgled za ucinkovitost Monte Carlo metode izracunajmo 
integral z g(x)=cos(pi x/2)

Tega tudi sicer tudi zlahka analiticno dolocimo, in njegova analiticna vrednost theta0  nam 
bo sluzilo kot tocna referencna tocka
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Preiskusimo odstopanje dobljenega integrala od prave vrednosti (theta-theta0)  
za obe pomembnostni funkciji tudi z Mathematico, pri cemer v obeh primerih to 
napravimo za 5 vzorcev: (gradiva: MC-str290.nb)



13.2 Metoda Monte Carlo na osnovi verig Markova 

V prejšnjem razdelku smo opredelili zakaj bi potrebovali način kako izzrebamo nakjučne 
vrednosti x , ki so porazdeljene v okviru poljubne porazdelitve p(x). Spodaj bomo 
obravnavali primer kako izžrebati zvezne naključne vrednosti x na integracijskem intervalu 
[a,b] v skladu s poljubno porazdelitvijo, ki je normirana na tem intervalu; primer ki bi bil 
relevanten za zgled iz prejšnjega razdelka je interval [a,b]=[0,1] in  verjetnostna gostota 
p(x)=3/2 (1-x2).  

V ta namen se napogosteje uporablja verige Markova (poglavje 12 v knjigi).  V verigi 
Markova obravnavamo zaporedje naključnih spremenljivk ob zaporednih časih 

   1,           2,..,        t-1,       t,        t+1,....
   fX(x;1) fX(x;2) fX(x;t-1) fX(x;t) fX(x;t+1)

Pri vsakem času ima naključna spremenljivka X neko porazdelitev po intervalu [a,b], in ta 
porazdelitev fX(x;t) je od časa odvisna. Posebnost Markovih verig je, da je verjetnost za 
stanje sistema ob casu t odvisna le od njegovega stanja pri casu t-1, vsa prejšnja stanja pa 
so za razvoj sistema nepomembna – pravimo da gre za proces brez spomina. Pri teh 
procesih je torej relevantna prehodna amplituda za določen korak P(x’|x), ki predstavlja
pogojno verjetnostno gostoto da vrednost x v naslednjem koraku preide v vrednost x’, 
oboja pa sta v nasem primeru realni števili na intervalu [a,b]. P(x’|x) pravimo tudi
prehodna amplituda oz tranzicijska amplituda in se v literaturi pogosto označi z T(x->x’). 
V naslednjem razdelku si bomo ogledali zgled metode kako izbrati P(x'|x), da bo Markova 
veriga  vodila k željeni porazdelitvi naključnih spremenljivk x.   
 
Na osnovi verig Markova zasnujemo učinkovito metodo za žrebanje naključnih vrednosti v 
skladu s poljubno, lahko tudi zelo zapleteno verjetnostno porazdelitvijo (angl. Markov-
Chain Monte Carlo, MCMC) [9]. Bistvo metode je v tem, da izžrebane vrednosti tvorijo 
stanja verige Markova, katerih ravnovesna porazdelitev je ravno zahtevana verjetnostna 
porazdelitev. Relevantne verige Markova namreč po določenem času  dosežejo ravnovesno 
porazdelitev  – to je tisto pri kateri se verjetnostna gostota s časom več ne spreminja. 
Ravnovestno porazdelitev se v literaturi pogosto označi s π(x) in le ta je ravnovesna, če 
zadošča enačbam podrobnega ravnovesja (detailed balance equations) 

P(x’|x) π(x) =  P(x|x’) π(x’) ,    za vsak x in x’ na intervalu [a,b]

saj se morajo biti prehodi iz x v x’ enako pogosti kot prehodi x’ v x.  
Za primer numerične integracije iz prejšnjega razdelka nas bi, na primer, zanimalo kako 
doseči ravnovesno porazdelitev π(x) z naslednjo odvisnostjo od x: π(x)=3/2 (1-x^2).
V naslednjem razdelku si bomo ogledali zgled metode kako izbrati P(x'|x), da bo Markova 
veriga tezila k željenemu ravnovesnemu stanju π(x). 



Metropolis Hastingsov algoritm za tvorbo ravnovesne porazdelitve pi(x)

Po tem algoritmu po določenem času tvorimo poljubno ravnovesno porazdelitev π(x), 
ki zadošča zgornji enačbi podrobnega ravnovesja : P(x’|x) π(x) =  P(x|x’) π(x’). 
V mislih imejmo eno-dimenzionalno porazdelitev π(x) nakljucne zvezne spremenljivke x 
na intervalu [a,b].  

Potrebni koraki, ki jih le v grobem navedemo: 

Za celoten postopek izberemo tudi poljubno prehodno verjetnostno amplitudo q(x’|x), 
na primer enakomerno, normalno,...

1) ob zacetnem casu izberi poljuben x0 na intervalu [a,b]

2) iz x pripravi za naslednji korak x’ tako da x’ izzrebas v skladu z izbrano q(x’|x)

3)  Izberi pripravljen x’ z verjetnostjo rho (acceptence probability)
 
      

   
         Ce x’ ni izbran, v naslednjem koraku obdrzi x. 
        Vrednosti x obdrzi tudi ce je x’ izven intervala [a,b]

4)  pojdi na korak 2
     
  Pripadajoca prehodna amplituda P(x’|x) =𝝆(x’,x) q(x’|x)  zadosca enačbi podrobnega 
ravnovesja P(x’|x) pi(x) =  P(x|x’) pi(x’) za poljuben q(x’|x), (dokaz je dolg le nekaj vrstic 
in ga zlahka najdete v literaturi [13]) zato veriga števil po dolocenem času  ustreza 
ravnovesni porazdelitvi pi. 

 Algoritma generirata ravnovesno porazdelitev π, tudi če ne poznamo njene 
normalizacijske konstante, saj se ta v razmerju π(x’)/π(x) pokrajša. Poleg tega je 
fascinantno, da jo generirata ne glede na obliko funkcije q!
Zagotoviti moramo le, da imata π in q isto definicijsko območje. Kljub temu z
vidika učinkovitosti in natančnosti algoritma ni vseeno, kakšno funkcijo q izberemo. Za 
dodatne informacije glej [13].

Poudarimo, da je ta metoda izjemno dragocena za mnoge namene. Z njo lahko recimo 
tvorimo konfiguracije sistema, kjer je verjetnostna porazdelitev raznih konfiguracij 
Boltzmanova. Primer konfiguracije pri 1D  spinski verigi je 1↑ …𝑛 ↓, 
torej gre za D=2^n dimenzionalen problem, željena Markova veriga pa bi lahko tvorila 
konfiguracije z verjetnostjo e^(-Ei/kT). 
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11. Informacija in informacijska entropija 

 11.1 Mere informacije in informacijske entropije

Informacija

Informacijska entropija za diskretne naključne spremenljivke

informacijska entropija 
H za diskretne xi 
(definicija)

količina informacije 
(definicija)
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Kako lahko definirano entropijo H interpretiramo? 

Informacijska entropija za zvezne nakljucne spremenljivke

informacijska entropija H 
za zvezne x 
(definicija)



11.2 Načelo maksimalne informacijske entropije 
 
Zapisali bomo načelo maksimalne entropije, navedli nekaj primerov, in nato našteli nekaj 
razmislekov, ki so bili vodilo pri zapisu tega načela.

Načelo maksimalne informacijske entropije pravi: Sistemu, o katerem imamo nezadostne 
podatke in spoštuje  določene vezi, je želimo pripisati verjetnostno porazdelitev naključnih 
spremenljivk. Tedaj je po načelu maksimalne entropije  sistemu najbolj "smiselno" pripisati 
verjetnostno porazdelitev, ki ji ustreza maksimalna informacijska  entropija pri danih vezeh.   

Gre za načelo, ki se ga v splošnem ne da matematično dokazati, a vodi do mnogih izjemno 
pomembnih verjetnostnih porazdelitev ki so realizirane v naravi. Navedimo nekaj primerov, 
kjer pomembne porazdelitve sledijo pri danih "vezeh":   

• enakomerna porazdelitev ima najvecjo entropijo med vsemi porazdelitvami, kjer so 
vrednosti porazdeljene na koncnem intervalu. To velja za diskretne ali zveze 
porazdelitve (knjiga 11.2, str 250). 

       - Kor primer smo ze obravnavali diskretno porazdelitev pri konancu, kjer maksimalno 
entropijo dobimo za enakomerno porazdelitev p1=p2=1/2. 
      - Pri kocki da maksimalno entropijo p_i=1/6, kot bomo pokazali z zgledom spodaj. 

• normalna porazdelitev ima najvecjo entropijo med vsemi zveznimi porazdelitvami z 
danim povprecjem in varianco, kjer so vrednosti porazdeljene na celotnem intervalu 
x=[-inf,inf]. (knjiga 11.4, str 257)

• Boltzmanova porazdelitev  P(Ei)=e-𝛽 Ei ima največjo entropijo med vsemi z dano 
pričakovano vrednostjo energije, kot bomo pokazali spodaj (knjiga str 253). 

• Bose-Einsteinova in Fermi-Diracova porazdelitev tudi ustrezata nacelu maksimalne 
entropije pri dolocenih vezeh (knjiga 11.3.5 in 11.3.6)

Razmisleki, ki vodijo do zgornjega načela:



11.3: Zgledi z maksimalno entropijo; 
iskanje ekstrema pri danih vezeh z metodo Lagrangevih mulmplikatorjev: 

Marcun, matemamka 2, poglavje 4.2.5
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Zgled

naceloma bi to oznacili z lam0, a lahko oznacimo poljubno, 
tu oznacimo z 1-lam0 da dobimo lepsi izraz 


