Zapiski predmeta Verjetnost v fiziki, 2025/26, Sasa Prelovsek Komelj

Literatura:
Simon Sirca: Verjetnost v fiziki (cena 20 eur, ve¢ino poglavij od 1 do 13)
(to je glavni vir, ki mu vecinoma sledi tudi pricujoca skripta)

Ivan Kuscer, Alojz Kodre: Matematika v fiziki in tehniki (poglavije 11)

1. Temeljni pojmi pri verjetnosti
1.1 Naklju¢ni poskusi in dogodki

Fizika je empiri¢na veda. Poskus si lahko zamislimo kot proces, ki zaCetno stanje
spremeni v kon¢no stanje. Seveda si Zelimo, da bi bil ta poskus

nenakljucen: ob meritvi si prizadevamo nadzorovati vse okoli§¢ine — vhodne
podatke, merski proces in analizo izhodnih podatkov — zato pri¢akujemo, da
bomo ob vsaki ponovitvi poskusa z enakim zacetnim stanjem in v enakih okoli-
S¢inah prisli do enakega rezultata.

V naklju¢nem poskusu (angl. random experiment) se, nasprotno, lahko zgodi,

da pri mnogokratnih ponovitvah poskusa z enakim za¢etnim stanjem in v enakih
okolis¢inah dobimo razli¢ne rezultate. Za naklju¢ni poskus je torej znacilno, da

ne moremo enoli¢no napovedati natan¢nega izhodnega stanja na podlagi vhod-

nih podatkov. To velja za ve€ino poskusov na atomski skali Ze zaradi kvantne narave: na
primer, koliko jeder bo v danem ¢asu razpadlo, kak$na je gibalna koli¢ina elektrona v
vodikovem atomu ... . Velja pa tudi za Stevilne poskuse na klasicnem nivoju: na primer,
koliko plinskih molekul z dano hitrostjo se bo v dolo¢enem c¢asu zaletelo v steno posode (tu
je nakljucnost posledica termi¢nega gibanja), ali Stevilo pik pri metu igralne kocke (kar je
odvisno od podrobnega giba roke pri metu).

Raje se vprasamo po pogostnosti dolo¢enega kon¢nega stanja glede na Stevilo opravljenih
poskusov. Zato naj bi bilo Stevilo opravljenih poskusov ¢im vecje: privzeli bomo, da je
mogoce nakljucni poskus neomejeno velikokrat ponoviti.



Definicije nekaterih pojmov

Odnose med dogodki obravnavamo v jeziku mnozic:
Med mnozicami lahko napravimo operacije unije, preseka,...

Zgled: na zacetku imamo 7 nevtronov (Z),
izmerimo Stevilo preostalih nevtronov po pol ure (K)

v vmesnem ¢asu so nevtroni radioaktivno razpadali Z:7 K:?
n — pe v
L ° L ®
. d i .
kon¢nega stanja ®e .

S={0,1,2,34,5,6,7} nevtrov
Nabor vseh moznih izidov (outcome) naklju¢nega poskusa

elementaren = posamezen izid (outcome) poskusa
primer: dogodek A: A={3} nevtroni

elementarne dogodke lahko zdruzimo v sestavljen dogodek:
primer: dogodek B: manj kot 4 nevtroni B={0,1,2,3}

Dogodek A je podmnozica vzorénega prostora S: A € S

={} se ne more zgoditi v nobeni ponovitvi poskusa
primer N: 8 nevtronov

se zgodi v vseh ponovitvah poskusa
primer: v nasem primeru je G sestavljen dogodek G={0,1,2,....,7}

B ={4,5,6,7} nevtronov :BNB=N,BUB=G

njun presek je prazen

primeri:
{B,.B}={{0,1,2,3},{4,5,6,7}} ,
{sodo nevtronov, litho nevtronov},
110,4},{1,2,3§,{5,6,7}§
{{0},{1},{2},..}=S

Sistem dogodkov {Al,..,An} je poln, ¢e se pri vsaki ponovitvi poskusa zgodi natanko eden

......

zapolnijo vse moznosti. Izidi nakljucnega poskusa sestavljajo poln sistem dogodkov in
t jetnosti za te dogodke j k 2.14)].
vsota verjetnosti za te dogodke je enaka ena [(2.14)] ZP(Az') _1q
1=1



== oznacuje definicijo

produkt: AB=—=A N B
A in B se zgodita hkrati

vsota: AU B
zgodi se vsaj eden izmed A in B

Ce sta A in B nezdruzljiva, se v knjigi Verjetnost uporablja posebno prikladen zapis + :
A+B == A U B Ce sta A in B nerazdruzljiva, kar pomeni da je njun presek nic.

razlika: A-B==ANB
dogodek kjer se zgodi A, vendar se ne zgodi B

Zgled: izrazimo A U B ter AU B U C kot vsoto nezdruzljivih ¢lenov,
saj bo to prikladno za izracun verjetnosti

AUB+A+AB
AUBUC=A+BA +CBA

(*):

Zgled Dvakrat vrzemo kovanec, ki pade na glavo (g) ali cifro (c). .‘ %
Vzor¢ni prostor tega naklju¢nega poskusa je S ={cc,cg,gc,gg}.

Dogodek A naj bo, da se v dveh metih vsaj enkrat pojavi cifra, torej A={cc,cg,gc},
dogodek B pa , da pri drugem metu dobimo glavo, torej B={cg,gg}.

Dogodek, da se obenem zgodita A in B, je ANB=AB={cg},
od koder vidimo, da se A in B ne izklju€ujeta, sicer bi dobili AB = {} =N.

Dogodek, da se zgodi A, vendar se ne zgodi B, je
A—B=ANB={cc,cg,gc}N{cc,gc}={cc,gc}.

Dogodku A nasprotni dogodek je A=S—A={gg}.



1.2 Osnove kombinatorike
boste ponovili pri vajah

1.3 Verjetnost in njene lastnosti

Pri naklju¢nem poskusu smo v dvomu, ali se bo neki dogodek zgodil ali ne.
Kot mero za verjetnost, s katero smemo pri¢akovati dolocen dogodek, vzamemo
kar njegovo relativno pogostnost.

P(A) = lim na _ lim stevilo dogodkov vrste A

n—oo m n—oo  stevilo vseh dogodkov

Izrac¢unamo jo lahko

- “po pameti”: pri metu igralne kocke P(A=lih)=3/6=1/2

- pragmati¢no: kocko vrzemo tisockrat in ugotovimo, da smo dobili liho Stevilo pik v
513 metih. Tako smo empiri¢no dolocili relativno pogostnost za liho Stevilo pik
P(A=lih)= 513/1000=0.513. Ta vrednost se bo seveda spremenila, ¢e kocko vrzemo Se
tisoCkrat in Se tisockrat, na primer na 0.505, 0.477, 0.498 in tako dalje, pricakujemo pa,
da se bo po velikem Stevilu teh poskusov ustalila pri prej izracunani vrednosti 0.5.

Verjetnost P(A) dogodka A v nakljuénem poskusu definiramo torej kot Stevilo, pri katerem
se ustali relativna pogostnost dogodka A po velikem Stevilu ponovitev poskusa.

(Kolmogorov 1933):
* P(A) jerealen in 0=<P(A)=<1 za vsak dogodek A v prostoru dogodkov
* P(G)=1 za gotovi dogodek
* P(AUB)=P(A)+P(B) zanezdruzljiva AinB oz
P(A+B)=P(A)+P(B); zapis A+B pomeni da sta dogodka nezdruZzljiva

Od tod sledijo seveda Stevilne izpeljane lastnosti verjetnosti:
bistveno: verjetnosti nezdruzljivih dogodkov bomo sesteli

*  P(A)*+P(A)=1 ker sta A in A nezdruZljiva

* P(A-B)=P(A)-P(B) ker P(A-B)+P(B)=P(A-B+B) saj sta A-B in B nezdruzljiva in A-B+B=A
* P(AUB) =P(A)+P(BA)=P(A) + P(B(G—A)) = P(A) + P(B) — P(AB)

* P(AAUBUC)=P(A)+P(B)+P(C)—P(AB)-P(AC)-P(BC)+P(ABC) [*]

izpeljava: AUB U C=A+BA + CBA verjetnost nezdruzljivih dogodkov sestejemo
P(AUB U C)= P(A)+P(BA) +P(CBA)

P(C BA)=P(C) - P(CB) —P(CA)+P(ABC) iz Vennovega diagrama



Zgled (str 7):
Merlina naprava za zaznavanje kozmi¢nih zarkov je sestavljena iz devetih manjsih,

neodvisnih detektorjev, ki so vsi usmerjeni v isto smer neba.
Na napravo pade pljusk; definiramo naslednje dogodke:

dogodek E: zaznava pljuska v posameznem detektorju, P(E) = & = 90%.
dogodek X: zaznava pljuska na izhodu naprave

levo: Ce zahtevamo, da pljusk zaznajo vsi detektorji hkrati (vezava v devetkratno

koincidenco), je celotna verjetnost za zaznavo pljuska enaka
P(X)=P(E)° = 0.387

desno: Detektorje lahko zveZzemo tudi v tri trojice, pri cemer ugoden izid v okviru posa-
mezne trojice pomeni, da zarke zazna vsaj en detektor v trojici. Sele iz nastalih treh
signalov nato tvorimo trojno koincidenco. V tem primeru je verjetnost X , ;

da na izhodu X, , ; zaznamo pljusk enaka po zvezi [*] iz prejsnje strani enaka

P(X,,; )=P(E1 UE2 UE3) =(3e—3¢2 +&3) =0.999, koincidenca treh pa vodi do
P(X)=0.999"3=0.997

1 4 7 1 4 7

2 5 8 2 5 8

3 6 9 3 6 9

L — [orR ]
& [OrR ]
X [OR }—
123 &
Slika 1.1 — Detektor kozmic¢nih Zarkov. [LEvVO] Vezava detektorjev v devetkratno koin-
cidenco. [DESNO] Vezava trojic detektorjev v trojno koincidenco.

1.4 Pogojna verjetnost

Ce verjetnost za dogodek A tolmagimo pri doloéenem naboru pogojev B,
temu pravimo pogojna verjetnost P(A|B). B je lahko dogodek v istem ali
drugem poskusu.

P(A|B) je pogojna verjetnost za A ob pogoju B
P(A|B) is conditional probability of A given condition B

Pri n ponovitvah poskusa s povec¢anim naborom pogojev se dogodek B
zgodi nB -krat, dogodek AB=A N B pa nAB —krat. Relativno pogostost
zdaj merimo glede na nB, zato je pogojna verjetnost

. NAB
P(A|B) = lim — — _ 1im Nag/n _ P(AB)
(4IB) n—oo Np P(AlB) = Jim, ng/n P(B)




P(AB)
P(A)

Ker velja tudi obratno  P(B|A) =

obe zvezi zdruzimo v izrek o hkratni verjetnosti dogodkov AB
P(AB)=P(B|A)P(A)=P(AB)P(B)

Prvi enacaj ubesedimo takole: verjetnost, da se zgodita A in B hkrati, je enaka
produktu verjetnosti, da se najprej zgodi A, in verjetnosti, da se zgodi B,
¢e vemo, da se je ze zgodil A. Drugi enac¢aj preberemo analogno.

Od tod sledi , ki 1zrazi pogojno verjetnost za B ob pogoju A s tremi
verjetnostmi. O pomenu in uporabi Bayesovega teorema spregovorimo v naslednjem
podpoglavju.

P(A|B)P(B)

P(BA) = =55

Iz istega razloga velja:

P(An...A2A1) = P(An|An-1...A2A1) - - - P(A3|A2A,1)P(A2]/A1)P(Ay)
P(A1 A2 A3)=P(A3|A1 A2) P(A2|A1) P(A1) = P(A1) P(A2|A1) P(A3]|A] A2)

Zgled (str 9, prilagojen)

V zabojniku v vinski kleti je 10 steklenic, od katerih so 4 pokvarjene.
Iz zaboja vzamemo na slepo 3 steklenice. Kolik$na je verjetnost,

da so vse tri izbrane steklenice dobre ?

Oznac¢imo z Ai dogodek, da je i-ta izbrana steklenica dobra, in z A dogodek, da so dobre
vse tri. Vsi dogodki so tu del istega poskusa. Verjetnost, da je dobra prva steklenica, je
P(A1)=6/10. Ker je bila prva steklenica dobra, je zdaj v zaboju Se 9 steklenic in od teh je 5
dobrih. Verjetnost, da bo dobra tudi druga steklenica, je torej P(A2|A1)=5/9. Verjetnost da
bo dobra tretja steklenica, ¢e sta bili prvi dve dobri je P(A3|A2 A1)=4/8.

P(A)=P(A1) P(A2|A1) P(A3|A1 A2) =(6/10) (5/9) (4/8)= 1/6

00000 dogodek A1
P(A1)=6/10 OX X X X
P(A2‘A1)25/9 © i 2 ()D( g dogodek A2

00O

P(A3‘A2 A1)24/8 X X X dogodek A3

< O



1.4.1 Neodvisni dogodki

Ce sta dogodka A in B , je verjetnost, da se A zgodi,

neodvisna od tega, ali imamo kakr$no koli informacijo o B torej je P(A|B)=P(A).
Verjetnost, da se takSna dogodka zgodita hkrati, je torej po P(AB)=P(A|B)P(B)

enaka produktu verjetnosti, da se pripetita posamic: za neodvisna dogodka torej velja
P(AB)=P(A)P(B).

Zgled (str. 12, spini, dogodka A in B)

n dogodkov A={A1,A2,...,An} je ce
P(An...A2A1) = P(AnlAn-1...A2A1) - - - P(A3]|A2A1)P(A2|A1)P (A1)
= P(An) .. P(A3) P(A2) P(Al)

in podobno velja tudi za vsako kombinacijo (i1,12,...,ik) k-tega (k=2,3,...,n)
Da bi bilo n dogodkov v celoti neodvisnih v sploSnem ni dovolj da so paroma neodvisni.

Zgled (str 12, prilagojen)

V dveh oddaljenih eksperimentih (1 in 2) fiziki merijo projekcijo spina na danem
kvantnem sistemu. Ta je pri obeh eksperimentih pred meritvijo v istem stanju, kjer
ima spin z enako verjetnostjo projekcijo +1/2 (spin “gor”, 1) ter —1/2 (spin “dol”, |)

Dogodek A: “spin 1 pri meritvi 17
dogodek B: “spin 1 pri meritvi 2”
dogodek C: “obe meritvi pokaZeta enako projekcijo spina”.

Vpr: Ali so trije dogodki paroma neodvisni?
Vpr: Ali so trije dogodki v celoti neodvisni?

Vzor¢ni prostor za izmerjene pare projekcijje S= {11,11.{ 1,41},
izbranim trem dogodkom pa ustrezajo njegove podmnozice
A={11,11}, B={11,{1}in C={11,/]}. Od tod takoj razberemo ustrezne verjetnosti

P(A)=P(B)=P(C)=3=1,

kot tudi
P(AB) = P(AC) =P(BC) = 3 in P(ABC) = ;.

Ker velja
P(AB) = P(A)P(B) = P(AC) = P(A)P(C) = P(BC) = P(B)P(C)
so dogodki A, B in C paroma neodvisni. Vendar
P(ABC) = ; # 5§ = P(A)P(B)P(C),

torej dogodki niso v celoti neodvisni.



1.4.2 Ve€ o Bayesovi formuli

Zgoraj smo izpeljali ,da pogojno verjetnost P(B|A) lahko izrazimo z P(A|B), P(B) in P(A)
prek Bayesove formule P(AIB\P(B
p(sla) - PABPB)
P(A)

Brezpogojno verjetnost P(A) Zelimo izraziti s pogojnimi verjetnostmi za dogodek A.

Kadar se neki dogodek A zgodi ob dveh razli¢nih, med seboj izklju€ujocih se pogojih
B in B, in poznamo pogojne verjetnosti za A ob obeh pogojih, lahko izraCunamo tudi
brezpogojno verjetnost za A, to je verjetnost dogodka samega, P(A).

A=(ANnB)uU (AnB) ¢
P(A) = P(AB) + P(AB) — b, B
P(A) = P(A|B)P(B) + P(A|B)P(B)
Zgled:

Obravnavajmo najprej primer dveh pogojev ob klasi¢nem zavarovalniskem zgledu.
Zavarovalnica razvr§c¢a voznika v dva razreda:
- boljsi vozniki (B), ki jih je 85 %,
Za te je verjetnost da povzro€ijo nesreo v prvem letu 1/10
- slabsi vozniki (B), ki jih je 15 %.
za te je verjetnost da povzro€ijo nesrec¢o v prvem letu 1/5.
Doloc¢imo verjetnost, da bo sklenitelj povzrocil nesreco v ze prvem letu:

P(A) = P(A|B)P(B) + P(A|B)P(B)
P(A) =0.1-0.85+0.2-0.15=0.115

V prvem letu se zgodi nesreca. Dolo¢imo verjetnost, da jo je povzrocil ’bolj$i” voznik:
P(A|B)P(B) 0.1-0.85

P(BlA) = P(A) 0.115

=0.74

Relativno velika verjetnost ni presenecenje, saj je boljsih voznikov vec.



Razmislimo $e o primeru, ko izkljuCujoza pogoja nista le dva, temvec jih je vec.
Kadar se neki dogodek A zgodi ob razli¢nih, med seboj izkljucujocih se pogojih,
in poznamo pogojne verjetnosti za A ob vseh teh pogojih, lahko izraunamo tudi
brezpogojno verjetnost za A, to je verjetnost dogodka samega, P(A).

V tem primeru jim pravimo in jih oznac¢imo s Hi:

Vse Hi sestavljajo poln sistem, ta nabor iz¢rpa vse moznosti

zato velja formula za popolno verjetnost (angl. total probability formula)

P(A)= P(A H1)+P(A H2)+--+P(A Hn).
P(A)= P(A[H1)P(H1)+P(AJH2)P(H2)+ --+P(A[Hn)P(Hn),

H, H2 H3 H,  Hs | Hg

Slika 1.3 — Iustracija formule za popolno verjetnost. Izklju¢ujoCi se pogoji oziroma
hipoteze H; so disjunktne mnoZice, ki razkosajo vzorcni prostor S in s tem tudi poljuben
dogodek A.
Ko v zvezi z Bayesovo formulo govorimo o hipotezah in danem dogodku A imejmo
v mislih, da so hipoteze Hi obstajale pred dogodkom A. Hipoteze dogodek A pogojujejo.
Obicajni razmisleki nam tipi¢no podajo verjetnost za dogodek A ob predpostavki hipoteze
Hi, torej P(A[Hi). Mi pa bi radi dolo¢ili kaksna je bila verjetnost za izhodiS¢no hipotezo ob
kasnejsem izidu A, torej P(Hi|A).
Znova se oprimo na zvezo (1.10), to pot na njen desni enacaj, od koder prebe-
remo P(H;|A)P(A) = P(A|H;)P(H;) oziroma

P(A|H;)P(H;)

P(H;|A) = P(A)

Imenovalec tega izraza podaja enacba (1.15) in kon¢ni rezultat je slavna Bayesova
formula [5]

P(A|H;)P(H;)

P(HilA) = P(A|H,)P(Hy) + - - -+ P(A|H,)P(Hy)’

i=12,...,n. (1.16)

V naklju¢nem poskusu smo ob dolo¢enem trenutku lahko vedno znova prica
dogodkom A, toda dogodki Hj, ki izid A pogojujejo — vsak z ustrezno verjetnos-
tjo P(H;) — so se zgodili pred A. Verjetnostim P(H;) zato pravimo apriorne, saj
so v poskusu naceloma znane vnaprej. Leva stran Bayesove formule pa meri
verjetnost, da velja izhodiSCna hipoteza H; ob kasnejsem izidu A. Pogojno ver-
jetnost P(H;|A) zato imenujemo aposteriorno, saj na podlagi trenutnega izida
A podaja verjetnost za dogodek Hj, ki se je zgodil pred njim. Bayesovo formulo
zato imenujemo tudi izrek o verjetnosti hipotez.

P(Hi|A) : verjetnost za izhodiS¢no hipotezo ob kasnejSem izidu A:
aposteriorna verjetnost za hipotezo po izidu A
P(Hi): apriorne verjetnosti za hipotezo



Pogosto dogodek A predstavlja meritev podatkov D (data). Ustrezno Bayesovo
formulo za verjetnost hipoteze Hi ob dani meritvi podatkov zapiSemo kot

_ P(D|H;) P(H;)
P(H;|D) = >, P(D|H;) P(H;)

Dva pristopa k verjetnosti:
freleventisténii pristop (frequentist view) : pri dani hipotezi Hi nas zanima pogojna
verjetnost da bomo pri opravljeni meritvi dobili podatke D

Bayes pristop (Bayesian approach): po dobljeni meritvi podatkov D nas zanima
verjetnost hipoteze Hi.

Zgled (str 20)

ODb krvni preiskavi nas zanima ali imamo bolezen Zahodnega Nila.

Verjetnost da naklju¢no izbrani ¢lan celotne populacije zboli je 107

Krvni test pokaze pozitivni izvid (visoki titer V) v 99 % primerov, v katerih je bolezen prisotna:
Krvni test pokaze negativni izvid (nizki titer N) v 95 % primerov, v katerih je bolezen ni prisotna
Hipoteza da je bolezen Nila prisotna (bolni): Hg

Hipoteza da bolezen Nila ni prisotna (zdravi): H,

Test nam pokaze pozitivni izvid. Koliksna je verjetnost, da smo okuzeni s tem virusom?

Ta verjetnost je pravzaprav pogojna verjetnost da smo bolni ob pogoju da je test pokazal
visoki titer, torej P(H_B|V).

nizki titer N P(N|H_Z)=0.95 P(V|H_B)=1-0.99
P(Hg)=10 -6
visoki titer V P(V|H_Z)=1-0.95 P(V|H_B)=0.99
_ P(V|Hp)P(Hp) 0.99 - 106 s
PV = P i) P(Ha) + PVIH,)P(Hz) ~ 095106 +005 (- 105 ~ 1.98 - 10



motivacija za porazdelitve: P(dogodek) bi radi izrazili z P(stevilska vrednost); slednje nam
bodo podajale verjetnostne porazdelitve. A najprej obravnavajmo porazdelitve na splosno.
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Delta je prikladna za idealizacijo tockastega telesa.
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Funkecija delta izlusci tisto vrednost funkcije f kjer je argument delte enak nic.
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Funkecija delta izlusci tisto vrednost funkcije f kjer je argument delte enak nic.
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porazdelitev

m? s

Primeri porazdelitev: porazdelitev mase, porazdelitev naboja, porazdelitev
svetlobnega toka po valovni dolzini ali frekvenci, porazdelitev sile po povrSini
telesa, verjetnostna porazdelitev (kar bo nasa glavna tema). Porazdelitev je
prikladna za aditivne koliCine.

A nekatere koli¢ine se ne dajo porazdeliti v analognem smislu in tedaj je uporaba
besedne zveze porazdelitev zavajujoca. Temperaturna porazdelitev je nesmiselna:
temperature 310 K po ¢loveku se ne razdeli v dvakrat po 155 K za vsako njegovo
polovico. Tu je bolj primeren izraz temeraturni profil ali temperaturno polje.
Porazdelitev je bolj prikladna za aditivne koli¢ine.




VERJETNOSTNE PORAZDELITVE
m(Mi + Msz) =m(Mi) +m(Ms) ce MinNMsy={} mase je porazdeljena po delih delesa, Mi: i-ti del telesa
P(A1+ A2) = P(A1) + P(Az) ce ArnA = {} verjetnost je porazdeljena po dogodkih, Ai: i-ti dogodek

2.5 Enorazsezne (1D) diskretne verjetnostne porazdelitve

X: , ki lahko zavzame kon¢no Stevilo razli¢nih diskretnih vrednosti
Naklju¢ne spremenlj 1Vke bomo oznacevali z velikimi tiskanimi ¢rkami.

X, izl,..,n
te vrednosti oznaujemo z malo ¢rko; verjetnosti namre¢ Zelimo izraziti kot funkcije
Stevil x, ki predstavljajo elemente vzorénega prostora

Bolj formalno: Spremenljivka X vsakemu izidu iz vzorénega prostora S priredi Stevilo x.

Zgledi . s = {313 0 ) B

*) Pri metu ene igralne kocke z vzorénim prostorom
nam naklju¢na spremenljivka X="Stevilo pik na kocki sporo¢i Stevilski izid poskusa X (IZD =x3=3

*) Pri opazovanju plinskih molekul v posodi je vzor¢ni prostor hitrosti precejSen (to ni primer s konénim vzorénim prost.)
Spremenljivka V="velikost hitrost molekule”” nam sporoci tevilski izid meritve V( @ )=v=300 m/s

P, =P(X =x;)=fx(x;): Verjetnost, da ima v doloceni ponovitvi poskusa X vrednost x;

fx je (discrete probability distribution)
oziroma (probability function)

> fxlxi) =1
i=1

Lastnosti fx : P>0 -> £3(x)>0, za poln sistem dogodkov x; (i=1,..,n) :

Smiselno je definirati tudi verjetnost, da naklju¢na spremenljivka X zavzame vrednost,
ki je manjSa ali enaka od neke vrednosti x. To verjetnost podaja

Fx(x)=P(X<x),-0o<x<w:Fyx je

Fx(X)=Y i<y Pi= Yixi<x [fx(x0). enota [P]=[F]=1 (vedno) , [f]=1 (za diskretno)
Zgled: met dveh igralnih kock: X=vsota pik iz obeh kock fx =Y P é(z— ;)

7

Sx(x)

6/36 | . n=36
5/36 | . x=2: 1/36 1+1
3/36 | : ' ] x=3: 2/36 2+1,1+2
2/36 | e < .
1/36 | . x=12:1/36 6+6
1} e
:i T F(1)=P(X<=1)=0
5 — F(2)=P(X<=2)=P,= 1/36
' : F(3)=P(X<=3)=P, +P, =1/36+2/36
0 :

X

F(12)=1



Lastnosti kumulativne prazdelitvene funkcije:

nepadajoca XIEIPOO Fx(x) =0, PH}OFX (x)=1.

2.6 1D zvezne verjetnostne porazdelitve

X: naklju¢na spremenljivka, ki lahko zavzame zvezne vrednosti

X: (lahko v omejenem obmocju [Xpin,Xmax] ali Na neomejenem —{inf, inf])

Pri zveznih verjetnostnih porazdelitvah nikoli ne moremo govoriti o “verjetnosti, da
zvezna spremenljivka X zavzame vrednost x”. Ta verjetnost bi bila ni¢na. Smisleno je
govoriti o "verjetnosti da zavzame spremenljivka X vrednost X na intervalu [x1,x1+Ax ] ali
na intervalu [x1,x2].

dP(x<=X<=x+dx)=fx(x)dx : f : (probability density (function))

fx(x) dx podaja verjetnost da je vrednost spremenljivke X na intervalu [x,x+dx |
Ker je infinitizemalen interval dx, je tudi verjetnost infinitizemalna

Pz < X <x9) = " fx(z)dx

1

Lastnosti fy: Jx(x) =0, J_oofX(x) dx =1. enote: [P]=[F]=1 -> [f]=1/[X]
Iz “del¢kov verjetnosti” fx ( X) d X dobimo verjetnost, da je X <x

Fx(z) = P(X <) = /_ fx (3)di

Odvod integrala po zgornji meji je enak integrandu, zato sta verjetnostna gostota in
kumulativna funkciia povezani preko spodnje zveze, kar se razbere tudi za x2=x1+ Ax 1z

slike dFy ,
fx(x) = —= = Fy(x)
dx X
15 : : : _ ‘ i
EFx(X1)§ Fx(xq)+dF 0.8
~ 1t 5 —
X 06 ¥
< 05 04 &
l l 102
035 1 15 2 55 0
X1 X +dx X
15 1
108
1} -
K 06 ¥
S 0.5 04 &
l 102
¢ H : 2.5 0
X1 X2 X

Slika 2.5 — Primer normirane verjetnostne gostote fx (tanka krivulja, leva ordinata) za
zvezno porazdelitev verjetnosti, ki je od ni¢ razlicna samo na intervalu [0.5, 2.5] (pus¢ici)
in ustrezna porazdelitvena funkcija Fx (odebeljena krivulja, desna ordinata). Verjetnost
P(x; < X < x;) je enaka povr$ini sencenega obmocja pod krivuljo funkcije fx in obenem
razliki vrednosti Fx(x,) — Fx(x1).



Zgled: V =velikost hitrosti N2 molekule v posodi s plinov pri T=393 K (ima vlogo X)

v=vrednost velikosti hitrosti (ima vlogo X)
7 0.002
_ dFy _( m )3/2 2 muv? % < T =393K
frw) = dv  \2mkgT 4TTV” exp 2kgT < 0.001
0¥ -
0 500 N ]1000 1500
F vim/s
[Fl=1, [fI=1/[v]=1/(m/s) vv)
7/2 =
Yo 500 1000 1500

v[m/s]



2.7 Transformacije naklju¢nih spremenljivk (1D)

Naklju¢ni spremenljivki X naj ustreza porazdelitev z gostoto £X. Dolo¢imo porazdelitev fY
nakljucne spremenljivke Y, ki je znana funkcija spremenljivke X:

Ce je funkcija h na celotnem obmodju x injektivna (monotona, ves ¢as narascajoca ali
padajoca): to je trivialen primer: verjetnost dP, da je x na intervalu [x,x+dx] je enaka
verjetnosti na ustreznem preslikanem intervalu [y,y+dy] spremenljivke y

yolx) y=lx)

L ™
/ thyy ‘ \\
I | dxx\ 1

dP=fx(x) |dx| = fy(y) |dy| , absolutni predznak ker so P,fx,fy po definiciji >=0

dx 1
fr(y) = fx(x) |(d_g; = fx(x) —|d_g| E(Z?T(};)
B 1 dh=(y _ . 1

Ce je funkcija h NI injektivna ,ve¢ vrednosti x se preslika v dolo¢eno vrednost y, nas pa
zanima verjetnostna gostota fY pri taki vrednosti y. Tedaj moramo sesteti po okolicah vseh
X; , ki se preslikajo v dan v. X )

X

- M7 o b
i X\/[\\\\ " - e
Xa X2 X
dx, dig dxz

dP=Yy  fx(xp) [dx; | = fy(y) |dy]

Ker inverz funkcije h v tem primeru ne obstaja (“funkcija” h-1(y) ki pri dolo¢enem y vodi do
ve¢ vrednosti x pravzaprav ni funkcija), se opremo na izrek o inverzni preslikavi, ki pravi,
da za odprte podmnozice obmocja okoli x; lahko tvorimo inverzno funkcijo gi=h-!

fy(y) = ZfX \—\—fo v
’ h(x)=y

dg;(y) 1
= Z fX (g’t(y)) ‘ dy ‘ — mz fX (.I’) |h/ (ZU)| lokalno okoli xi: X:h'l(y):gi(y)

i




Zgled Obravnavajmo ravninski problem tockastega radioaktivnega izvira in li-
nearnega detektorja (na primer dolge tanke elektrode v Zi¢ni komori za sledenje
delcev), ki je od izvira na najbliZjem mestu oddaljen za razdaljo d (slika 2.6).

izvir

----------------------------------------- <‘7§> b =m/2
: ) h
detektor : -y
(¢) y

Slika 2.6 — Ravninski problem s tockastim radioaktivnim izvirom in neskonc¢no dolgim
tankim detektorjem. Izotropno sevanje izvira (enakomerna porazdelitev po kotih ¢) je
vzdolZ detektorja (koordinata ) porazdeljeno po Cauchyjevi porazdelitvi.
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Slika 2.9 — [LEvO] Diskretna dvorazsezna porazdelitev verjetnosti s skupno verjetnos-
tno funkcijo fxy(xi,y;) = N (sinmx; + sintry;). [DESNO] Zvezna dvorazsezna poraz-
delitev s skupno verjetnostno gostoto fx y(x,y) = N (sinmrx + sinmy).
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2.11.4 Neodvisnost nakljucnih spremenljivk v dveh razseznostih

Denimo, da sta koordinata g in hitrost p nekega P2
telesa nakljucni, da vselej lezita med dvema skraj-
nima vrednostma q; in g» oziroma p; in p», ter
da smo pri njuni meritvi uzrli porazdelitev tock
v faznem prostoru (q,p), kot jo prikazuje prva
slika. Zanima nas deleZ tock v faznem prostoru, ki
ustreza desetodstotnemu odstopanju od premice

_ AP (.-
p—p1+2Aq(q a1) , p1t
kjer je Agq = q» — q1 in Ap = p» — p1. Premica je 1
narisana s ¢rtkano crto, pogoj 08 |
p—pP1 49— a1
-2 <0.1 0.6 |
Ap Aq >

pa je oznacCen senceno. V brezdimenzijskih spre- 04
menljivkah X = (Q —q1)/AqinY = (P —p1)/Ap  0.2//

ima pogoj obliko |Y — 2X| < 0.1 in je prikazan na 0-1—>7
spodnji sliki. 00t 02 04 06 08 1

Seveda lahko dogodke v oznacenem obmocju 0.05 x

kar presStejemo, vendar se poskuSajmo domisliti preprostega modela. Postopno
naraScanje gostote tock od g; proti g2 in od p; proti p, nas napeljuje na mi-
sel, da utegne biti v ozadju porazdelitev zveznih spremenljivk X in Y s skupno
verjetnostno gostoto

_V Cxy ; 0=x=<1, O0=y=<1,
fX,Y(X,y) - { O ; SiCEI‘,

kjer je C konstanta. Porazdelitev normiraj, nato pa izracunaj @ P(|Y — 2X| <
0.1), torej verjetnost, da sta vrednosti spremenljivk X in Y omejeni na senceni
pas na sliki. @ Izractunaj Se enorazsezni verjetnostni gostoti fx(x) in fy(y). Ali
sta spremenljivki X in Y odvisni? (Ne pozabi, da je to samo model!)

AN Skupno gostoto najprej normiramo:

x2|ty2 |1

I—J de dy fxy(x,y) = CJ xde ydy =C—
20210 4

@ Iskano verjetnost dobimo z integralom verjetnostne gostote po dveh obmo¢jih: po
temneje sencenem obmocju, dolotenem s pogojema 0 < x < (¥ +0.1)/2in0 <y <0.1,
in po svetlejSem obmocju, dolocenem z (y - 0.1)/2 <x < (y +0.1)/2in0.1 <y <1:

C=4.

P(lY -2X| <0.1)

0.1 (y+0.1)/2 (y+0.1)/2
j dyj Frr(x, y)dx+J dy j( o, P dx
y-

0.1
% [ . y(y +0.1)%dy + J01 0.4y2dy] ~ 0.0667 .
@ Spremenljivki X in Y sta neodvisni, kajti
1 1
fx(x) = fo,y(x,y)dy=4xj ydy =2x, 0<x<1,
0 0

1 1
fry) = Jofx.y(X,y)dx=4yI0xdx=2y, 0<y=<1,

torej res velja fxy(x,y) = 4xy = fx(x) fy(y) = 2x - 2.



2.11.6 Porazdelitev maksimalnih in minimalnih vrednosti

Naj bodo Xi, X»,..., X, neodvisne in identicno porazdeljene zvezne nakljucne
spremenljivke. @ Kako je porazdeljena njihova maksimalna vrednost

U = maX{Xl,XZ,---,Xn}?

(Po porazdelitvi spremenljivke U se seveda lahko sprasujemo, ker je tudi sama
nakljucna.) Izpelji sploSen izraz in ga uporabi v primeru, da vsem spremenljiv-
kam X; ustrezajo verjetnostne gostote fx(x) = Ae ¥, kjer je x = 0, A > 0.
@ Kako je porazdeljena minimalna vrednost taksnih spremenljivk,

V =min{X1,X>,...,Xn}?
A Nalogo @ resimo z uporabo porazdelitvenih funkcij. Da bi bila maksimalna vrednost
vseh X; manjSa od nekega x, morajo biti vsi X; hkrati manjsi od x. Torej
Fy(x) =P(U<x)=P(X1 <X, X3 <X,..., Xn <X) = [P(X; = x)]" = [Fx(x)]".
Za posamezen eksponentno porazdeljen X je
X X
P(X < x) = Fx(x) = J fx(t)dt = I AeMdt =1 - e,
0 0
torej je

Fy(x) = [1 -e™™]".

Do iskane verjetnostne gostote, ki ustreza spremenljivki U, nas loci le Se odvod:

Sfu(x) = Fy(x) = n?\e""‘[l - e—]\x]n—l .



2.10 Transformacije naklju¢nih spremenljivk v dveh ali ve€ razseznostih

Spoznali smo, kako se transformirajo verjetnostne gostote pri transformaciji spremenljivk
y=h(x) v 1D, zdaj bi to radi posplosili na transformacijo v D razseznostih

X €RP, Y €RP , med vektorjema naklju¢nih spremenljivk X in Y slika vektorska funkcija h
Tokrat imejmo zaradi preprostosti v mislih le bijektivne preslikave.

D razlicnih nakljucnih spremenljivk X = (XM, .., X(P)) z yrednostmi # = (z(V, .., z(P))

D razlicnih nakljucnih spremenljivk Y = (Y(l), oy Y(D)) z vrednostmi 7 = (yV), .., y(D))

y hl(x(l), " x(D)) )
y=1 ... | = .. = h(¥)
y(P) hp(z™M, .., z(P))

Iz znane verjetnostne gostote f bi radi dolocili verjetnostno gostoto f3

Verjetnost d°P da je
X v n dimenzionalnem volumskem elementu dX je enaka verjetnosti,

daje Yv preslikanem volumskem elementu dy

ponazoritevv 1D
d"P = f¢(Z) |dZ] = f¢(¥) |d¥]  yun

™

! ! et ’

\
A
XN

fo=fz o7 = Iz g = I Vi >
x
Tu je J;, Jacobijeva matrika totalnega odvoda
S _Ohy_ _Ohy _
oh Oh . ox(1) = 9gx(D)
In(x) = det (5 (0)) Tay=1". . .
x o1 Ohp Ohp

Oz (1) o 9x(DP)



3. Posebne zvezne verjetnostne porazdelitve

Pogosto uporabne zvezne verjetnostne porazdelitve so Gaussova (normalna), enakomerna,

Maxwellova, eksponentna in Lorentzova (Caucyjeva ali Breit—Wignerjeva) porazdelitev.

Primere nekaterih bomo obravnavali potem, ko bomo spoznali pojem pricakovanih

vrednosti. Na tem mestu se posebej posvetimo le eksponentni porazdelitvi, ker bi jo radi
fizikalno utemeljili. V knjigi so v tretjem poglavju opisane tudi porazdelitev y? (chi-kvardat,

f.i), Studentova porazdelitev (f;) in porazdelitev F, ki so zelo uporabne, a na tem mestu Se ni
jasno ¢emu sluzijo. Mi jih bomo predstavili Sele ko jih bomo potrebovali.

3.1 Eksponentna verjetnostna porazdelitev

Z eksponentno verjetnostno porazdelitvijo opiSemo procese, pri katerih je verjetnost za

dolocen dogodek na ¢asovno enoto konstantna. Zelo znan primer je ¢asovni potek

razpada radioaktivnih jeder, druge primere pa bomo navedli kasneje v tem podpoglavju.

Razpad nestabilnega atomskega jedra je nakljucni proces par excellence. Za eno samo jedro
ne moremo napovedati trenutka njegovega razpada; verjetnost za razpad v nekem

casovnem intervalu je odvisna samo od dolzZine tega intervala, At, ne pa od starosti jedra.
Pravimo, da se jedra ne “starajo” in da je radioaktivni razpad proces “brez spomina”.

Neobvezno: Preden se lotimo matemati¢nega opisa,
vsaj grobo utemeljimo zakaj je tako. Preprost model
jedrskega razpada alfa je gibanje alphfa delca v
potencialu preostalega jedra. Ta ima privlacni del
zaradi mocne jedrske sile in odbojni del zaradi
Coulomskega odboja med pozitivnimi protoni.
Slednja povzroci bariero v potencialu, ki v klasic¢ni
fiziki preprecuje delcu alfa, da zapusti jedro. V
kvantni fiziki pa lahko alfa delec zapusti jedro le
zaradi dolocene verjetnosti za tuneliranje skozi
bariero. Ta verjetnost je odvisna le od viSine bariere
in kineti¢ne energije alfa delca, in niodvisna od
starosti jedra saj se razmere v jedru s asom ne
spreminjajo. Zato je verjetnost za tuneliranje in tako
tudi za razpad jedra neodvisna od starosti jedra.

Particle alpha energy (MeV)
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Oglejmo si analogijo eksperimenta, kjer je verjetnost za razpad na ¢asovno enoto At

konstantna. Ta verjetnost naj bo kar % za kar bo poskrbel met kovanca. Razpad 50 jeder

modelirajmo naklju¢no tako, da vrzemo 50 kovancev in “razpadla” so tista za katere je padla
cifra. S preostalimi jedri zopet ponovimo poskus, ki ga ponavljamo v enakih casovnih

razmikih At. Opazujmo Stevilo jeder oz kovancev v odvisnosti od ¢asa.

https://www.youtube.com/watch?v=sc2caB0gc7Q



https://www.youtube.com/watch?v=sc2caB0gc7Q




Zdaj vse skupaj opredelimo se matematicno:
T= naklju¢na spremenljivka, ki predstavlja ¢as oziroma trenutek ob katerem jedro razpade

Pravimo, da se jedra ne “starajo” in da je radioaktivni razpad proces “brez spo-
mina”: denimo, da na razpad jedra zaman Cakamo Ze Cas t; verjetnost, da se
razpad konc¢no zgodi po t + At, je neodvisna od t,

P(T>t+At|T>t)=P(T>At). (3.2)

Ce je interval At dovolj kratek, lahko privzamemo, da je verjetnost za razpad
sorazmerna z At in tedaj jedru ostane le izbira

P(razpadlo) = AAt ali P(ni razpadlo) =1 — AAt,

kjer je A = 1/T verjetnost za razpad na ¢asovno enoto [s~!] ali tako imenovana
razpadna konstanta, T pa je karakteristicni ali razpadni Cas. Verjetnost, da jedro
po casu nAt Se ni razpadlo, je (1 — AAt)™. Verjetnost, da ni razpadlo po dolgem
Casu t = nAt, se pravi, da bo razpadlo ob nekem casu T > t = nAt, je torej

P(T > t) = lim (1 — AAD)" = lim (1 _ £) _ (3.3)

Ker velja P(T > t) =1—-P(T <t) =1 - Fr(t), lahko takoj izracCunamo tudi
ustrezno verjetnostno gostoto,
dFr(t) d

i =E(1—e_”)=2\e‘“, t>0, (3.4)

Sfr(t) =

Stevilo jeder ob ¢asu t=0 je NO, in opazujemo njihovo $tevilo v odvisnosti od ¢asa. Jedra so
neodvisna, zato ustrezna Stevila prezivetja in razpadov dobimo iz zgornjih verjetnosti, tako
da jih zgolj pomnozimo z NO.

Za vsako je verjetost, da do casa t Se ni razpadlo podano z enacbo (3.3). Torej je

N(t)=NO P(T>t)=N0O e ~*t. (3.5)

Stevilo jeder dN, ki v casovnem oknu razpade je podano z verjetnostjo dP=fT(t) dt (3.4)
dN(t)=- dP NO = - fT(t) dt NO =- 1 et dt =- A N(t) dt. oz dN(t)/N(t)=- A dt

kar je seveda enako kot ¢e (3.5) odvajamo. Minus nastopa saj se stevilo jeder dN zmanijsa.

Zvezo dN(t)=- A N(t) dt bi lahko seveda zapisali ze takoj ob predpostavki, da je Stevilo
razpadov sorazmerno le s trenutnim Stevilom delcev in dolzine ¢asovnega okna dt.



Drugi primeri eksponentne verjetnostne porazdelitve:
T je tu trenutek ko se zgodi dogodek (razpad, trk, okvara,...)

Verjetnost za trk molekule plina v drugo molekulo na ¢asovno enoto se s casom ne
spreminja. Verjetnost, da je torej molekula potovala brez trka do ¢asa t je tore;j
porazdeljena P(T>t)=e At

Verjetnost za kemijsko reakcijo A+B-> C+D na ¢asovno enoto je pri nespremenljivih
okolis¢inah je neodvisna od tega koliko ¢asa reaktanti A in B Ze niso reagirali. Torej je za
dane reaktante verjetnost da niso reagirali do ¢asa t eksponentna P(T>t)=e ~At

Ce pride do okvare neke naprave zaradi nakljuénih (na primer kvantno-mehanskih)
procesov in ne zaradi staranja, bo verjetnost za dobro delovanje naprave do ¢asa t

eksponentno P(T>t)=e ™t Primer je Zivljanski ¢as racunalnidkega diska ali Zarnice LED.

Ce je peenje avtomobila po cesti mimo dologene tocke naklju¢no, in e se verjetnost
precenjaa na ¢asovno enoto ne spreminja s casom, bo verjetnost za prehod do ¢asa t
zopet enaka P(T>t)=e At

Minizgled Opazujemo dva enaka izotopa s karakteristicnim razpadnim ¢asom 7 = /11—=84

s. Eno jedro je pravkar nastalo, drugo pa je nastalo pred 3 minutami. Za katerega bo vecja
verjetnost, da bo razpadlo v naslednjih At =30 sekundah?

Ta verjetnost je za oba enaka. To vemo ze iz osnovne predpostavke, da verjetnost ni
odvisna od starosti jedra. DN Preverite se racunsko, da spodnja pogojna verjetnost res ni

odvisna od starosti jedra t.Resitev je na str 58 knjige: V obeh primerih je verjetnost 0.035.
P(T>t+At|T>t)=P(T>At).

Zgled, str 58 (strezbe na banc¢nih okencih -> pri predavanjih: okvare racunalniskih diskov)

Zgled Osebi A in B istoc¢asno prideta k blagajniskima okencema. Cas njune
postrezbe je naklju¢na spremenljivka z eksponentno porazdelitvijo s ¢asovnim
parametrom A, za prvo in Ag za drugo okence. Izracunajmo verjetnost, da B od
okenca odide prej kot A!

Nakljucni spremenljivki, ki merita casa dejanske postrezbe, oznacimo s Tx
oziroma Tg. Verjetnost, da stranka A do ¢asa ts Se ni postreZena, je e ?ala,
Ustrezna verjetnost za stranko B je e 285, Ker sta procesa ¢akanja med seboj
neodvisna, je njuna skupna verjetnostna gostota produkt posameznih verjet-
nostnih gostot:

fTA,TB(tA, tB) = Aa e~ Aala . AB e Aslp

Iskana verjetnost je tedaj

00 ta

dta | from(ta, ts) dts =J dtada e Mata (1 - e—f‘BfA> A
0 0

P(Ty <Tp)= | At s

0

Tudi limiti sta smiselni: e je usluZbenec, ki streZe B, nadvse pocasen (Ag — 0),
gre P(Tg < Ta) — 0, v nasprotnem primeru pa P(Tg < Ta) — 1. N



Zgled: str 59 : primer eksponentne verjetnostne porazdelitve, ki ni funkcija t temvec x

Zmotno je prepriCanje, da sreCamo eksponentne porazdelitve le pri nakljuc-
nih spremenljivkah, katerih vrednosti imajo kaj opraviti s casom. Zamislimo si
posodo z velikim Stevilom majhnih kroglic s premerom D, med katerimi je delez
p Crnih in 1 — p belih [2]. Kroglice vleCemo iz posode in jih zlagamo v vrsto
eno zraven druge. Denimo, da smo ravnokar izvlekli ¢rno kroglico. KolikSna je
verjetnost, da je razdalja x med njenim srediScem in srediSCem naslednje ¢rne
kroglice natanko iD (i = 1,2,...)? Opazujemo zaporedja izvleCenih kroglic ozi-
roma “dogodke”

.l.’ .lO.’ .IOO.’ .lOO---OO.
|

(i—-1)D

torej je iskana verjetnost ocitno
P(x =iD) = (1 -p)ilp.

Ker so dogodki nezdruzljivi, je ustrezna porazdelitvena funkcija kar vsota vseh
verjetnosti za posamezna zaporedja:

Fx(x)=P(x<iD)=p+(1-p)p+---+(1-p)'p=1-(1-p)'.
Z oznakama D = 1/n in np = A to prepiSemo kot

Fx(x)=1- (1 - %)nx ,

saj je i = x/D = nx. Denimo, da naredimo limiti n — o in p — 0 (to pomeni, da
je v posodi zelo majhen delez ¢rnih kroglic in da imajo zelo majhne premere), ob
katerih pa ostaneta A in x nespremenjena: tedaj gre Fx(x) — 1 — e ustrezna
gostota pa je fx(x) = dFx/dx = Ae X, kar je res enako kot v @

Zgled: str 77, Primer jedrskega razpadnega niza, kjer vsako jedro razpade le na en nacin

>
flr

-O-O-O-O-

razpad &
T1 = 245.5 - 10%let

>~ >
& S

razpad &
Ty = 75.38 - 10° let

razpad &
T3 = 1602let

razpad &
T4 = 3.82dni

O._é._Q._

Slika 3.13 — [LEvO] Uranov razpadni niz v segmentu, v katerem je na vsaki stopnji mo-
Zen samo en razpad. [SREDINA] Shema k zaporednih procesov z enim samim izhodom,
ki jih opisuje hipoeksponentna porazdelitev. [DESNO] Nazorni prikaz jedrskega razpad-
nega niza; primerjaj ga s sliko 3.12 (desno).

RSN Predpostavimo, da se razpadni niz za¢ne z jedri vrste 1, ki nimajo Se nobenih po-
tomcev, in da v to vrsto jeder ne razpada nobeno drugo jedro. Razpadni niz tedaj opiSe
sistem diferencialnih enacb

N1 = -AiNy,
N, —A2N2 + ANy,
N —A3N3 + ANz,



4 Pricakovane vrednosti (za zvezne 1D verjetnostne porazdelitve)

V tem poglavju obravnavamo izracun kolicin, ki jih smemo pri posameznih na-
kljucnih spremenljivkah ali funkcijah teh spremenljivk — glede na verjetnostne
porazdelitve, ki te spremenljivke opisujejo — pricakovati po velikem Stevilu po-
skusov: imenujemo jih pri¢akovane vrednosti naklju¢nih spremenljivk. Najpo-
membnejsa taksna koli¢ina je povprecna vrednost, ki je pricakovana vrednost
spremenljivke v osnovnem, najozjem pomenu besede, v nadaljevanju pa spo-

eves

4.1 Pricakovana (povprecna) vrednost same spremenljivke

Pricakovano vrednost zvezne spremenljivke X izraCunamo tako, da njeno vrednost x
pomnozimo z verjetnostjo fX(x)dx, da ima ta spremenljivka po velikem Stevilu poskusov
to vrednost x na intervalu [x,x+dx]. Potem tako uteZzene prispevke sestejemo oziroma
integriramo po vseh vrednostih x

[o0]

priakovana (povpre¢na) vrednost X X = E[X] = J . x fx(x)dx .

Tako E[X] kot X in u, pomenijo “operacijo povprecenja” nad spremenljivko X.

4.4 Pricakovane vrednosti funkcij nakljucnih spremenljivk

Najpreprostejsi funkciji nakljucnih spremenljivk sta vsota X+Y dveh spremen-
liivk in linearna kombinacija aX+b, kjer sta a in b poljubni konstanti. Ker je
pricakovana vrednost zvezne spremenljivke, E[X], definirana z integralom, pri-
Cakovani vrednosti E[X+Y] in E[aX+b] podedujeta vse lastnosti integrala, med
njimi linearnost: E[X+Y]= E[X]+E[Y], E[aX+b]=aE[x]+b, E[aX+bY]= aE[X]+bE[Y]

Doloc¢imo Se povprecno vrednost spremenljivke Y=g(X) ob dani porazdelitvi fX(x). Vrednost
nakljuéne spremenljivje g(x) pomnoZimo z njeno verjetnostjo pojavljanja fX(x)dx na
intervalu [x,x+dx], in vse tako utezene vrednosti g(x) sestejemo/integriramo

g(X) =E[g(X)] = I g(x) fx(x)dx

Sem sodi Se komentar o zelo pogosto uporabljenem priblizku, ki je lahko grda
napaka ali pa dobra bliznjica do resitve: to je aproksimacija

9(X) # g(X), g(X)~g(X)

Bolj ko je porazdelitev fX spremenljivke X ozka, boljsi je ta priblizek.




4.5 Razprsenost (varianca) ter efektivni odmik (standardni odklon, standardna deviacija)

Z izraCunom pricakovane vrednosti naklju¢ne spremenljivke X nekaj izvemo
o tem, kje znotraj njenega definicijskega obmocja bodo pri mnogih ponovit-
vah naklju¢nega poskusa veCinoma pristale njene vrednosti. Zdaj nas zanima
Se, kaksna je raztresenost (razprsenost) vrednosti okrog njihovega povprecja
E[X]=X. Mera za razprSenost je varianca (angl. variance), definirana kot

splosna definicija za zvezno porazdelitev
ar[X] = E[(X - E[X])?] = (X - X)2.

0% = | (x-X)fx(x) ax

ox = yvar[X]

Velika varianca pomeni veliko razprSenost okrog povprecja in obratno. Pozitivni
kvadratni koren variance, imenujemo standardna deviacija (angl. standard deviation) —
zlasti kadar imamo v mislih normalno porazdelitev — vcasih pa tudi efektivni odmik ali
standardni odklon.

0% =FE[(X - X)) =E[X?-2XX + X?] = E[X?] - 2XE[X]+ X?*=X2 - 2X? + X? = X2 - X?
4.7 Momenti naklju¢ne spremenljivke

Povprecje in varianca sta posebna primera pricakovanih vrednosti, imenovanih
momenti. Uporabljata se dve definiciji p-tega momenta naklju¢ne spremenljivke

splosna definicija za zvezno porazdelitev

M, =E[(X-X)"] M, = J (x - X)" fx(x) dx
M ,=standardni odk.

o0

M;, = E[XP] M, = I_m x? fx(x) dx M ;'=povprecna vr.

Pricakovane vrednosti za primer naklju¢ne spremenljivke X, kjer ima ta diskretne vrednosti
X1,.-,X, dolo€imo analogno, le da integral zamenjamo z vsoto sum_{i=1}n, npr

n
2 1\ 2
standarni odklon za diskretno porazdelitev Ox = Z (xi = X)" fx(xi)
i-1



4.10.1 Pricakovani cas okvare racunalniskega diska

RacCunalniski disk krmili pet elementov (i = 1,2, 3,4,5). Cas do nepopravljive
napake v vsakem elementu je porazdeljen eksponentno, s posamezno ¢asovno
konstanto A;. Disk deluje, dokler socasno delujejo elementi 1, 2 in 3, elementi
3,4 in 5, ali pa, ocitno, vseh pet elementov naenkrat. Kako dolgo po proizvodnji
diska smemo pricakovati, da disk $e deluje brez napake?

[ Verjetnost, da i-ti element do casa t $e ni pokvarjen (verjetnost, da je cas, ko se
pokvari, veéji od t), eksponentno pada in je enaka e !, Za okvaro diska so odgovorni
trije klju¢ni dogodki:

dogodek A : okvara elementov1in2 po ¢asut : P(A)=e (Mi+dat,
dogodek B : okvara elementa 3 po casu t : P(B) =e Mt
dogodek C : okvara elementov4in5po asut : P(C)=e Aa+ds)t,

Disk deluje, dokler (ANBNC)U(AnBNC)u(AnBnNC) # {}. Verjetnost, da po casu
t disk Se deluje, je torej

P(T>t)= P(t)

P(ANBNC)+P(ANnBNC)+P(ANBNC)
P(A)P(B)[1 = P(C)] + [1 =P(A)]P(B)P(C) + P(A)P(B)P(C)

P(B)[P(A) + P(C) - P(A)P(C)]
— c—(:\1+:\_g+z\3)f + c—(z\1;+,\4+/\s)l = c_(l\]":\‘_f':\:{"r\.;'fl\f;)' X

T=cCas (trenutek) ob katerem pride do okvare diska

Dolociti moramo verjetnostno porazdelitev nakljucne spremenljivke T in fT(t)dt

naj oznacuje verjetnost da se disk pokvari od trenutku T na intervalu [t,t+dt].

fT(t) dobimo iz verjetnosti P(T>t) zgoraj kot fT(t)dt=P(t)-P(t+dt)=-P’ dt torej je fT(t)=-P’(t) kar
smo izpeljali tudi ze ob zacetku obravnave eksponentne porazdelitve.

fT(t)=_P'(t)= [(Al + Ag + A3)e‘(’\1+7‘2+"3” + (A3 + A4 + As)e_(A3+A4+A5)t

—(A1+A2+A3 +A4 + As)e_(A1+A2+A3+A4+A5)t]

Nal: Doloci povprecen T in standardni odklon T, ter primerjaj povprecje(T*3) ter (povprecje(T))*3 za primer

Ap, =1 A

N
I

o0 v t [(Al + Az + A3)e_(A1+A2+A3)t + (A3 + A4 + As)e_(/\3+]\4+)\5)t
/ frt)dt=1+1-1=1 Jo
0

_(Al + AZ + A3 + A4 + /\S)e—(hl+)\2+/\3+}\4+)\5)t] dt

1 1 1
B AL+ Az + A3 +7\3+A4+A5 _A1+A2+A3+]\4+A5.

flt ] t=6%A*xEXp[-6%A%t] + 12 % A+ EXp[-12 %A% t] - 15 % A*EXp[-15% A% t]}
Assuming[A > 0,
tav = Integrate[f[t] «t, {t, 0, Infinity}];
var = Integrate[f[t] = (t - tav) A2, {t, 0, Infinity}];
M3p = Integrate[f[t] » (t) A3, {t, 0, Infinity}];
13 Sledniji sta zelo razlicni; pribliznega ujemanja

ne pricakujemo ker je porazdelitev siroka
0.18 1 0.029 0.0062
— , av(TA3)= T =

av(T):T, sig(T)=0.16




zvezne verjetnostne porazdelitve v Wolframovi Mathematici
datoteke: posebne-zvezne-porazdelitve.nb

PDF: ProbabilityDensityFunction : fy(x)
CDF: CumulativeDensityFunction, Fy(x)
InverseCDF : Fy1

NormalDistribution[u, o]

UniformDistribution[{a, b}] deli bli K
ExponentialDistribution[A] za vse porazaelitve se uporablja enake

MaxwellDistribution[o] funkcije PDF,CDF, InverseCDF,..
(» kasneje bomo vpeljali tudi spodnje x)

CauchyDistribution[a, b]|

ChiSquareDistribution[v]

StudentTDistribution[v]

PDF[NormalDistribution[u, o], Xx]

_ (x-1)2

e 202

—
N2 o

Plot[PDF[NormalDistribution[2, 0.5], x], {x, -4, 4}]

0.8
0.6
0.4

0.2

-3 -2 -1 1 2

w

CDF[NormalDistribution[u, o], x]

%Erfc[_xju]

N2 o

Plot[CDF[NormalDistribution[2, 0.5], x], {x, -4, 4}]

1.0
0.8
0.6
0.4

0.2

-4 -2 2 4

InverseCDF [NormalDistribution[2, 0.5], 0.9]

2.64078

Assuming[{c > 0, u > 0}, Integrate[PDF[NormalDistribution[u, o], x] *x, {x, -Infinity, Infinity}]]
U

Assuming[{c > 0, u > 0}, Integrate[PDF[NormalDistribution[u, o], x] * (x -u) A2, {x, -Infinity, Infinity}]]

2
o



4.3 Kvantili, percentili
~ 1} =
X K
< 0.5 &
0 L : - 0
0.5 1 1.5 2 2.5
Xp= Fx'(p) x

Slika 4.2 — Definicija kvantila zvezne porazdelitve. Integral verjetnostne gostote fx(x)

od — (oziroma od skrajnega levega konca definicijskega obmo¢ja) do x = x_ mora biti
enak p. Slika prikazuje verjetnostno gostoto fx(x) = 2 (x - 1)*(3 - x)?,0.5 < x < 2.5,

z ustrezno porazdelitveno funkcijo in 90. percentilom (p = 0.90), ki je enak x, = 1.58.

Vrednost nakljuéne spremenljivke (x,), pod katero po mnogih poskusih najdemo

dolocen delez vseh dogodkov (p), imenujemo kvantil njene porazdelitve (lat.
quantum, “koliko”). Za zvezno porazdelitev to pomeni, da je integral verjetnostne
gostote od —e= do x, enak p (slika 4.2).

Primer: 0.90-ti kvantil normalne porazdelitve N(2,0.5) je enak X oo = 2.6.

Za izrazanje p-tega kvantila so smiselne vse vrednosti 0 < p £ 1, vendar so v rabi Se

njegove logi¢ne izpeljanke za znacilne vrednosti p: celostevilskim vrednostim
(izrazenim v odstotkih) ustrezajo percentili.

90-ti percentil normalne porazdelitve N(2,0.5) je enak x, 49 = 2.6.

0.70-ti kvantil eksponentne porazdelitve z lam=1 je enak xy 50 = 1.2.

Plot [PDF[NormalDistribution[2, 0.5], x], {x, -1, 4}] Plot[PDF[ExponentialDistribution[1], x], {x, 0, 2},

0.8 1.0
fy fx

0.6 0.8

0.6

0.4

P=0.70
-1 1 2 3 4 X 0.2
2.6
. . 3 00 05 1.0 1.5 20 X
Plot[CDF[NormalDistribution[2, 06.5], x], {x, -1, 4}] 1.2
FX 0.9 1.0 o F Plot[CDF[ExponentialDistribution[1], x], {x, 0, 2},
: 1.0
08 X
0.6 0.8
0.70
0.4 056
0.2
0.4
-1 i 1 3 4 X
2.6 02
InverseCDF[NormalDistribution[2, 0.5], 0.9]
0.0 05 1.0 1.5 2.0
1.2 X
2.64078 InverseCDF [ExponentialDistribution[1], 0.7]

1.20397



4.2 Mediana in modus

Mediana nakljucne spremenljivke X (diskretne ali zvezne) je tista njena vrednost
x = med[X], za katero velja
P(X<x)<3} in P(X>x)<3. (4.4)
V primeru zvezne spremenljivke X neenakosti v tej enacbi postaneta enakosti,
P(X<x)=P(X>x)= i < med[X]=Fx'(1/2),

saj je vselej mogoce najti x, ki ploS¢ino pod krivuljo verjetnostne gostote razdeli
natanko na dve polovici: verjetnosti, da zavzame X vrednost pod oziroma nad
mediano, sta natanko 50 %.

Modus spremenljivke X je tista vrednost z najvecjo verjetnostjo (v intervalu z danim dx):
mod([X]=X.x , df/dX | pexman=0-

Motivacija za tovrstne pri¢akovane vrednosti izhaja predvsem pri obravnavi diskretnih
nakljuénih spremenljivk pri statistiki, kjer se nekatere vrednosti x; v vzorcu mocno
razlikujejo od glavnine — pravimo jim ubezniki (eng outliers). Povprecje je lahko zelo
obcutljivo na take ubeznike, mediana in modus pa sta robustna na ubeznike.

fx - fX (x) — )\ 6—)\$

0.8

06 A — ].
0.4 \

0.0 0.5 1.0 1.5 2.0
t X
Xmaz = mod[X] Al
X =1
log 2 A
med[X] = ——
A
0.002 \ ,
N»
T =303K
g
= 0.001 | ]
2
>
= 1%
Vimax\ | VV2
NN
0 500 1000 1500

v[m/s]



Tabela pricakovanih vrednosti za izbrane zvezne porazdelitve

Porazdelitev povprec¢je mediana modus varianca

U(a,b) a+b a+b / (b —a)?

(3.1) 2 2 12

Exp(A) 1 log 2 0 1

N(u,0?) )

(3.7) H u u o

Cauchy . .

(3.20) / X0 X0 / vaje , kasneje

2 + .

X“(v) _2 _ 2% kasneje

(3.21) v, vog v 2v

t(v) . v ¥ kasneje

(3.22) 0 0 0 v-—2

enakomerna porazdelitev eksponenta porazdelitev

L I . A B ; f (x) — Ae—AX

b-a X v

X X

Slika 3.1 — [LEVO] Verjetnostna gostota enakomerne porazdelitve U(a,b). [DESNO]
Verjetnostna gostota eksponentne porazdelitve s parametrom A.

3.3 Normalna (Gaussova) porazdelitev

Po normalni (Gaussovi) porazdelitvi ali vsaj priblizno v skladu z njo so porazdeljene nestete
koli¢ine iz sleherne sfere ¢loveskega obstoja in narave. Normalno ali priblizno normalno so
na primer porazdeljeni premeri navojev vijakov, ki v tisocih letijo iz struznice, telesne mase
ljudi, izpitne ocene in hitrosti plinskih molekul. Delne razlage in utemeljitve za to
vseprisotnost Gaussove porazdelitve bomo delezni v razdelku 6.3 in zlasti poglavju 11, kjer
bomo obravnavali centralni limitni teorem: ta v grobem pravi, da je povprecje velikega
Stevila identi¢nih in neodvisnih naklju¢nih spremenljivk (X(1) porazdeljeno po Gaussovi
porazdelitvi, cetudi posamezne spremenljivke X{) niso porazdeljene Gaussovo.



Gaussova porazdelitev je dvoparametric¢ne z verjetnostno gostoto

_ 2
exp (—u) , —0<x<o, N(p,0?)

2072

1
X)) = —/]——
fX( ) \/EO'
Ze zgolj iz definicijskega obmo¢ja je razvidno, zakaj je normalna porazdelitev
mnogokrat le priblizek: telesne mase ne morejo biti negativne in izpitne ocene
ne morejo biti neskonéne. Porazdelitev je simetricna okrog vrednosti W, Sirino

njenega vrha pa dolo¢a standardna deviacija o ; v tockah x = u + o ima funkcija fX
prevoj. Splosno sprejeta “kratica” za normalno porazdelitev je N(u,02).

L je njeno povprecje, o pa njeno standardna deviacija

Standardizirana normalna porazdelitev

Pri delu z gaussovsko porazdeljenimi podatki se je smiselno znebiti odvisnosti
od polozaja izhodiSca in Sirine krivulje, tako da od spremenljivke X odStejemo u
in jo delimo s o ter tako tvorimo novo, standardizirano naklju¢no spremenljivko

Porazdelitev spremenljivke Z tedaj imenujemo standardizirana normalna in jo
oznac¢imo z N (0, 1) (povprecje nic¢ in enotska varianca). Ustreza ji namrec ver-

jetnostna gostota
1

= ———eZ/2 3.10
fz(2) ot © .. (3.10) N(O,l)
porazdelitvena funkcija paje
z .
F(z) =¢(z) =P(z < 2) = % + \/% L e t/2dt = % [1 + erf(%)] . (31D
Vrednosti doloCenih integralov standardizirane normalne porazdelitve
1 z —t2/2 1 ( 4 )
— dt = —erf( —= 12
N Jo e > er NG (3.12)

za z med 0 in 5 v korakih po 0.01, ki zadoscajo za vsakdanjo rabo, so zbrane
v tabeli D.1. Abscise x = y = no oziroma z = £n (n = 1,2,...) so Se posebej
pomembne. Plosc¢ine pod krivuljo f7(z) na teh intervalih,

PM=P(u—nasXsu+na)=P(—nsan)=erf(%),

2 z —t2
funkcija napake (error function) je definirana kot: ~ erf(z) = 7 Jo e " dt

N(ol") 0.00(3
=0.13"/o

T

A- F(1)2 0 1¢ 1~ £(3)= 0,0013 1-F(): Y- 40‘)'



V fiziki osnovnih delcev trdimo, da smo odkrili nov delec, e ga odkrijemo s statisticno
pomembnostjo 50 ali vec. Statisticna pomembnost (eng. significance) 50 pri odkritju
novega delca pomeni, da je verjetnost, da je signal posledica statisticne fluktuacije
(in ne obstoja novega delca) enaka P=3x10". Pri tem imamo v mislih verjetnost za
signal, ki je enak eksperimentalno opazenemu ali pa Se vedji. To seveda nakazuje
izredno majhno verjetnost, da je opazen signal zgolj statisticna fluktiacija; imamo torej
utemeljene razloge, da signal pripisemo obstoju novega delca. Komentar: Pri
verjetnosti P=3x10"7 upostevamo le moznosti, ki izhajajo vrednosti naklju¢ne
spremenljivke nad povprecéjem (torej povecan signal nad ozadjem).

P(X >p+50)=3-10""7

Opomba: pri Gassovski porazdelitvi je to ravno verjetnost da opazljivka X preseze
povprecje za 50 ali vec.

Tudi pri koli¢inah, ki niso porazdeljene po Gaussovi porazdelitvi, se o odkritju z
pomembnostjo 50, ko je verjetnost, da je opaZen signal (ali Se vedji) posledica
statisticne fluktuacije enaka P=3x10-7. Statisticna pomembnost 50 je v tem primeru
mera za pomembnost oz zanesljivost odkritja, ki se jo lahko uporablja in v grobem
primerja pri vseh porazdelitvah.

Vec in bolj podrobno o tem bomo govorili v poglavju o statisti¢nih testih in hipotezah.

neodvisni x1 in x2 x1 in x2 nista neodvisni

4.1 T T T S — ] 4 T —T T —
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Zgled (str 95) za pri¢akovano vrednost funkcije g pri dvorazseZni porazdelitvi;
glede na notacijo iz prejsnje strani bi bili indeksi 1 in 2 za obe dolZini zgoraj

l
Zgled Veliko Stevilo palic dolZzine 1 z udarcem

nakljucno zlomimo na dveh mestih. Zanima nas | | | |
povpretna dolZina srednjih kos¢kov. Ob vsakem Y X1 X2 1
udarcu se palica zlomi na mestih 0 < x; < 1in 0 < x» < 1, pri cemer so vredno-
sti x1 in x? enakomerno porazdeljene po intervalu [0, 1], poleg tega pa je lahko
X1 < x» ali x1 > x». ISCemo torej pricakovano vrednost naklju¢ne spremenljivke
L = |X; — X;1| (z vrednostmi 1) glede na verjetnostno gostoto fx,y(x1,x2) = 1:

11
Z=JJ|XZ—X1| dx, dx: —dezj(xz—xl)dxl +de2j(x1 x2) dx =
00

0 X2

Premisli: kako se rezultat spremeni, Ce verjetnost, da se bo ob udarcu palica
zlomila, linearno narasca od vrednosti nic v izhodiscu do konca palice? <
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Slika 7.8: Ponazoritev korelacije na primeru dveh spremenljivk XV in X2 ter konénih vzorceuv. Slike
ponazarjajo mnozice izmerkov (x! ,x1)), ki jih je mogoce opisati z dvorazsezno porazdelitvijo
spremenljivk XV in X, in ustrezne ocene za vzorcni korelacijski koeficient p= p*2.

[Zgoraj, od desne proti levi] Skoraj popolnoma korelirani podatki (p= 1), nekorelirani podatki (p = 0)
in skoraj povsem antikorelirani podatki (p = -1). [Spodaj] Trije primeri realizacije nekoreliranih
spremenljivk, ki med seboj nista statisticno neodvisni. Pogoj p = 0 je zgolj potreben pogoj za
statisticno neodvisnost.
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Zgled: posoda s plinom.

Naklju€ne opazljivke: tlak, Stevilo trkov na s, povprecna hitrost molekule,..

Te naklju¢ne opazljivke so korelirane, ¢e jim merimo na steni iste posode s plinom.
Niso korelirane, e jih merimo na razlicnih posodah s plinom.
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4.8.2 Korelacija (correlation) ne implicira kavzalnosti (causality)

Nicelni korelacijski koeficient spremenljivk X1 in X2 ne pomeni, da sta ti med seboj
stohasti¢no neodvisni: za vsako gostoto f y; x,, ki je soda funkcija odmikov x1 — p1 in x2
- U2, velja p;, = 0. Z drugimi besedami, p;, = 0 je zgolj potreben pogoj za neodvisnost, ni
pa zadosten (glej spodniji del slike 7.8, ki ponazarja korelacijo ob primeru kon¢nih
vzorcev).

Ceprav med dvema spremenljivkama (naboroma vrednosti, meritvama, pojavoma)
opazimo korelacijo, to ne pomeni nujno, da med njima obstaja neposredna vzro¢na
zveza (causal relation): korelacija ne implicira kavzalnosti. Kadar imamo korelirani kolicini
in med njima navidezno odvisnost, je najpogosteje vpleten neki skupni dejavnik.



Zgled: sposobnost racunanja in velikost majice pri otrocih sta pozitivno korelirani.
A Ce otroku kupimo vecjo majico ne bomo vplivali oziroma izboljsali njegovega
matemati¢nega znanja. V ozadju je skupni dejavnik : starost otroka

Korelacija in kavzalnost sta pojma iz razlicnih svetov: prvi pomeni ugotovitev na

podlagi verjetnostne teorije, drugi pa opisuje strogo fizikalno re¢, v katere ozadju sta
¢as in vzroc¢na povezanost sedanjih dogodkov s preteklimi.

§.9.1 Multo varietme morauo (me PO'%‘X{.U'{'M

& ; (k)
2epiceli b1 toadd £} (X) 2 mekovelirone tor orebirene X,
. () : . W« .
.) 20 Mmeodvicme X "f'ovcg mekorthirame X | 9,' ix lcor FNOLU\H

P (X ) RN
-TPY((M - \F{qu ( Xl(ff ) 4ur(T (J (Xur . >
1 L B R
= ) e (-13743) ®)
S‘E“}i Tp= w9 Q... Go= (et y)
L | g | i

8’\‘ )
ve & sl | DO\ST‘OPQMJ, Ol pPovreCma vreAuo ¢y

v 2 \corwrw{ Xuc) 2 Mqouaxouol,uo (vathQ,uZ«o |
\é_ SZ-;R ) E/u') 6” = éu: . élS}we{chL Feollee u,
M’O-/\‘)rb\ ‘eﬁlk[(ﬁ POL\S uwo X X —'F l(,l lM}Q. 0(‘&.8 b\l

b2y, | E=08

Y X ég(/
[ov wednee V. wedrike o g
Be & i sl) -
(Iclb ) (e () -
é ¢t = lcc 0 0 Uy 3 "@ o UT)

kp

~

e 2o Mekorebirome O X‘ PorMmUer Iubrlovoo(pkt
Iy e pison ioéorq)) #). Jarenmo 9e R 3

da €p = oux &



P el wp(4E g 0

LepuT=E"

AR ) G e gy (»ib( 35 £ 6-7))

To /3L \IL‘T\A}*'M.OK e %oﬁofm 2o Mmudkivayietuo
Movanodwo povoroebtus 2 douo F\l» ovar ek, .

MultinormalDistribution[mu, cov]

mu = {1, 2}; mu = {1, 2};
cov = {{0.3, 0}, {0, 1}}; cov = {{0.4, 0.4}, {0.4, 1}};

Covariance[MultinormalDistribution[mu, cov]]

{{06.5, 0.4}, {0.4, 1}}



4.9 Sirjenje napak  var[x® £X1 ] = var[X® J+var[X® J£2cov[X , X1 ] (4.20)

V mislih imejmo naklju¢ne spremenljivke XK, ki so relativnho ozko porazdeljene okoli
povpredne vrednosti zaradi napak pri meritvi. Ce bi znali formulo (4.20) posplogiti na
poljubno funkcijo poljubnega Stevila spremenljivk, bi odgovorili na pomembno
vprasanje Sirjenja napak. Kaj sploh pomeni “napaka naklju¢ne spremenljivke”? V
uvodnih razdelkih smo spoznali, da si vsako meritev neke koli¢ine lahko predstavljamo
kot realizacijo naklju¢ne spremenljivke, katere vrednost statisti¢no fluktuira. Tak
nakljucen odklon od njene pri¢akovane vrednosti imenujemo statisticna negotovost ali
“napaka”. Z analizo Sirjenja napak Zelimo ugotoviti, kako se negotovosti vrednosti
dolocenega nabora spremenljivk odrazajo v negotovosti vrednosti funkcije teh spre-
menljivk. Znacilen primer je dolocitev moci na uporniku iz padca napetosti na njem: ce

je negotovost meritve napetosti AU, upornost R pa poznamo le na AR natancno,
kolikSna je negotovost izracunane moci P = U2/R?
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5. Posebne diskretne verjetnostne porazdelitve

V tem poglavju obravnavamo porazdelitve diskretnih naklju¢nih spremenljivk, med
katerimi sta najpomembnejsi

5.1 Binomska porazdelitev

Z binomsko porazdelitvijo imamo opravka, kadar sta pri danem Stevilu (Z) naklju¢nih, med
seboj neodvisnih, poskusov mozni samo dve vrsti izidov: nekaj se zgodi (verjetnost p,
recimo temu “ugoden” izid oz dogodek A) ali pa se ne zgodi (verjetnost g =1 - p, recimo
vsemu ostalemu “neugoden” izid oz dogodek A). Pri metu kovanca pade grb ali cifra; rodi
se deklica ali decek; pri metu kocke padeta 2 piki ali ne; jedro razpade ali ne;
kvantnomehaniski proces se je zgodil ali ne. Takemu zaporedju neodvisnih poskusov
pravimo tudi Bernoullijevo zaporedje.

» Z:celotno Stevilo poskusov
* N:nakljuéna diskretna spremenljivka, ki Steje kolikokrat se je zgodil "ugoden" izid
"tipa p", Stevilska vrednost te nakljucne spremenljivke N je n.

Verjetnost, da pri Z neodvisnih poskusih najprej n-krat zaporedoma dobimo ugoden izid in
potem (Z-n)krat zaporedoma neugoden izid je: p"(1-p)¢™ Verjetnosti smo kar zmnozili ker
gre za neodvisne poskuse.

Presteti moramo le se na koliko nacinov lako izmed Z poskusov izberemo n ugodnih in Z-n
neugodnih: to je podano z Binomskim simbolom s P
<n> = Z-oninl

ZakljuCimo: Verjetnost za n ugodnih izidov pri Z neodvisnih poskusih je

A —n [
fn(n; Zp)=P(N =n; Z,p) = P(N =n) = (n) p"(1-p)” Elonrzgc;seﬁ?tev

kjer je p verjetnost ugodnega izzida pri posameznem poskusu. Z in p sta parametra
porazdelitve, ponavadi ju od argumenta locimo z dvopicjem.
Porazdelitev je seveda pravilno nogmirana

;P(N:n) — EZ: <§> P — () — 17 — 1

n=0

Zgornjih oznak se bova pri predavanjih in vajah z Miho Mihovilovicem drzala (vsaj skozi celotno poglavje 5).
Kot ponavadi isto crko uporabljamo za doloceno spremenljivko v veliko zacetnico (N) in malo zacetnico (n).
Opozorilo: zgornji N je v knjigi Verjetnost oznacen z X; zgornji Z je v knjigi Verjetnost oznacen z N.
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DiscretePlot[PDF[ BinomialDistribution[12, 1/6], n], {n, 0, 12}]

Zgled Vrzemo 12 postenih igralnih kock. KolikSna je verjetnost, da bo Stevilo pik 3
nastopilo najvec¢ enkrat (N=<1)?

Verjetnost za ugodni izid “3 pike” pri vsakem metu je p=1/6, verjetnost za kateri koli
drugi izid pa g=1-p=5/6. Iskana verjetnost je

p(ns1) = Pln=0)+p(n=1) = (¢ )+ (5" (2 + () () () =01+ 027 =038
/=12 ,

R

Zgled Cas ¢akanja v vrsti v menzi je naklju¢na spremenljivka, porazdeljena
eksponentno s povprec¢jem 4 minute. KolikSna je verjetnost, da bo Student v
vsaj Stirih dneh od naslednjih Sestih postreZen v manj kot treh minutah?

Verjetnost, da na izbrani dan Student v 4 minutah Se ni postreZen, eksponen-
tno pada: P(t) = e t/T, kjer je T = 4min. Verjetnost, da je postreZen prej kot v
treh minutah, je p = 1 — e~3/4, UpoStevati moramo le $e vse mozZnosti v zapore-
dnih dneh, kar opisuje binomska porazdelitev. Vsak dan sta namre¢ samo dve
mozZnosti: postrezen je prej kot v 3 minutah (verjetnost p) ali kasneje (verjetnost
1 — p). Iskana verjetnost je torej

S (©ma-pes £ (5) (e (9 om0

opomba: tu verjetnost p ni majhna, in tudi Stevilo poskusov ¢akanja v menzi (Z=6)
ni majhno zato uporaba Poisonove porazdelitve namesto Binomske ni upravicena.
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Ce oy razumemo kot negovost izmerjenega Stevila dogodkov zapisemo kar

Nym=Ntoy=Zpt.,/Zpq
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Zgled Merimo porazdelitev molekul po hitrostih; pricakujemo rezultat, podoben sliki
4.1 (desno). Meritve uredimo v histogram s k = 15 ekvidistan¢nimi razredi

1: [0, 100]m/s, 2: [100, 200]m/s ... 15: [1400, 1500]m/s.

V posamezni razred pade n; molekul; vsi razredi, v katere lahko pade posamezna
hitrost, so med seboj neodvisni. Skupno prestejemo Z =nl +n2 +- - -+n15 molekul.
Tak histogram — ob vsaki novi meritvi bo videti drugace — predstavlja multinomsko
porazdelitev. Relativha napaka na razmerju N;?™ pada korensko z vecanjem stevila
meritev Z.
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Povzemimo: Obravnavamo veliko Stevilo (Z) neodvisnih poskusov, kjer sta pri
vsakem poskusu mozni le dve vrsti izzidov: nekaj se zgodi (z verjetnostjo p) ali se pa
ne zgodi (z verjetnostjo 1-p). V limiti velikega Stevila poskusov (Z— o) in majhne
verjetnosti p—0, je verjetnost za n ugodnih izzidov pri danem povprecju ugodnih
izzidov N podano s spodnjo Poissonovo porazdelitvijo:

P(Nem) = 4 =m )= PoiSSonvovy PoAMEUTEY
S I;T N L m=901 _.
fn(;N) = ™ T

edini parameter binomske porazdelitve je povprecno stevilo
ugodnih izidov N v danem stevilu neodvisnih poskusov

0.4 . SR
—~ I N=10
S 03} | ST
|| \'}K . —h—

N(9.5,9.5) - pogosto se povprecno Stevilo
1 N oznaci N=A
(tako je tudi v knjigi S.Sirca)




Nav = 3.3;

DiscretePlot [PDF[PoissonDistribution[Nav], n], -
DiscretePlot [CDF[PoissonDistribution[Nav], n], .
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Pricakovane vrednosti povprecja in variance za Poissonovo porazdelitev dolocimo kar iz
vrednosti, ki smo jih dolocili za Binomsko porazdelitev, tako da uporabimo g=1-p~1.
Vse bomo izrazili z N, ki je edini parameter te porazdelitve.

binomska

EIN|=pZ —

Poissonova

E[N]

N

binomska Poissonova

oN =\ Zpqg —

O'N:\/ﬁ




Zgled (str 116) Cepimo Z = 2000 ljudi. Verjetnost p za stranske ucinke pri cepljenju je
majhna, p = 0.001. V povprecju bosta torej stranske ucinke opazila samo N =Zp =2
Cloveka. KolikSna je verjetnost, da bo Stevilo ljudi s stranskimi ucinki vecje od 27?
Verjetnost, da natanko n ljudi izkusi kak stranski ucinek, je "
P(N:M) M ij
m! N

Iskana verjetnost je torej P(n>2) = P(3) + P(4) + - - - + P(2000). Ra(“:tmanju in seStevanju
teh 1998 vrednosti se izognemo tako, da izraCunamo verjetnost za nasprotni dogodek:
P(n>2)=1-P(0)-P(1)-P(2)=0.323. »

Nav = 23

DiscretePlot [PDF[PoissonDistribution[Nav], n], {n

o O
0.25
0.20
fu(n) ®
0.15_
®
0.10 ®
0.05 °
‘ Q. 9.
2 4 6 ? o %
n

Zgled (str 116) Zemeljsko povrsje doseZe v povprecju 25 meteoritov na dan. Koliksna je
verjetnost, da bo v desetih letih najmanj enega od 7-10° prebivalcev Zemlje zadel

meteorit? Geometrijski presek ¢loveskega telesa je priblizno S; = 0.2 m?, polmer Zemlje
pa R=6400 km.

Najprej poiscimo odgovor na zastavljeno vprasanje pragmaticno, ob predpostavki da je
v igri Poissonova verjetnostna porazdelitev. Da je ta upravicena bomo utemeljili v
naslednjem koraku. Poissonova porazdelitev je enoparametricna, z enim samim
parametrom N. V tem primeru je relevanten

N= povprecno stevilo zadetkov meteoritev na clovestvo v desetih letih,

N =25 *(10let/1dan) * 7-10° *S1/(4*Pi*R"2)= 9125 * 7-10° *S1/(4*Pi*R"2)=0.248

Nakljucna spremenljivka N z vrednostjo n pa ustreza stevilu zadetkov meteoritev na

clovestvo v desetih letih (stevilo "ugodnih izzidov" kar se tice razmisleka pri tej nalogi),

verjetnost za N=n pa je P(N:m) _ ‘AT K]M (D =fy(n)
m!



Verjetnost, da zadane vsaj enega je 1 minus verjetnost da ne zadane nobenega
P=P(n=1)+P(n=2)+....=1-P(n=0)=1 — N%~N/0! = 1-¢ 70248 ~ (.22

Zdaj Se utemeljimo uporabo Poissonove porazdelitve, ki se jo za ta primer da
utemeljiti na vec razlicnih nacinov. Vzemimo celotno obdobje t=10 let in vsak
padec meteorita naj bo neodvisen "poskus".

* Torejje vigri veliko stevilo Z= 25 * (10 let / 1 dan) = 91250 neodvisnih
poskusov, kar utemeljuje prvo od predpostavk Poissonove porazdelitve.

* Verjetnost p za "ugoden dogodek" (to je zadetek na clovestvo pri padcu enega
meteorita) za en poskus (to je padec enega meteorita) pa je p=7-10° *
S1/(4*Pi*RA2)=2.7 *10%. Torej je verjetnost za ugoden dogodek pri enem
poskusu res p<<1 in je Poissonova aproximacija binomske porazdelitve
utemeljena.

Povprecno stevilo "ugodnih dogodkov" je torej N=Z p=0.248, kot prej, zgornji

razmisek pa utemejuje uporabo Poissonove porazdelitve "ugodnih dogodkov".

Nav = 0.248;
DiscretePlot [PDF[PoissonDistribution[Nav], n], {n, 0, 4}
Table[PDF[PoissonDistribution[Nav], n], {n, 0, 4}]

fu(n) %
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02 @
n

e D L
1 2 ? 64'%

{0.78036, 0.193529, 0.0239976, 0.0019838, 0.000122996}

Z mislimi na prejsnji zgled izpeljimo sploSnejso verjetnost za stevilo n ugodnih dogodkov
v €asu t. Z naj bo Stevilo vseh neodvisnih poskusov v tem ¢asu: primeri
* (a) Z=stevilo meteoritov (v t=10 let)

* (b) Z=stevilo jeder pri pOkSUSU (vsako jedro predstavlja neodvisen poskus ker lahko razpade ali ne)
predpostavka v nadaljevanju: stevilo Z ne upoade zaznavno v casu t, tako da se aktivnost ne spreminja
* (c) Z= stevilo trkov proton—proton v LHC (na primer v t=1 dan)
Za vse te primere je Z velik in je Poissonova porazdelitev s tega stalisca upravicena.
Verjetnost p za ugoden dogodek pri enem od Z poskusov naj bo majhna
p=a, * t, al=aktivnost za en meteorit, jedro ali en kvantno-mehaniski proces= dN1/dt
* (a) aktivnost enega meteorita pri zadetku ¢lovestva
* (b) al=dN1/dt=aktivnost enega jedra=1/tau=lambda
* (c) al=verjetnost za proces (p p -> konéno stanje) pri trku enega para na enoto casa

Tedaj je verjetnost za n ugodnih dogodkov v ¢asu t podana s Poissonovo porazdelitvijo z
N=p Z=al *t*Z=a*t , kjer je a=Z*al aktivnost celotnega vzorca

P(n) =2 (at)” e~

To velja le, ¢e se aktivnost uzorca v ¢asu t ne spremeni zaznavno. P(n) tu predstavlja



* (a) n=Stevilo zadetkov meteoritov na clovestvo

* (b) n=Stevilo razpadov vseh jeder

* (c) n=stevilo opaZenih procesov p p -> koncéno stanje, torej dolo¢enih koncnih stanj
Vse to vdanem Casu t

Verjetnost, da se ni zgodil noben razpad do ¢asa t je v skladu z eksponentno porazdelitvijo,
kjer pomnozimo Zkrat verjetnost za prezivetje vsakega izmed jeder

Pn=0)= e % = 17t = (gm0t)Z ay =1/7= A

Klasicni zgled V Casu t zabeleZzimo n jedrskih razpadov; naj bo n > 1 (vsaj

nekaj deset). Ocena za pravo aktivnost vzorca a (Stevilo razpadov celotnega vzorca na
¢asovno enoto) je a' = n/t, kjer crtica oznacuje da gre za oceno. Izmerjeni n opleta okrog
N= at za +oy = £sqrt(N) toda prave vrednosti a in N ne poznamo zato naredimo priblizek
oy~ sqrt(n). Pisemo torej

n=N+VN~N+yn — N=n++vn
kjer smo desno enacbo dobili s tem, da smo izrazili N v levi enacbi.

Po deljenju druge enacbe s t ugotovimo, za koliko se v povprecju razlikuje prava aktivnost
a od izmerjene vrednosti a':

N n+yn n
a:—:—\/_:—(lii)za’(ltii)

t t t vn vn

Ce ho€emo izmeriti aktivnost vzorca na 1 % natanéno, moramo torej preéteti 104
razpadov. Ta mlinski kamen nam visi okrog vratu pri vseh poskusih, kjer kar koli “Stejemo”.
Za k-kratno zmanjsanje statisti¢ne napake moramo presteti k2-krat ve¢ dogodkov oziroma
meriti k2-krat dlje.

Zgled: vrnimo se k zgledu
L E E ./ meritve Stevila molekul v

=

_ dolo¢enem hitrostnem razredu:
%\ ) Nizm:t{y, ¢e izmerimo ni molekul v i-tem
f Y e hitrostnem razredu, povprecje Ni
MG E dolo¢imo po zgorniji zvezi
Ni=ni +- sgrt(ni) kjer smo privzeli
I da je gi=1-pi~1.
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—— Zgled: tipi¢na dolocitev napake

70 T EE R e 60F k' e o -
: LHCh 5% i Hggs n, - 12509600 pri eksperimentih v trkalnikih.
60 30, H—ZZ" - 4l -ézv wv 1 . . H H
50 15 ev, 3.1 1 — el E Ce izmerimo v v razdelku (binu) histograma

9]
=

1% Uncenainty

n procesov (p p -> doloceno koncno stanje)
dolocimo napako na pravem povprecnem
stevilu dogodkov N kar po prejsnji formuli
N=n +- sqrt(n). Tako so dolov¢ne
najverjetneje tudi napake v levih histogramih
(ki predstavljajo signal za eksoticni hadron in
Higgsov delec)

Events / 2.5 GeV

Events /(500 keV/c?)

E 9" i
= 20;
= ‘ £ 15} |
r 10
ta T

80 100 120 140 160
mglonslralned [Gev]

5.4 Aproksimacija binomske in Possonove porazdelitve z normalno

Ce je Zvelik in niti p niti q nista preblizu ni¢, je mogo&e binomsko porazdelitev zelo dobro
aproksimirati z normalno, ¢eprav je prva diskretna, druga pa zvezna! Ta priblizek utelesa
Laplaceov limitni izrek, ki ga ne bomo dokazali (dokazan je v dodatku B.3.1).

: < b) 1 /b —332/2 d
= - e —— (& X
Z—00 vV Zpq Vo J,
Z drugimi besedami, standardizirana binomska spremenljivka
N—-N
ON
je asimptotsko porazdeljena po normalni porazdelitvi,
kar v praksi dobro deluje ze pri Zp, Zg> 5.

Ker je Poissonova limita binomske porazdelitve, to velja tudi za Poissonovo porazdelitev za
dovolj velik N=Zp, v praksi deluje dovolj dobro Ze za N>5.

binomska: Z=120, p=1/6

0.1 binomska -«

PN l
e 0.08 normalna — '
I Poissonova: N=9.5
0.06 -
Z 0.4 ; —
E‘, 0.04 | - /E R N=10 -
0.02 } ] 03} ) 3.7 —=
I | 9.5 ——
0 ' : N(9.5,9.5) -
0 10 20 30 40 50 Z 02} | A
n N : \
Q‘! 0.1+ “" '. » A 1"".._‘
-2+ O ""‘""‘/{"—0 . : B 0\: Tobb—a
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Fourierove transformacije in Fourierov integral

Pri dokazu Centralnega Limitnega Teorema (CLT) bomo potrebovali Fourierove
transformacije in Fourierov integral. Ker boste to obravnavali pri matematiki sele v 2.
semestru 2. letnika, se tej na splosno zelo pomembni temi posvetimo na tem mestu.

Zaradi boljSe predstavljivosti obravnavajmo f(x), ki si jo predstavljamo kar kot obicajno
funkcijo (ne verjetnostno gostoto). Naj f(x) naj primer predstavlja odmik vala na vodi v
odvisnosti od koordinate x v nekem trenutku, odmiki pa naj bodo odvisni le od x (in ne od

y,z) — torej imamo v mislih eno dimenzionalni problem. Koordinata x naj ima enoto meter.

f(x)

f(x)

)
|

slike prikazujejo realni del f(x)

Fourierova analiza ponuja odgovor na vprasanje kateri valovni vektorji k=27/,

so zastopani pri dani funkciji f(x). Tu ima k enoto [k]=1/m. Na spodniji sliki sklepamo da je
zastopan le en valovni vektor, na zgorniji sliki pa gotovo ni zastopan le en valovni vektor,
temvec linearna kombinacija valovnih vektorjev. Kako mocno je zastopan valovni vektor k
naj oznacuje tildef(k). Na splosno niso zastopane le diskretne vrednosti valovnega
vektorja, temvec so lahko zastopane vrednosti porazdeljene zvezno. Spodaj f(x) zapisemo
kot linearno kombinacijo valovnik vektorjev k :

fo) = o [ F0) e ar

tildef(k) pravimo fuorierova transformiranja funkcije f(x) v prostor valovnih vektorjev k.
Pricakujemo da bo tildef(k) na spodniji sliki vseboval le en k, na zgornji pa vec k.
Fourierova analiza nam pove, da se Fourierovo transformiranko tildef(k) doloci na
naslednji nacin

F9 = [ g e aa

Spodaj si oglejmo najprej nekaj konkretnih primerov, potem pa jih z izpeljavami na podlagi
zgornjih dveh zvez utemeljimo vsakega posebe;j.
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Zgled (Prirejeno po [6].) Masa M zrnc granulata farmacevtske ucinkovine je
nakljucna spremenljivka, porazdeljena v skladu z verjetnostno gostoto

Sfm(m) =

smie ™™ m >0, my=40mg. (6.7)
24my

Za analizo granulata vzamemo nakljucen vzorec 30 zrnc. KolikSna je verjetnost,
da skupna masa zajetih zrnc za vec kot 10% presega svojo povprecno vrednost?

PovpreCna masa zrnca in njena varianca sta

M = JOOO mfy(m)dm =5my, of = I: (m — M°) fu(m) dm = 5m3 .

Verjetnostna gostota f, skupne mase vzorca Z, ki je prav tako naklju¢na spremenljivka, je
konvolucija tridesetih gostot oblike (6.7); to Stevilo je dovolj veliko za veljavnost centralnega
limitnega izreka, zato je gostota f, skoraj normalna, s povprecjem Z=30M =150 mO in
varianco 0,2 = 3002 = 150 m,%:

{,@)= N(%,'IS—OML,)Q.;:' 150 my)

4‘(4‘(.

F(l>4.1x\%'):P(z>1gym°\-. gN(%) d%?—F(’N(mo):;’]P/o
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Svarilni zgled

Zgled Konvolucija vendarle ne dela ¢udezZev. Izracunajmo n-kratno konvolu-
cijo Cauchyjeve porazdelitve same s sabo! Dobimo

D) (ry _1 1
[ = o0 =15
@) (a) _1 2
F200 = (FxNHo =L 2,
1 3

fP) = (f*f*f)oo) =

T+ x2’

fM(x) = (f»sf*---»sf)(x):l - (6.3)

” mTn2+x2°

n

Ni videti, da bi se funkcija f™ pribliZevala normalni porazdelitvi, temvec ostaja
zvesta svojemu rodu! Z zaporednimi konvolucijami dobivamo same Cauchyjeve
porazdelitve! Pravimo, da je Cauchyjeva porazdelitev stabilna glede na konvolu-
cijo. Vzroke za takSno obnasanje bomo spoznali v nadaljevanju. <

Katera predpostavka centralnega limitnega teorema tu ni bila upravi¢ena? Varianca te
porazdelitve je neskonéna! Konéna varianca in povprec¢na vrednost izhodiscne f(x) pa sta

eVee

neskoncni.
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Mecemo N kock in za vsak met dolocimo povprecje stevila pik za N kock: Y = ﬁ Z X; x; je stevilo pik na eni kocki

i=1 N: stevilko kock

N=1 N= N=31 N=301

Fraquancy
Frequency
Frequency 1200
2500/
6000
1000
5000 20001
800
4000
1500
600
3000
1000
2000 e
1000} 800 200
1rol 0 P 0 - -
4 rols 3 25 3 35 D as 3 1 ) ) )

31 roks ave 301 rolls



7. Statisticno sklepanje na podlagi vzorcev

Poglavja|7|do 10 so namenjena osnovam statistike. Osnovna naloga statistike je
empiri¢no dolocanje verjetnostnih porazdelitev in njihovih parametrov.

V meso in kri nam morata najprej preiti pojma populacije in vzorca. Popu-
lacija (angl. population) je koncna ali neskon¢na mnozica elementov, iz katere
zajemamo vzorce (angl. samples). S statistiCnimi metodami poskusamo iz ana-
lize vzorcev sklepati na lastnosti celotne populacije, cetudi so vzorci najveckrat
bistveno manjsi kot populacija. Ce koli¢ino, ki jo predstavlja naklju¢na spre-
menljivka X, merimo (Stejemo, ugotavljamo, belezimo) n-krat, dobimo nabor
vrednosti {x;}}" ,, obremenjenih z negotovostjo oziroma napako. Del te negoto-
vosti je nakljucne (statisticne) narave: vrednosti x; so raztresene, ker v vzorec v
splosnem vsaki¢ zajamemo druge elemente. Ta del negotovosti zmanjSamo, Ce
povecamo vzorec. Drugi del napake je sistematiCnega izvora in je ne moremo
odpraviti s poveCevanjem vzorca.

Zgled 1z populacije N = 2-10° Slovencev zajamemo vzorec n = 1000 ljudi
in izmerimo njihovo telesno viSino. Iz izmerjenih n vrednosti bi radi dolocili
povprecno visSino in njeno razprsenost ter podali neke vrste izjavo, kaj ti koli¢ini
pomenita za celotno populacijo. Ce izmerimo vi§ino 1000 naklju¢no izbranih
ljudi danes in viSino 1000 znova naklju¢no izbranih ljudi jutri, bomo v sploSnem
dobili razlicni povprecji viSin in razlicni raztresenosti (statistiCcna negotovost).
Ce ves ¢as uporabljamo pokvarjeno napravo, ki kaze 1 cm premalo, bomo merili
napacne viSine ne glede na velikost vzorca in ne glede na to, ali vzorec zajemamo
veckrat zapored (sistematska negotovost). <

Populacija je lahko konc¢na ali neskon¢na (N = o). Z mnogimi meti kovanca
na primer pridemo do ocene za verjetnost, da pade cifra (dobili bomo pribli-
zno 1/2, glej razdelek 1.3), vendar celotno populacijo v tem primeru sestavlja
mnozica vseh moznih metov kovanca, Ki je neskonc¢na.

Primer neskon¢ne populacije je tudi N=inf metov kocke, da bi dolocili verjetnostno porazdelitev po Stevilu
pik za to kocko. Ali pa N=inf eksperimentov, da bi dolocili verjetnostno porazdelitev lege elektrona v
vodikovem atomu v okviru kvantne mehanike.

Primer konéne populacije je na primer populacija N=2*10° Slovencev. Kasneje bomo
napravili zgled za populacijo z N=5 elementi x-;, s={2,3,6,8,11}

Povzetek: vrednosti nakljucne
spremenljivke X

N elementov, x.; n , zanimanas populacijsko povprecje u
populacijska varianca ¢?
verjetnostna porazdelitev populacije fy(x)=?

n elementov, x.; ,  dolocimo lahko "le" vzorcno povprecje x
vzZOorcno varianco  sy?

V tem poglavju imamo v mislih neodvisne nakljucne spremenljivke X;, kar bomo uporabili
pri izpeljavah, razen kadar bomo eksplicitno poudarili, da spremenljivke niso neodvisne.



7.1 Statistike in cenilke

NasSe izhodiSce je nakljucni vzorec x = {x1,Xx2,...,Xn} iz populacije, ki jo ka-
rakterizira neznan parameter 6. Ta parameter bi radi ocenili iz vzorca. Funkcijo

cenilka za parameter

populacije theta 0=T(X)= T(Xy1,X2,...,Xn) (7.1)

nakljucnih spremenljivk X; z vrednostmi Xx;, iz katerih dobimo oceno za 60, ime-
nujemo cenilka (angl. estimator) parametra 6. Dogovorimo se, da uporabljamo
isto oznako za cenilko kot predpis za spremenljivke, na primer 0 = (X; + X»)/2,
kakor tudi za njeno konkretno vrednost ali oceno (angl. estimate), na primer
0 = (x1 + x2)/2. Funkcijam, kot je {7.1_), pravimo vzorcne statistike (angl. sam-
ple statistic), verjetnostnim porazdelitvam teh statistik pa vzorcne porazdelitve
(angl. sample distributions).

Funkcijska oblika cenilke seveda ni poljubna: cenilko poskusamo zasnovati predvsem

tako, da spostuje dve naceli: nepristranskost (unbiased) in doslednost (consistent), ki sta
opredeljeni v nadaljevanju:

* Zelimo, da je cenilka nepristranska (unbiased). To

pomeni, da je za poljubno velikost vzorca n, ne le neskonc¢no, pricakovana vred-
nost € enaka iskanemu parametru,

E[0]=6, Vn. (7.3)

Ce je, nasprotno, R .
E[0] =60 +b(0), (7.4)

kjer je b # 0, pravimo, da je cenilka pristranska (angl. biased). Pri smiselnih
cenilkah pricakujemo b(0) <« 0 in, denimo, b(0) ~ 1/n, ko gre n — .

> E[*] pomeni pricakovano vrednost pri povprecenju preko vseh vzorcev velikosti n iz
populacije z N elementi: Stevilo vzorcev oznacimo z N, (Sample): to stevilo
obicajno ni enako Stevilu elementov v populaciji (N) ali Stevilu elementov v vzorcu(n).

«  Zelimo tudi, da je cenilka dosledna (consistent). To za nepristranske cenilke v praksi

pomeni, da ocena 6 z vecanjem Stevila meritev n konvergira k pravi vrednosti 8 in
gre varianca cenilke za beskoncno velike vzorce proti nic:

lim var[0,,] = 0.

Nn—o

Tu var[*] pomeni varianco izracunano preko vseh N,,..., Vzorcev velikosti n iz
populacije z N elementi .



7.1.1 Vzor¢no povprecje in vzorcna varianca

Parametra, ki nas slej ko prej zanimata pri verjetnostni porazdelitvi sleherne naklju¢ne
spremenljivke, sta povprecje in varianca. Vrednosti obeh teh koli¢in za poljuben vzorec
se v splosnem razlikujeta od njunih vrednosti za populacijo.

Zato najprej uvedemo oznake da bomo oboje razlikovali

U, 02 < populacija,

X (alix), s (alis2) <« vzorec,
E[*]: pri¢akovana vrednost

* Mislimo si, da iz populacije z N elementi zajamemo vzorec n vrednosti, in sicer tako, da se lahko
vsaka vrednost ponovi veckrat. V primeru s telesnimi visSinami ljudi to pomeni, da naklju¢no
izberemo osebo, ji izmerimo visino — to je vrednost spremenljivke X — in jo “vrnemo” v populacijo,
od koder jo lahko po naklju¢ju znova “izberemo” v isti vzorec. Pravimo, da vzorec nabiramo z
nadomescanjem oziroma vracanjem v populacijo; tako je v danem vzorcu lahko veckrat ista oseba
oziroma isti element. Tedaj lahko iz koncne populacije z N elementi naberemo tudi vzorce z
n=neskocno elementi (saj lahko vzorec na primer naberemo tudi neskoncno enakih elementov).
Prednost takega nabiranja vzorcev je, da so posamezni elementi vzorca lahko tedaj neodvisni od
drugih (saj ni potrebno paziti da se isti element ne ponovi)

* Pri nabiranju vzorcev brez vracanja v populacijo (brez nadomescanja) pa elementi niso neodvisni saj
moramo paziti da drugi element ne more biti enak prvemu. Takega primera nabiranja ne bomo
obravnavali.

Sicer pa pricakujemo, da za N > n ni bistvene razlike ali elemente vzorca vracamo v
populacijo ali ne

* Pokazali bomo da je nepristranska in dosledna cenilka za populacijsko povprecje

(to velja tudi za spremenljivke ki niso neodvisne) %= 1 i
n =

* Pokazali bomo, da je nepristranska in dosledna cenilka
za populacijsko varianco za primer neodvisnih spremenljivk Xi (torej ta velja za
vzorce nabrane z vracanjem v populacijo, ne pa za vzorce brez vracanja v populacijo)

1 & 2
5 _
Sy = —— Xi—-X)"
-t S

* Cenilka za katero bi naivno pricakovali da bo cenilka za populacijsko varianco pa ni

nepristranska, zato slednja ni optimalna cenilka (je pa tildesX prakticno enaka sX za
n

velik n, zato je v tem primeru pogosto uporabljena) ~ 1 _
5% = EZ(X‘ - X)?
i=1



Preden dokaZzemo doslednost in nepristranskost cenilk za populacijsko povprecje in varianco,
napravimo konkreten zgled za populacijo z N=5 elementi, kjer bomo lahko dejansko
izvrednotili pricakovane vrednosti in variance po vseh vzorcih, kar je potrebno za dokaz
doslednosti in nepristranskosti.

(gled (str 160, razsirjen): populacija eksoticnega plazilca na nekem otoku je sestavljena iz\
N=5 plazilcey, in ti imajo visine x,={2,3,6,8,11} (merjetno v decimetrih).

* Doloci populacijsko povprecje in varianco za nakljucno spremenljivko visine
*  Preuci primere za vzorce s stevili plazilcev n=2,3,4.

Obravnavaj primer ko pri nabiranju vzorca plazilca vsakic sproti plazilca vrnes v
populacijo, tako je v danem vzorcu lahko veckrat isti plazilec, npr v vzorcu [11,11] zn=2je
dvakrat najvecji plazilec. Tako nabrani vzorci imajo neodvisne elemente.

Doloci statistike teh cenilk in razisci ali so nepristranske in dosledne.

S tem preucis kaj manjsi vzorci povedo o populaciji in dobis informacijo o verjetnostni
porazdelitvi visine v populaciji: verjetnost je enaka 1/5 za vseh pet visin x={2,3,6,8,11}

Zgled je obravnavan na prosojnicah.

V knjigi je obravnavan tudi primer ko pri nabiranju vzorcev plaziclev ne vracas v populacijo,
torej vzorec (11,11) ni zastopan. Elementi v tako nabranem vzorci niso neodvisni in nekateri
koraki pri izpeljavi cenilke za vzorcno varianco niso vec upraviceni, zato mora biti cenilka za
vzorce brez vracanja drugacna kot za vzorce z vracanjem; cenilka za povprecje pa je ista za
\\@rce z vracanjem. (glej knjigo) /

=X =

1
* Cenilka za populacijsko povprecje 171

Pri dokazu za nepristranskost in doslednost E[*] in var[*] dolo¢imo po vseh Nvz vzorcih.

Cenilka (7.5) je ocitno nepristranska, saj je v skladu z zahtevo (7.3) njena prica-
kovana vrednost enaka populacijskemu povpreéiju,

— 1 1
E[X] = (E[X1]+E[Xe] + - - + E[Xn]) = —mp=p. 76 L onulacii

zato je E[X1] po vseh vzorcih enaka populacijski vrednosti mu, kar smo uporabili zgoraj.

Poleg tega je tudi dosledna, saj gre njena varianca proti nic, ko gre n — o :
2
Var[)_(]=Var[l(X1+X2+---+Xn)] =nizvar[X]= 2= . (Z7)
n n n
To velja le za vzorce kjer so Xi neodvisni, kar je nasa predpostavka za primer nabiranja
vzorcev z vraanjem v populacijo.



* Dolocitev cenilk za populacijsko varianco

1 < 1 - 2
~2 , ) 2 2 _ . _ X
Fe=-> (Xi—X) Sk = (Xi - X)

n “ n-1:

i=1 i=1
videli bomo da je to pristranska cenilka koncna (nepristranska) cenilka
za populacijsko varianco za populacijsko varianco
~2

Sx je gotovo nekaksna cenilka za 02, toda vprasanje je, ali je tudi nepristran-
ska. Ce bi bila nepristranska, bi morala biti njena pricakovana vrednost enaka
populacijski varianci,

E[s2] £ o2.
Ali to drzi? Obravnavajmo le prvi ¢len vsote in ga malce preoblikujmo,
— 1

Xl_X = XI_E(X1+X2++XW')
1
= [ -1X1 - X2 — - - — Xy]
_ %[(n—l)(Xl—u)—(Xz—H)—"'—(Xn—“)]’

nato pa ga kvadrirajmo,

(X,-X)2 =+ [ - 12(X1 - )+ (X2 — p)* + - - - + (X — p)” + meSani leni]|
1 - n2 1 u 2 u n u .

Spremenljivke X; in X; (i # j) so med seboj neodvisne, torej E[ (X;—u)(X;—u)] =

0, zato meSani Cleni v pricakovani vrednosti odpadejo:

E[( - %)%] = o {n = DB - 1)) + EL0G = 1)7] + - + E[ (X - )]}

n-1
—— 02,

1
= —2{(n—1)202+02+ xE +02} =
n . ~ Z n
(n-1)o0?

V vsoti (7.8) imamo n taks$nih prispevkov, pred vsoto pa je $e faktor 1/n, torej

N\ —
E[s%] = nTl o?. (7.9)

Potemtakem je ,s\)é( pristranska cenilka za populacijsko varianco: nepristransko

cenilko dobimo Sele, ¢e (7.8) na desni pomnozimo z n/(n - 1),

1 < v
koncna (nepristranska) cenilka sg( = —— > (X; - X)2 .
za populacijsko varianco n-1 i=1

(7.10)

Ta korak je upravicen le za vzorce kjer so Xi neodvisni, torej za vzorce nabrane
z vracanjem v populacijo. Za vzorce, ki temu ne zadoscajo, moramo uporabiti
drugacno cenilko.



(estimator for variance of sample mean)

Zelimo zapisati se cenilko za varianco vzorénega povpredja. To je tista varianca, ki se z
vecanjem vzorca manjsa, in je njena prava vrednost (ko sestejemo po vseh vzorcih) enaka
. . N Ve 0'2
Zelimo cenilko za to pravo vrednost var [Hn] — var [X] — 9
n

A ker prave vrednosti populacijske variance sigma”2 ne vemo, tvorimo cenilko za zgornjo
koli¢ino tako, da sigma”2 nadomestimo z njeno cenilko s,?, torej cenilko za pop. varianco
mn

2
S 1 _
cenilka za varianco g2 — X _ E (Xz — X)2
. X —1
vzorcnega povprecja n n(n ) i1

od tod pa s korenjenjem Se negotovost ali “napako” povprecja (error of the mean).

Iz tega rezultata sledi pomemben nauk, ki ga tako reko¢ ne moremo dovolj po-
udariti. Vsak vzorec, ki ga izberemo iz populacije, ima v sploSnem drugacno
vzorcno povprecje in drugacno varianco. Raztresenost izmerkov bo vselej pribli-
Zno +s, (senceni obmocji na sliki 7.1), vendar to ne pomeni, da bo tudi povprecje
raztreseno za +s, — raztreseno bo le za +s, //n ! Zato radi piSemo kar

— o

=U* — li 7.11
X =U = ali (7.11)

= T X
m=xx 20
kar pomeni skoraj isto. Z izrazom na levi imamo v mislih, da je vzorcno povpre-
¢je pribliZno enako pravemu, populacijskemu, njegova negotovost pa je o //n.
Z zapisom na desni izrazamo, da je X dober priblizek za pu, zmotili smo se ne-
mara za +5y/+/n. Ne glede na njihovo interpretacijo iz teh formul spoznamo
tudi, kako velik vzorec potrebujemo za Zeleno natancnost: Ce na primer Zelimo
dolo¢iti 4 na 0.01 o natan¢no, potrebujemo n = 10 izmerkov.

V poglavju o intervalih zaupanja bomo zgornjo grobo formulacijo "zmotili smo se nemara za .."
kvantitativno opredelili na z izjavo ki se nanasa na verjetnosti.

ﬁimer vzorcev z razlicnima povprecCjema X in skoraj enakima variancama 5,2(\
prikazuje slika|7.1] Glej tudi nalogo|7.6.1.

X + Sy

Slika 7.1 — Vzorca velikosti n = 36 z razlicnima povprecjema in skoraj enakima efek-
tivnima odmikoma x = —-0.052, s, = 0.313 (levo) in X = 0.092, s, = 0.322 (desno),
(ajeta iz populacije s povprec¢jem u = 0 in efektivnim odmikom o = 0.288. Polna kroicy

oznacujeta vzorcni povprecji X in njuni negotovosti sy //n.




* raztresenost (varianca) vzorcne variance

Vprasajmo se Se, kolikina je raztresenost vzoréne variance s% okrog popula-
cijske variance o2 ob predpostavki, da je porazdelitev posameznih X; normalna.
Pri velikih n, kjer je razlika med formulama (7.8) in (7.10) zanemarljiva, je ta

“varianca variance” enaka

E[(S;2<—02)2] =E[((X1_Y)2+(XZ_Y)ZJFWHX"_)_()Z —02>2] .

n
oy dobimeo pri kv%drir% Cy

® EK(XL'Y\L']—’: 50& 2e  mormafio PorO/}dL‘U"’W) M“’QJLUA‘ E&u‘:u

o E(Ux—%) (x; %) ) 1. =g} (x XY = 1-a% (T'L M(MM](,&uN
Li& U.r X qx dySme
L A & M€ 0 Ul

o wn e ~1gx e 204'
2 _ 52\ ] & L (3p04 42" =D) pa_5p204), g4 _ 207
E[(SX—O') b 3no™ + 2 > -2n°o0* )+ 0" = -
Ugotovili smo

kar v primeru n > 1 pomeni

Sx=0(1i\/%—n) oziroma 0'=Sx(li-%).

Ce Zelimo dolo¢iti o na 1% natan¢no, potrebujemo torej n = 5000 izmerkov.

Primerjava te priblizne ocene 2 sigma”4/n za varianco vzorcne variance z dejansko varianco
vzorcne variance za zgled z N=5 plazilci je na prosojnicah. Dejanska varianca pada z n, ni pa
povsem enaka 2 sigma”4/n, saj tudi priblizki niso upraviceni: n=2,3,4 ni velik in porazdelitev
Xi za populacijo ni normalna.



- 7.2.1 vzorcna porazdelitev vsot in razlik
- 7.2.2 vzoréna porazdelitev varianc §2

Denimo, da imamo opravka z dvema neskoncnima populacijama s povprecjema pl in p2
ter variancama o1 in 02. Iz prve populacije izberemo vzorec velikosti n1, iz druge pa
neodvisno od prve Se vzorec velikosti n2 ter izracunamo vzorcni povprecji X1 in X2.
Zanima nas porazdelitev vsote vzorcnih povprecij X1+X2 za velika vzorca nl in n2.

_ % _ 2
za velik n1 je porazdelitev povprecja X1 normalna: =, ()fl) = N(p,01/m)
za velik n2 je porazdelitev povprecja X2 normalna: fx,(X2) = N(uz2,05/n2)

Kaj vemo o vsoti ali razliki X1+X2, kjer sta X1 in X2 dve neodvisni spremenljivki?
E[Yl iyz] = E[Xl] iE[Yz] = M1 £ U
ot 2

var[X; + X»| = var[X;] + var[X;] = o % _

Poleg tega vemo, da je vsota X1+X2 dveh neodvisnih spremenljivk podana s konvolucijo
obeh porazdelitev. Konvolucija dveh normalnih porazdelitev pa je zopet normalna (tega
ne bomo dokazali). Zato je vsota porazdeljena

Foia5,(X) = (fx, * f5,)(X) = N(m1 + p2, of/na + 03 /ns)
analogno pa velja za razliko S5.-x%, (X) = N(p1 — pa2, J%/nl + U%/n2)

Reskalirana nakljucna spremenliivka Z pa ie porazdeljena po standardizirani normalni
porazdelitvi N(0,1). 7= Xz Xz)z_ (“1f Hz)

of  0f

ny np

Zgled Zivljenjska doba vezja tipa A je porazdeljena normalno s povpredjem
ua = 7.0let in standardno deviacijo oa = 1.11leta. Vezja tipa B imajo povprecno
Zivljenjsko dobo ug = 5.8leta s standardno deviacijo o = 0.9leta. Testiramo
na = 40 vezij tipa A in ng = 40 vezij tipa B. KolikSna je verjetnost, da bodo
vezja A delovala leto dlje kot vezja B?

Po formulah (7.13) in (7.14) dobimo
— o of
Ua — Mg = 1.2leta, \var[Xa — Xg] = 4| =2 + =2 = 0.225]eta.
na ny

Zanima nas verjetnost, da je razlika pricakovanih Zivljenjskih casov vecja od
enega leta, Xao — X > 1leto. Ustrezna standardizirana spremenljivka (7.15) za
mejno vrednost Xa — Xz = 1leto je

(Xa—Xp) — (Ma—pp) _1-1.2
\/Var[)_(A—YB] 0.225

in je porazdeljena normalno. Iskana verjetnost je tedaj

P(Xa — Xp > 1leto) = P(Z > —0.89) = 3 + P(0 < Z < 0.89) ~ 81.3%,

Z = ~ —0.89

kjer smo si pomagali s tabelo D.1. <




Vzorcne porazdelitve varianc dobimo, ko zajamemo iz populacije vse mozne nakljucne
vzorce velikosti n in izraunamo varianco za vsak vzorec. Iz variance populacije, 62, in
vzoréne variance §Z (v pristranski obliki) tvorimo nakljuéno spremenljivko

~2 n v ) 2
o def Tl Sy (XZ—X)
X' = =X =)
o2 , o2
1=1
chi*2 je nakljucna spremenljivka, ki zavzame razli¢éne vrednosti za razli¢ne vzorce.
Imenujmo jo Y=x? , torej nakljuéna spremenljivka Y zavzame razli¢ne vrednosti y.

Velja izrek, ki ga bomo dokazali/nakazali: Ce nakljuéne vzorce velikosti n zajemamo iz
normalno porazdeljene populacije, je porazdelitev f,(y) naklju;ne spremenljivke Y=y?>

po vrednosti y podana s (chi square) z v=n-1
prostostnimi stopnjami, torej
Y:)(2 fy (y) = fXZ (y; V=n-— 1) v=Stevilo
prostostnih stopenj
2(y;v) = e/ >0
fX (y7 ) 2,//2 F(V/Q)y ’ y
0.6
A/~ _ PDF[ChiSquareDistribution[nu], y]
N L l— = 1
e 0417
>0 0.2
0 12

Lastnosti pomembne porazdelitve chi2:

ﬂﬂ=éé&%ﬂy@:v

varlY] = / T eln) (g - 9) dy =20

mod[Y] = max[f,2(y;v)] = max(0,v — 2)

za velik nu: porazdelitev postane podobna normalni porazdelitvi



Preverimo ali razumemo njeno povprecje te porazdelitve: v ta namen dolo¢imo pricakovano
vrednost chi2 po vseh vzorcih

nss no .. n (n—1)o?
E[Y] :E[J—gf] = EE[sgf] =5 —=n—-l=v

Kjer smo uporabili pricakovano prednost variance v pristranski obliki. Ugotovimo da je
pricakovana vrednost Y res enaka pricakovani vrednosti chi2 porazdelitve: to je nu=n-1 za

vzorec velikosti n.

Zgled: V veliki populaciji (N=10 000) lisic je teza porazdeljena priblizno normalno z
povprecjem mu=10 kg in standardnim odklonom sigma=2 kg. Iz nje zajemaj vzorce za
razlicnimi stevili elementov n=3,8,100 in razsci statistike oziroma porazdelitve vzorcnih
varianc. Za n=3 in 8 obravnavaj N,,=100 vzorcev, za n=100 pa N,,=1000 vzorcev. Zgled je
obravnavan na prosojnicah.

V grobem je raztresenost vsakega elementa v vzorcu velikostnega reda sig?,
vsak clen v vsoti v grobem prispeva 1, zato je chi2 velikostnega reda n oziroma bolj
natancno nu=n-1 (kar pa pokaze sele natancen racun zgoraj)
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@B Y =X =Z[ ﬁét L fy(y) = fx2(y;v=n—p)

=1 ¢

prilagajanje funkcije £ = g(t; 9) s p parametri 0 = (91, .y Hp) na podatke (tiaxi - Ui) ,1=1,.,n



4> \Jﬁc\xd&ﬁ"‘ (OU;X \{ e é_Q_(LlL FOW«M‘?M ﬁy V"’Q

UV o Mmove Mo,kﬂrx«bwo -\{)I‘. %LE -’G:L lul(r Mo eluo

Porwtu,lamo,, Moo pe Yeu | me_ pommb'fw = Z%i}
tore; morue & wed movo &rrww%‘v‘cp Y=r'= €37,
lcer So X4 meodve Sau —> %‘L M odu i Sau —>

A s i
{i(.%)d% \*}M\ 417_ 6- 7/(1‘1*%1*,.*?‘M§ d*%q"”.d:zm
—_——

dr 1 g
Pruv(wo e CGlimdyi T ordamett o mdﬂ\m\whgzt\
4R, A* ngoym ot & Mo d&; fmD &8 dY
F o potwer sbere oY
Yxremmoe Vi 2 =—T7‘ Aax lul‘{nal;y\wo (Mu?uw%rwb)
po =1 kofih, 1of MO Fomima L poreedetitte po r=r

Yy § = (%“‘"dtmw N

-r /Z 3’2

1L
ey o= C4ql,. = A,
AT Hmlrt‘m
LT

brex "J'Tdﬁ‘q“w - ‘E‘r/L:Lﬂ\f/

ch et
£y ‘a) \r‘“ % W) £7(( =)



2)

zelimo n [X _ X’]Z . o
=y’ = : = fr2(y;v=n—1
izpeljati (2) Y =x"= Z T — fY (y) fx (y7 )
1=1
pokazimo na primeru: ¢ = 1, n=3 X — %(Xl + X2 + XB) vzorcno povprecje

3

2
Yy =Y [Xi— X=X, - XP+[Xo — X2+ [X; - XP =22+ 23 =) 22
=1

=1

originalen prostor X; :3D

prostor X-X: 2D Zl = %(Xl - XZ)
o = %(Xl + X9 — 2X3)
Z3 = %(Xl +X2 +X3)

o Y=x=Y BT () = fe(yv=n—p)

nakazimo na primeru: gi = 1, n=3, p=2: x = g(t;01,0:) =01 + 6, t*

meritve: (tlat2,t3) = (1,2,3)

(.’171,:32,:33)
6 x1 3 x2 2 x3 11 x1 X2
{th1-> + - , th2 - - -2y
7 7 7 98 49
n=3 V:n-p:]_
N2 § : 212 __ 72 _ E : 2

13 x3
98 }




Ob (7.11) smo zapisali: “Zmotili smo se nemara za +sy//7.” Kaj natancno to
pomeni? Polna kroZca na sliki 7.1} ki oznacujeta vzor¢ni povprecji, sta razmak-
njena za veé, kot znaSa njuna negotovost, torej za vec kot +s,//n ! OCitno
potrebujemo kvantitativno merilo za to, “koliko se utegnemo zmotiti”. Najdemo
ga v pripomocku, ki mu pravimo interval zaupanja (angl. confidence interval).

Bl

1
0 =Sx (1 x ﬁ) Zelimo dolociti kvantitativno merilo za koliko smo se utegnili zmotiti pri dolocitvi
populacijske variance na podlagi danega vzorca.

Zacnimo s populacijsko varianco, saj je ta neposredno povezana z porazdelitvijo chi2,
ki smo jo pravkar spoznali.

2
fx2 (X V= 8)
0.12 S ‘
‘ v=_

l—a=cCL
0.08 |
0.04 | /04/2 0)2

0013 Ep] 10 5N 20 X2

2
X¢21/2 Xl—a/2

Zanima nas interval, na katerem bo vzoréni x? zastopan z verjetnostjo
1-a Ce meritev vzorca velikokrat ponovimo. Pri tem izvzamemo delezZ

a . . s 2 (04 . Vs 2
> najmanjsih x* in delez > najvecjih x*.
Verjetnosti 1- « pravimo stopnja zaupanja (confidence level = CL)

|z podrazdelka 7.2.2 7e vemo, da ima spremenljivka x2=n32 /o2 po- razdelitevx2zv=n-1
prostostnimi stopnjami

~2
2 nsx 2
Xaj2 < 52 S X1—a/2

Od tod dobimo interval zaupanja, na katerem se populacijska varianca nahaja z vnaprej
predpisano verjetnostjo 1- @ (ki ji pravimo stopnja zaupanja oz confidence level = CL)

52 32 . . v p
V1 Sy <5< VI Sk interval zaupanja za populacijski

5 5 standardni odklon sigma
Xl—a/Q \/ Xa/2 pri stopnji zaupanja 1 — a =CL

a =stopnja tveganja, 1- « = stopnja zaupanja




Zgled Vzemimo spet zgled z vzorcem n=8 lisic in dolocimo interval zaupanja za varianco pri
stopnji zaupanja 1-alpha=0.8. Pri prejsnjem zgledu smo ze dolocili da bodo vzorcne
variance §2 oz pripadajoc chi2 na intervalu

32 . . . .
2 < nsx < 2 interval zaupanja za vzorcno varianco pri
X0.1 > o2 — X0.9 stopnji zaupanja (confidence level) 1-alpha=0.8

Nas pa iz izracunanega
§2 za dan vzorec bolj zanima kaksen je interval zaupanja za populacijsko varianco o2

‘ﬁ
[V}
><l\.')
‘ﬁ
VAR
XI\D

<o <
9 X

interval zaupanja za populacijsko varianco sig”2 pri
stopnji zaupanja (confidence level) 1-alpha=0.8

N
on

X 1

Primer za vzorce z n=8 lisicami je na prosojnicah. Za vsak od 100 vzorcev dolocimo interval
zaupanja za sigma, in za vsak vzorec potem preverimo ali je pravi populacijski sigma res na
tem intervalu. Izkaze se, da to drzi v priblizno delezu 1-alpha, kot bi pricakovali.

Zgled: Pricakujemo da pri vecjih vzorcih dobimo manjse obmocje intervala zaupanja,
torej da je populacijska varianca bolj natancno dolocena. To preverimo za vzorce n=100
lisic na prosojnicah.

Zgled: 7.6.4 Doziranje aktivne u¢inkovine

+
V tovarni zdravil v tablete dozirajo aktivno farmacevtsko ucinkovino, vendar je

njena masa v tabletah raztresena okrog znane povprecne vrednosti: v vzorcu
n = 20 tablet ugotovimo varianco 32 = 0.12mg? (5, = 0.346mg). Doloci 80%
interval zaupanja za populacijsko standardno deviacijo mase ucinkovine (10%
verjetnost, da je premajhna in 10 % verjetnost, da je prevelika)!

X Interval zaupanja za populacijsko varianco dolo¢imo po formuli (7.20). 1z tabele D.3|
pri v = n — 1 = 19 razberemo kriti¢ni vrednosti porazdelitve x2, ki sta x3;, = 11.7 in
X390 = 27.2, torej lahko o omejimo z

=2 12 ~ 9
VN3%/X6.90 < O < \NSx/X0.10

oziroma 0.297mg < o < 0.453mg. Bodi pozoren na to, da s, ne leZi na sredini tega
intervala, kot vemo Ze iz podrazdelka|7.3.2 (slika 7.2).
Z verjetnostjo 0.8 je populacijski standardni odklon sigma za ucinkovino
na intervalu, s cimer imamo v mislih: pri mnogkratni meritvi vzorcev bo v
80% vzorcev dejanska populacijska varianca znotraj vzorcnega intervala
zaupanja. Pri tem se seveda populacijska varianca od vzorca do vzorca ne
spreminja, interval zaupanja pa se od vzorca do vzorca spreminja.




Naj bosta ur in a% povprecje in varianca vzorcne porazdelitve neke statistike T,
naprimer T = X ali T = 3; X;. Ce je vzor¢na statistika pribliZno normalna — kar
velja za mnoge statistike, Ce je velikost vzorca vsaj nekaj 10 — pricakujemo, da
bo vrednost T lezala na intervalu [ur — o7, ur + o] v pribliZno 68.3 % primerov,
na [ur — 20r,ur + 2or] v priblizno 95.5% primerov, na [ur — 3or,ur + 30r] v
priblizno 99.7 % primerov in tako dalje (glej (3.13)). Zato recemo: s stopnjo za-
upanja (angl. confidence level, CL) 68.3 % zaupamo (verjamemo, predvidevamo),
da bomo T naSsli na intervalu [ur — o, yr + or] in analogno za ostale. TakSnemu
intervalu pravimo interval zaupanja (angl. confidence interval).

V tem odstavku govorimo o vzorcnem povprecju, v naslednjem pa zelimo nasloviti populacijsko povprecje.



Vzemimo vzorec {x;};-, oziroma n neodvisnih izmerkov, ki smo jim Ze do-
lo¢ili vzorcno povpredje X in varianco s2 v nepristranski obliki (7.10}. Da bi ugo-
tovili, kako dobro X ocenjuje pravo populacijsko povprecje u, najprej tvorimo
statistiko

_u\/ﬁ.  frt,v=n-—1) (7.18)
SX

nakljucna spremenljivka: T T
njena vrednost: t

Ce so X; porazdeljeni normalno po N(u, o?), je statistika T porazdeljena po
Studentovi porazdelitvi ¢3.22) z v = n — 1 prostostnimi stopnjami. /- (¢; v=n—1)

Studentovo porazdelitev navedemo zopet brez dokaza, za velik nu je zelo podobna N(0,1):

—(v+1)/2
fr(t;v) =‘——J;—r‘(1+zi)

04l
VN
N 031
< 02}

Integral ver- |

jetnostne gostote fr(¢;v) doloCa meji intervala [—tx,tx], na katerem z neko
vnaprej izbrano verjetnostjo 1 — & (stopnjo zaupanja) pricakujemo vrednosti t
oziroma ustrezno povprecje u, medtem ko z verjetnostjo (stopnjo tveganja) «
pricakujemo, da bo vrednost t izven tega intervala: glej sliko 7.4,

0-5 I I l
—~ 04}l v=10 o
3-;/ 02 /2 /2
0 ) ! . ! .\
-3 -2\, -1 0 I A2 3

Slika 7.4 — Ponazoritev zveze med stopnjo zaupanja 1 — « in mejnima vrednostma =+t
za dolocitev intervala zaupanja [—t«, t«] za vzorcno povprecje. (Zgled z v = 10.)

Tedaj velja
%
—ty <

—H m<t,
Sx

oziroma interval zaupanja za

b e [f Ly % + L*Sx] populacijsko povprecje mu
N N pri dani stopnji zaupanja 1-alpha

kar preberemo kot: “Pravo povprecje velike populacije, iz katere smo vzeli vzo-

rec {x;}i*,, ocenimo z u = X, povprecje u pa je z verjetnostjo 1 — & na intervalu




zaupanja Q7.19).” Za velike vzorce (n = 30) je Studentova porazdelitev prakticno
enaka standardizirani normalni in ustrezne meje t« so kar meje v Gaussovi Kri-
vulji (tabela|7.1). Z veCanjem stopnje zaupanja se t, povecuje, kar je razumljivo:
Sirsi interval pomeni manj “tveganja”.

/Zgled Pri enajstkratni (n = 11) meritvi mase nekega delca smo dobili ps

precno vrednost 71 = 4.180 GeV/c? in nepristransko oceno za standardno de-
viacijo s, = 0.060GeV/c?. Dolo¢imo interval zaupanja, na katerem s stopnjo
zaupanja 1 — & = 0.90 pricakujemo dejansko maso delca p.

Ce so izmerki porazdeljeni normalno, je spremenljivka T = (M — U) /M Sym
porazdeljena po Studentovi porazdelitvi z v = n — 1 = 10 prostostnimi stop-

njami. Mejna vrednost t« je tista pod katero se t realizira z 0.95 odstotno verjetnostjo
(5% spodaj, 5% zgoraj), torej

t«=F1(0.95,nu=10)=InverseCDF[StudentTDistribution[10], 0.95]=1.812.

Iskani interval zaupanja za populacijsko povprecje U je torej

[m 7 , M+ Jn = [4.147,4.213] GeV/c*.

Z verjetnostjo CL=0.9 je populacijsko povprecje mase delca na zgornjem intervalu
s cimer imamo v mislih: pri mngokratni meritvi vzorcev bo v 90% vzorcev dejanska masa
delca znotraj vzorcnega intervala zaupanja. Pri tem je seveda dejanska masa od vzorca

\i)vzorca nespremenjena, interval zaupanja pa se od vzorca do vzorca spreminja. /
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Velja: MLE cenilke 8 so nepristranske v limiti velikih n, drugace pa so v splosnem
pristranske (brez dokaza, a bomo to osvetlili v 8.3)

lim wvarl6,]
n—oo i

D>

E

@
B[

D>

=0y zan — o0

= 0y + O(1/n) za velik n

=0

E[..] je pricakovana
vrednost po vseh vzorcih

pokazali bomo da so dosledne

/Zgled Tocke na sliki ponazarjajo izmerke
{x1,x2, ...,
za katere domnevamo, da izvirajo iz populacije, porazdeljene po Cauchyjevi porazdelitvi
Sirino s =0.0001 in neznanim povprecjem W. Nal: Izracunajmo na podlagi tega vzorca

oceno za povprecje [l po metodi maksimalgega verjetja!

L

\0.998

x6}={0.9995, 0.9996, 0.9999, 1, 1.001, 1.0013}

0.999

1.000

1.001

1.002

1.003

~

/




@aritem funkcije verjetja za vzorec velikosti n je \

1 s < 1 s
Lixlp) =log|[] = = > log (— ) ;
LTS24+ (X — p)? X T $2 + (x; — 4)?

enacba verjetja pa

ol - U
= 0.
6;,10< Z 52+(x — )2
To lahko zapiSemo v obliki p(u) = 0, kjer je p polinom stopnje 2n — 1. Enacba
verjetja ima torej v sploSnem 2n — 1 reSitev in nekatere od njih ustrezajo maksi-
mumom funkcije £. Optimalna vrednost i ustreza globalnemu maksimumu, ki
ga poiScemo numericno in je obicajno-blizu vzorcne mediane. V naSem primeru

imamo Stiri lokalne maksimume in globalnega pri i ~ 0.999914. <

fi = 0.999914

40

30

LZ]k)

.20

'
'
'
'
1
1
1
1
1
1
'
X Jl ° o o
L - ‘ l
0.998 0.999 1.000 1.001 1.002

ﬂgled Denimo, da z razli¢nimi merskimi napravami (z razli¢cnimi natan¢nostmi
oziroma negotovostmi o;) merimo isto koli¢ino. Izmerki {x1,x2,...,Xn} = X S0
torej raztreseni okrog prave vrednosti yu. Predpostavimo, da so odstopanja od
povprecja porazdeljena normalno. Verjetnost, da je ob vrednosti parametra u
izmerek x; na intervalu [x;, x; + dx], je tedaj

1 i— 2
Sx(xi;pu)dx = N T p( %) dx .

Ustrezna funkcija verjetja je

L | (%i — )2
L(x|u) = | | fx(xi;p) = exp (—7) ’
1—[ X ﬂ\/ﬁ : 2

i=1 i

njen logaritem pa

1 aoes
€ =logL(x|u) = 5 > M Z log 0; + konst. (8.6)
i=1 i i=1
Z reSitvijo enacbe verjetja
n
d¥| _ Z Xi 2[1 -0
du i 0y
5 utez (wight w;) za i-ti izmerek je
dobimo oceno U za parameter u .
obratno sorazmerna z njegovo
A~ i1 WiXi 1 varianco. Tisti z navecjo varianco
H=—<n—": wi = o . . . .
Do Wi oF bodo prispevali najmanj.

deljenimi negotovostmi o;. Drugi odvod £ po y nam razodene tudi, da i res

kar je standardna formula za uteZeno povprecje izmerkov x; z normalno poraz-
\\ustreza maksimumu ¥, saj je d?£/dp® = = >, w; < 0. <




8.3 Pricakovana vrednost in varianca cenilke 6 za parameter 6

Doslednost in nepristranskost (glej definicije (7.2), (7.3) in (7.4)) nista edini last-
nosti, ki ju pricakujemo od statisti¢ne cenilke. Zelimo si, da ima tudi ¢im manjso
varianco. Razli¢ne cenilke iste koli¢ine imajo v sploSnem razli¢ne variance: tako
vzorcno povprecje kot tudi vzorcna mediana sta na primer dosledni in nepri-
stranski cenilki za “teziS¢e” normalne populacije z znano varianco. Toda — kot
bomo pokazali v nadaljevanju — je varianca povprecja manjSa kot varianca me-
diane, zato je vzorcno povprecje “boljsa” cenilka.

Varianca cenilke 8 v limiti velikih vzorcev

Izpeljimo izraz za varianco cenilke za en parameter za primer ko so vsi elementi vzorca

porazdeljeni z enako verjetnostno gostoto fy;=fy (na koncu pa jo bomo posplosili)
Zelimo izpeljati I"=-1/var[theta] kot smo navedli v podpoglavju "nacelo maksimalnega verjetja".

V primeru velikih vzorcev (n > 1) pricakujemo, da se bo ocenﬁ le malo razli-
kovala od prave vrednosti parametra 6. Zato enacbo verjetja (8.2), deljeno z n,
razvijemo po Taylorju in obdrzimo le prva ¢lena:

1d¢ 1< L Y
—~5 log fx(xi;0)| +(8—00) — [ log f: (x,,@)] =0
ndo "~ Z[ X ] 0 Z 292 o X 00

x(x; o) B(x; 60)

>
I
>
[en}
|

oziroma na kratko

™| Q

x+(0-609)B=0. (8.8)

Koli¢ini ar in 8 imata naklju¢no naravo, saj sta odvisni od vsakokratnega vzorca x,
thetaO pa je vrednost parametra v populaciji. Zanima nas pri¢akovana vrednost
cenilke in varianca. Pokazali bomo da za velike n velja

E[f] = 0y, war[d] < 1/n

V ta namen moramo sesteti po vseh vzorcih (x1,..,xn). Ker so xi med seboj v
skladu z obravnavano predpostavko neodvisni to pomeni, da moramo sesteti po
vseh vrednostih xi neodvisno : sum_i xi oziroma v zvezni limiti integrirati po vseh
vrednostih x. Torej, za velike n lahko vsoti nadomestimo z integraloma: vlogo
utezZi 1/n pred vsoto prevzame verjetnostna gostota. Tedaj lahko zapiSemo

Ploj = | [ g e - ( 1af"fxdx)

fx 90 )=(%Jf"(x;9)dx)eo

O

0



kjer smo v zadnjem koraku upoStevali, da je verjetnostna gostota fx normirana
ne glede na vrednost njenega parametra, [ fx(x;0)dx = 1, odvod konstante pa
je ni¢. Podobno ravnamo tudi z f:

E[B]:E[azg)TngX:leo _ (I[fixa;gzx le (8fx) ]fde)oo

(392 fo(x 9)dx)90— (J (al;%fx) Sx(x; G)dx) i,

Prvi Clen je enak nic iz istega razloga kot pri racunu E[«], v drugem clenu pa
uzremo (negativno) pricakovano vrednost koli¢ine (9log fx/00)2, torej

za vse neizrojene primere. Iz enacbe (8.8) tedaj razberemo, da se 0 pri velikih
n poljubno pribliza pravi vrednosti 0y, saj je limy, (0 — 0g) = —lim,, . &/B =
—E[x]/E[B] = 0. Ocena za parameter 6y je torej

o

6 ~ Go—m

Kolik$na je varianca te ocene? Dobimo jo kot pricakovano vrednost

var[0] = E [(@ - 90)2] = E[(%‘B])z] = ﬂg;] :

Imenovalec smo Ze izracunali v (8.9), Stevec pa je

dlog fx(Xi; 0) dlog fx(Xj; 0)
2 Z ZE[ 00 00 ]90'

i=1j=1
Posamezne naklju¢ne spremenljivke X; so med seboj neodvisne, zato odpadejo
vsi meSani Cleni, prezivi le n kvadrati¢nih:

Iskana varianca je torej
1 1

nE(Bl E[mlog fxloo

var[0] = —

kjer smo v zadnjem enacaju uporabili (8.9). To lahko izrazimo z E[/"], ker | v naSem primeru
vsebuje n enakihnverjetnostnih gostot in ker so xi neodvisni

E[l"] = E[) _(log fx(x:))"] = n E[(log fx)"]
=1
Tako dobimo koncen izraz za varianco cenilke

odvodi
thets (var[d]) ™t = —E[l"] = —nE[(log fx)"]
Varianca cenilke po metodi maksimalnega verjetja res pada z n!

S tem smo utemeljili E[I"]=-1/var[theta] kar smo zapisali v podpoglavju "nacelo maksimalnega verjetja"
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ﬂ]vod v zgled s Paretovo porazdelitvijo (3.5), ki je pogosto prikladna za koIicine:\
* katerih vrednosti se razprostirajo prek vec redov velikosti,
* zveliko verjetnostjo za majhne vrednosti in majhno verjetnostjo za velike vrednosti

ustreznih naklju¢nih spremenljivk

ba a b a+1
fx() = =E<§) , 0<bcx<

10000F ™ LOLA (2011) 10000 £ HXRBS (1980-1989) |
% 1000 | % 1000 |
B Xuiw=b =005 | 2
§ / a=2.16 '_.: ,
100 | =100}
N | AN
10 AN “10 S
Xmin = b =200
: a=085 "
1L : ) ) - 1t ) : , \ L.
0.01 0.1 1 100 102 10°  10*  10°
premer [km] jakost [y/s]

Slika 3.5 — [LEVO] Porazdelitev luninih kraterjev po njihovem premeru, kot so jo dolo¢ili
raziskovalci projekta Lunar Orbiter Laser Altimeter (LOLA) [12,13] do leta 2011. [DESNO]
Porazdelitev izbruhov trdih rentgenskih zZarkov po njihovi jakosti, izmerjenih s spektro-
metrom HXRBS (Hard X-Ray Burst Spectrometer) [14] med letoma 1980 in 1989. Ravni
¢rti predstavljata pribliZni potenc¢ni odvisnosti, zaradi nazornosti vrisani tudi v sence-
nem obmocju, Ceprav se Paretovi porazdelitvi za¢neta Sele na njunih desnih robovih

(X > xmm) +

Zgled Dolo¢imo parameter a v Paretovi porazdelitvi (3.16) na podlagi izmer-
jenega vzorca x = {x1,X2,...,Xn} Ob predpostavki, da je parameter b znan.

Funkcija verjetja je

n n a+l
Lixla) = [ [ fx(xia) =] % (£> :

i=1 i=1 Xi

njen logaritem pa

n
Z [log +(a+1)10g§] =nlog% +(a+1) Zlogg.
i i=1 L

1z enacbe verjetja 0€/0a = 0 sledi n/a + >/~ log(b/x;) = 0, od tod pa ocena
n x4 -1
a=n|>log~"| . (8.11)
. b
i=1
Po formuli (8.10) izracunamo $e njeno varianco:

(Var[@])_l = —nE[(logfx)”] = —nE[(log% +(a+1)log %)”]

1 b\’ 1 n
= —nE[(—+lo —) =-nEl-—|=—,
a g¢X a2l a?
torej var[a] = a?/n. o , <
odvod tega clena po a je nic, zato ta clen ne prispeva
(v nasprotnem primeru bi morali izracunati pricakovano vrednost po porazdelitvi)




Zgornja izepljava se po analoginih korakih posplosi tudi na primer razlicnih verjetnostnih
gostot, kjer pac pricakovane vrednosti E[..] po vseh vzorcih dobimo z integracijami po
f.; (xi). Izkaze se, da dobimo analogen razultat za varianco cenilke theta

n

e (varlf]) ™ = ~E[l"] = ~B[}_(log fx:)"

theta -
1=1

ki ocitno preide v prejsni izraz ko je za vseh n elementov fy; enak.

V primeru p-parametrov theta nas zanima celotna pxp kovariancna matrika, ki je
posplositev variance var[theta] za en parameter. Ta je po metodi maksimalnega verjetja
in v skladu z enakimi priblizki enaka (brez dokaza)

pXp covariancna matrika za p parametrov theta
|

(5=t = (conld] = —2[ 20
g kT kL 00, 0

Izraz za en sam parameter ocitno preide v prejsnji izraz iz poglavij 8.3.1in 8.3.2.

S tem smo nakazali zakaj je drugi odvod po | povezan z kovariancno matriko parametrov,
kar smo zapisali v podpoglavju "nacelo maksimalnega verjetja"
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/ Zgled:

n=9
t=11,2,3,4,5,6,7,8,9]

x=[0.44, 0.49, 0.62, 0.52, 0.53, 0.38, 0.33, 0.16, 0.11]

z(t) = g(t;01,02) = e %1t sin(fyt + 0.2)

0.7 1

ol 1

0.5 1

0.2 1
0.1+

0.0

x
0.3 +

fit-compare-curvefit-iminuit:

data-compare-curvefit-iminuit-correlated-VF. txt
\\\\\¥ plot-compare-curvefit-iminuit-correlated-VF.pdf

-correlated-VF.py

glej: gradiva, DN: naredi primerjavo za en primer

result-compare-curvefit-iminuit-correlated-VF.txt

Sigma_x=
[[0.00160, -0.00054, 0.00050, -0.00009, 0.00070, -0.00044, -0.00052, 0.00045, -0.00005],

[-0.00054, 0.00250, -0.00060, -0.00014, 0.00089, 0.00043, -0.00063, 0.00016, -0.00016],
[0.00050, -0.00060, 0.00360, 0.00058, -0.00086, -0.00012, -0.00039, 0.00062, -0.00040],
[-0.00009, -0.00014, 0.00058, 0.00250, 0.00082, -0.00049, 0.00044, 0.00036, -0.00053],
[0.00070, 0.00089, -0.00086, 0.00082, 0.00360, 0.00042, 0.00006, -0.00064, 0.00002],
[-0.00044, 0.00049, -0.00012, -0.00049, 0.00042, 0.00160, 0.00018, 0.00014, 0.00039],
[-0.00052, -0.00063, -0.00039, 0.00044, 0.00006, 0.00018, 0.00250, -0.00001, 0.00012],
[0.00045, 0.00016, 0.00062, 0.00036, -0.00064, 0.00014, -0.00001, 0.00160, -0.00023],
[-0.00005, -0.00016, -0.00040, -0.00053, 0.00002, 0.00039, 0.00012, -0.00023, 0.002]]

rezultati: . ,
* minimizacija(chi2), Zé = (50 2;( 503
* curve_fit

*  minuit

6; = 0.1433 = 0.009
02 = 0.284 £ 0.006

Y.7=1[8.4e-05 3.6e-06]
[3.6e-06 3.8e-05]1

X —0.84
g5 =08

fita tudi sam !

podatki
slika
rezultati

/ Zgled

z=g(t,0) =0 + 0qt

(nekorelirani)

ti=0, 0.5, 1, 1.5 2, 25,3

izmerki x,= 1.4, 1.0, 1.5, 2.7, 3.7, 3.0, 4.1

z napakami g,= 0.5, 0.3, 0.2, 0.6, 1.0, 0.8, 0.5

5 1.5 5
4t [ 4

61 + é\zt <& .
3t 0, y 3

X X: s
01 2 3 a0 Y 8, Yo 1 2 3 4
ti 06— ti
A R . [Desno). Premica, ki ustreza pravima
0, = 0.578 +0(0,) = +0.247 vrednostma 01 in 82, z verjetnostjo 1 - e-%/2
~ A leZi znotraj te pahljace.
0> = 1.100 +0(02) = +0.190 V naslednjem podpoglavju bomo opredelili
. kako to dolocimo.
2211 manjka rezultat za
\ x=L korelacijo koncnih parametrov. /

Veliko zgledov za prilagajanje; naloge iz poglavja 7 v knjigi (a v vecini primerov
kovariancne matrike zacetnih podatkov in koncnih parametrov niso podane)




Za vsak vzorec lahko dolocimo parametre 6 =§, in posledi¢no bo vrednost naklju¢ne
spremenljivke y? varirala od vzorca do vzorca. Pri¢akujemo, da bo ta nakljuéna
spremenljivka porazdeljena v skladu z porazdelitvijo chi2 z nu=n-p prostostnimi stopnjami :

fre (X}, v=n—p)

To pric¢akujemo v skladu z izpeljavami iz poglavja 7
- ¢e so izmerki xi res porazdeljeni v skladu z normalno porazdelitvijo z danimi var|[xi]
- e funkcijska odvisnost g(t;theta) res dobro opisuje pricakovano vrednost xi
- ¢e smo s prilagajanjem res dolocili prave parametre
- e so xi neodyvisni in smo uporabili chi2=sum_i (xi-g)*2/sigma_i"2:

(za ta primer smo utemeljili chi2 porazdelitev v poglavju 7)
- zgornja porazdelitev z nu=n-p je relevantna tudi za primere koreliranih xi

ce uporabimo koreliran chi2= (x-g)AT Sigma_x”(-1) (x-g) kjer je Sigma kovariancna matrika

Pri¢akovana vrednost porazdelitve chi2 in njena varianca sta

v =n — p = dof :ctevilo prostostnih stopenj (number of degrees of freedom=dof)

Ex’] _ Elx’]

ElX*] =v, > B

=1, war[x?] =2v

V primerih, kjer so upravicene predpostavke iz zgornjih alinej, pricakujemo, da bo

reduciran chi-kvadrat (Xz/v) v popvrecju enak 1. Ali obratno: Ce pri prilagajanju na vzorcu
dobimo chi2/nu priblizno enak 1 v grobem sklepamo, da so bile zgornje predpostavke
upravicene.

Ce pa dobimo x? /nu veliko vegji od 1, obi¢ajno dolo¢imo kolik$na je verjetnost (to
verjetnost imenujemo vrednost-p = p-value) da bo y? tako ekstremen kot ga je dala
minimizacija na vzorcu (imenujmo tega x2,) ali se bolj ekstremen

vrednost—p = P(x* > x3,) = / fr2(X*;n —p) dx*  (p—value)
X

vz

Velik chi2/nu ali zelo majhna vrednost p nakazujeta na slabo kakovost prilagajanja.
S zadnjo zvezo torej ocenimo kakovost prilagajanja (goodness if fit). Ve¢ o tem bomo
spregovorili v poglavju o testiranju hipotez.



Prilagajanje konstante (9.1.8)
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Zgled Za vso to preprostostjo se skrivajo Stevilne pasti. Slika 9.4|(levo) prika-
zuje n = 10 izmerkov, ki jim prilagajamo konstanto §). Z opisanim postopkom
dobimo 6 = 2.73 + 0.10 in X?/(n — 1) = 36.5,

5 -
= 4 prilagajanje vsem podatkom
X 47 (X2/9 = 36.5) l ‘
3 -

@

2 I % é - ) -
N1 M
brez X, in X, (X2/7 = 1.10)

012345678910
i +

Slika 9.4 — Prilagajanje konstante meritvam { yj = 0;}7-,, n = 10. [LEvO] UteZeno pov-
precje v prisotnosti dveh ubeZnih vrednosti (' x4in x7') in brez njiju. [DESNO] UteZeno
povprecenje podatkov z nepojasnjeno sistematicno napako, kjer dobimo nesmiselno
majhno negotovost parametra , in povprecje z reskaliranimi napakami (w

Ogromen chi2/nu Ze sam po sebi nakazuje na to, da je bila ena od predpostavk (iz alinej na

prejsnji strani) napa;na. Verjetnost (p-value) za tako velik ali se vedji chi2 je izjemno majhna,

tako majhna da Mathematica vrne 0 /oo
3

p—value = P(x* > 36.5-9) = fr2(x%;9) dx* =
28.5

=1 - CDF[ChiSquareDistribution[9], 36.5*9]=0.0000*

Ce opustimo ubezni vrednosti x4 in x7, dobimo 0: 1.71 + 0.12 in X2/7 = 1.10jn zmerno
vrednost p, kar kaze na ustrezno prilagajanje

p—value = P(x* > 1.1.7) = fr2 (% 7) dx® = 0.36
7.7

Qseveda le, Ce obstaja utemeljen razlog, da smo dva ubezna podatka zavrgli. /




9.1.9 Ali smemo kakSen podatek preprosto zavreci?

Med razloge, zaradi katerih smemo dolo¢eno meritev ali posamezen

izmerek zavreci, po merilih skupine Particle Data Group sodijo [5]:

e obstaja kasnejsa meritey, ki je boljSa od prejsnje ali vklju€uje prejSnjo kot svojo
podmnozico;

e negotovost izmerka ni podana;

e meritev temelji na vprasljivih predpostavkah;

e meritev ima nizko razmerje med signalom in Sumom, ima majhno statisticno pomembnost
ali je tudi sicer slabse kakovosti kot druge meritve;

e izmerek je ocitno neskladen z drugimi rezultati, ki so videti zanesljivejsi;

e meritev ni neodvisna od ostalih rezultatov.

Slika prikazuje povprecne vrednosti razpadnega Casa nevtrona, kakrSne smo poznali v letih
med 1960 in 2015. (Vsako leto je bilo narejenih ve¢ neodvisnih meritev; prikazana so letna
povprecja.) Razmisli, katero od navedenih vrednosti je smiselno uporabiti danes, ¢e

uposteva$ nasteta merila! ] L L

1050 - B

‘T

o |

850 Loviinn v PECTrCeT Lo [ i Lt
1960 1970 1980 1990 2000 2010

Neutron lifetime (s)




Zgled Drugacno zadrego prikazuje 6l |
slika 9.4 (desno). V tem primeru ; obi¢ajni X?
dobimo X?/9 =12.9 . Ce smo 5t (X2/9 =12.9) -
prepricani, da naj bi koli¢ino dobro x l) %

opisovala konstanta, za velik - | % R £ 1
izraCunani X2 niso krivi posamezni 3 [A—— gr— 1“ ......... ]
ubezniki, temvec izmerki oCitno %’

vsebujejo neko neznano, 2+ %’ % % l
podcenjeno sistematicno napako. 1| reskalirail)l;zjlgapals |

0 ) ) ! ) | ! N 1 )
012345678910
i
Slika 9.4 — Prilagajanje konstante meritvam { xj + 0;}';, n = 10. [LEvO] UteZeno pov-
precje v prisotnosti dveh ubeZnih vrednosti ('x4in x7) in brez njiju. [DESNO] UteZeno
povprecCenje podatkov z nepojasnjeno sistei‘hatiéno napako, kjer dobimo nesmiselno
majhno negotovost parametra in povprecje z reskaliranimi napakami (9.23).

V taksnih primerih véasih mersko napako reskalirajo (¢e so utemeljeno izkljucili druge
moznosti za velik chi2):

, e

o. =0j
1 1 n—]_’

i= ,2,...,m. (9.23)

UteZeno povpredje za izracun iskanega parametra Se vedno tvorimo po (9.22),
le da njegova negotovost zdaj postane

- [ x2 (&1
og =\Jvar[0] =\l 7 Z‘ia_lz
i=

To sicer vodi do rezultata z reduciranim chi2/(n-1)=1, a sama imam pri tem postopku pemisleke.

—1/2

Pozor: curve_fit v pythonu z opcijo absolute_sigma=False ( dafault !! ) sam reskalira napake na xdata tako da bi
reduciran chi2 enak 1 in potem vrne napake na parametrih v skladu z reskaliranimi xdata!)

curve_fit(g,tdata,xdata, ... absolute_sigma=False)

absolute_sigma : bool, optional Nauk:
If True, sigma is used in an absolute sense and the estimated parameter ) ) . . .

i * raje sami napisite funkcijo chi2

covariance pcov reflects these absolute values.

If False (default), only the relative magnitudes of the sigma values matter. The ki jo je treba minimizirati

returned parameter covariance matrix pcov is based on scaling sigma by a o ce uporabljate crne skatlje dobro

preberite in preverite kaj pocno na
preprostem primeru

constant factor. This constant is set by demanding that the reduced chisq for
the optimal parameters popt when using the scaled sigma equals unity. In

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html



9.1.3 Intervali zaupanja za optimalne parametre

populacija : 9? : agj

vzorec : 0; 05, = \/ var[f;]

Zelimo dolociti interval zaupanja za parameter theta_j*0 v populaciji. Poznamo pa vzoréno
vrednost cenilke za theta in pripadajoco vzoréno varianco. Dolocili smo ju iz izmerkov
(t_i,x_i), kjer so x_i porazdeljeni normalno. Nakljucna spremenljivka T je zopet
porazdeljena po Studentovi porazdelitvi (brez dokaza)
0; — 6"
T—"—2 . frtv=n—p)

O'éj
Intervale zaupanja za parametre @ izraCunamo po analogiji z intervali zaupanja
za vzoréno povpredje (podrazdelek 7.3.1). Ce napak o; izmerkov y; ne poznamo
— predpostavimo le, da so med seboj neodvisne in identicno porazdeljene —
najprej izratunamo kovarian¢no matriko (9.18) in iz nje izlus¢imo variance

e

Var[Gj]=(Z@)jj, J=1:2 00D

Parametru 0, tedaj pri izbrani stopnji zaupanja 1 — « ustreza interval zaupanja

[é\j - t*\/var[éj] y é\j + t*\/var[éj]] y (9.19)

na katerem leZi prava (neznana) vrednost parametra 6;. Mejno vrednost t, raz-
beremo iz tabele 7.1, pri ¢emer upostevamo Stevilo prostostnih stopenj v =
n — p. Z drugimi besedami,

P (é\J — t*\lvar[éj] <0< @j + t*\lvar[a,-]) =1-«.=CL

Ce je n — p > 1, porazdelitev t preide v standardizirano normalno porazdelitev
in namesto t, uporabimo z iz zadnje vrstice tabele 7.1|

Z verjetnostjo CL=1-alpha se prava vrednost populacijskega parametra theta_j nahaja
na zgornjem intervalu. S tem imamo v mislih: pri mngokratni meritvi vzorcev bo v delezu
CL=1-alpha vzorcev dejanska populacijska vrednost parametra znotraj vzorcnega
intervala zaupanja. Pri tem se seveda dejanska populacijska vrednost parametra od
vzorca do vzorca ne spreminja, interval zaupanja pa se od vzorca do vzorca spreminja.



9.2 Metoda maksimalnega verjetja in priblizek z metodo najmanjsih kvadratov
za histogramirane podatke

Marsikdaj izmerjene podatke histogramiramo po spremenljivki x. To pomeni,
da n izmerkov {x1,x2,...,x,} razvrstimo v k med seboj izkljucujocih se raz-
redov ali predalckov (angl. bins). V i-tem razredu pristane y; = n; izmerkov.
Primer prikazuje slikaTS(levo): v prvi razred x € [0.0,0.1] je priSlo n; = 113
vrednosti, v drugem razredu x € [0.1,0.2] jih je n, = 147, in tako dalje.

200

n = 1000
k =10

fa—
ot
o

Stevilo dogodkov
—

0 02 04 06 08 1
X

Slika 9.5 — [LEvO] Histogram n = 1000 dogodkov, zbranih v k= 10 razredov. [DESNO]
Enaki dogodki, vendar s podanimi negotovostmi v spremenljivki x, ki se mestoma tudi
prekrivajo (razredi se ne izkljucujejo). Prikaza nista enakovredna!

Verjetnost, da dolocena vrednost pristane v i-tem razredu, oznacimo s p;(0).
Tu je @ nabor parametrov, ki doloCajo modelsko verjetnostno porazdelitev iz-
merkov. Pricakovano Stevilo izmerkov v i-tem razredu je torej E[n]= npi(0).
Histogram vsebuje vse izmerke, zato velja

'k k
> ni=y.  npi(0) =n. (9.24)

V razdelku 5.2| smo pokazali, da je porazdelitev §tevil n; v k razredov multi-
nomska, s kovarian¢no matriko

np1 (1 _pl) —npip2 —NP1Pk
s | —mpepr npa(l=p2) .. —npapy
—nprp1 —nprp2 ... nprp(l—pg)

Funkcija verjetja je podana z Multinomsko funkcijo
L(podatki | 0)= P(X1=n1,.,Xp=nk) = < " ) p1ps? pZ’“

ny, .., Nk
V primeru, ko je v vsakem od N razredov veliko Stevilo izmerkov (ni>>1, i=1,..,N),
pa multinomska porazdelitev po centralnem limitnem primeru preide v multivariantno
Normalno porazdelitev z zgorjno kovarianéno matriko. Dolo¢anje optimalnih parametrov v
tem primeru lahko torej izvedemo z minimizacijo chi2.
Zaradi normalizacijskega pogoja (9.24) je matrika X singularna (det X = 0). Vendar lahko
ravno zaradi tega pogoja nalogo najmanjsih kvadratov vseeno formuliramo. En razred —
na primer k-tega — lahko namrec izlo¢imo, sajjen,=n-nl-n2 -----n,_,. Tako dobimo
nesingularno matriko X’ dimenzije (k — 1) x (k - 1), s katero iS¢emo minimum mere
odstopanja

X (0) = i — 0] i — @], 7= (i)

Knjiga obravnava tudi kako se ta primer nadalje resuje (mi tega ne bomo nadalje obravnavali).



10. Preizkusanje hipotez in statisti¢ni testi

V poglavjih 7, 8 in 9 smo opisali metode, s katerimi na podlagi naklju¢nih vzorcev
sklepamo na lastnosti populacij in ocenimo parametre njihovih porazdelitev. V tem
poglavju spoznamo orodja za presojo o tem, ali je s statisticnega vidika dobljeni model ali
hipoteza o populaciji s statisticnega vidika sprejemljiva ali ne. O tem presojamo glede na
izmerjene podatke v vzorcu.

10.1 Nicelna hipoteza HO in alternativna hipoteza H1

Za presojo o veljavnosti modela uporabljamo hipoteze o lastnostih populacije oziroma
njene verjetnostne porazdelitve.

Osnovno hipotezo, ki jo preverjamo, imenujemo nicelna (angl. null hypothesis) in jo
oznacimo s HO. Glede na izid statisticnega testa lahko nicelno hipotezo sprejmemo ali
zavrnemo — vendar je namesto “hipotezo sprejmemo” bolje reci “s statisticnega vidika
nimamo dovolj podatkov v vzorcu, da bi jo zavrnili”; v nadaljevanju obdrzimo to subtilno
razliko v mislih. Glavna naloga statisticnega testa je torej presoja o tem ali glede na dane
vzorcne podake lahko hipotezo HO zavrZzemo ali ne.

Strogo receno nikoli ne presojamo o nicelni hipotezi sami po sebi, temvec vselej glede na
alternativno hipotezo (angl. alternative hypothesis), ki jo oznacimo s H1.

Alternativne hipoteze so lahko v razlicnih povezavah z ni¢elnimi hipotezami. A bomo tu
zaradi preprostosti imeli v mislih le H1, ki se izklju€ujejo s HO, in kjer unija HO in H1
vsebujeta vse moznosti. Torej bo v nasih primerih H1 komplement HO.

Vrednosti, ki jih testiramo pri hipotezah, se seveda nanasajo na celotno populacijo
moznih meritev (in ne le na merjen vzorec)
/ ™
Primeri:
a) vzorec: veckratni met dolocene kocke; populacija: neskonéno metov te kocke
HO: kocka je postena
H1: kocka ni poStena

b) vzorec: veckratna meritev temperature sredstva (ob predpostavki, da se temperatura
sredstva ne spreminja); populacija: dejanska temperatura po neskoné¢no meritvah

HO: T=15C (temperatura sredstva) +

H1: T!=15C

c) HO: T>=15C (temperatura)
H1: T< 15C

d) vzorec: vrednost dolo¢enega parametra pri krvnem testu
HO: pacient je zdrav (ni okuZen z danim virusom)
H1: pacient je bolan (je okuZen z danim virusom )




/e) vzorec: veckratna meritev kvantnomehanske opazljivke O; populacija: neskon¢no N

meritev te opazljivke bi dalo pricakovano vrednost uj

HO: u=p, : opazljivka O ima vrednost u=ug , kjer je ug vrednost kot jo napoveduje
obstojeca veljavna teorija (na primer Standardni Model osnovnih delcev). Glavna naloga
testa je presoja o tem ali lahko z danimi podatki veljavno teorijo (torej HO) ovrzemo s
statisticnega vidika — to je ena glavnih nalog eksperimentov.

H1: u # uy : opazljivka O ima vrednost u # g, kinivskladuz napovedjo obstojece
veljavne teorije. Sele &e smo iz statisti¢nega vidika utemeljeno zavrgli veljavno teorijo,
lahko sklepamo na upravicenost ene od novih teorij.

f) vzorec: veckratna meritev hitrosti (v) neznanega delca v vakuumu

HO: v<=c0 (hitrost neznanega delca v vakuumu, kjer je cO svetlobna hitrost)

Tu je seveda klju¢no vprasanje kako zanesljivo lahko iz statisticnega (in
sistematicnega!) vidika zavrnemo to dobro u"Eemteeno hipotezo. Krsitev le te bi bila
seveda nepri¢akovana znanstvena revolucija.

H1: v>c0

g) vzorec: meritev Stevila dogodkov N pri nekem procesu in energiji E v trkalniku,
kjer iScemo signal za nov delec, npr p p -> foton foton

HO: N=N(b) stevilo dogodkov je skladno z ozadjem (b=0zadje=background)
N(b)=napoved za Stevilo dogodkov v okviru teorije, ki ne vkljuuje Higgsovega bozona.
Glavno vprasanje je ali lahko statisti¢no signifikantno to nicelno hipotezo zavrnemo.

H1: N=N(b+s): stevilo dogodkov je skladno z ozadjem(b) + signalom(s); po tej hipotezi
dotlej veljavna teorija brez Higgsovega bozona ni pravilna; prava teorija mora vsebovati
Higgsov bozon ali kako drugo "novo fiziko"; Sele ko z dovolj veliko zanesljivostjo zavrnemo
\HO lahko utemeljeno presojamo o novih delcih in pojavih )

10.2 Stopnja zaupanja statisticnega testa (confidence level) CL=1-alpha

Osredotocimo se na vprasanje ali lahko na podlagi podatkov zavrzemo nicelno hipotezo
HO ali je ne moremo zavreci.

Naj a oznacuje verjetnost, da zavrnemo HO v primeru, ko bi bila HO resnic¢na.

* «a =statisttna pomembnost testa (statistical significance)

* 1- a =stopnja zaupanja=confidence level=CL

Vrednost alpha si vhaprej izberemo in potem presojamo o tem ali pri tej statisticni
pomembnosti testa HO zavrnemo ali ne.

Bolj podrobno:

* v primerih, ko HO predstavlja dolo¢eno moznost (npr T=15C, mu=mu0, N=b): alpha
oznacuje verjetnost, da zavrnemo HO v primeru, ko bi bila HO resnicna.

* v primerih, ko HO predstavlja ve¢ moznosti (npr obmocje T>=15C, v<=c0): alpha
oznacuje verjetnost, da ob predpostavki veljavne HO zavrnemo HO v najbolj
ekstremnem primeru (na primer zavrnemo T=15C kar pomeni da so T>15C Se manj
verjetne od T=15C: ogledali si bomo zglede).



Opomba: Spomnimo se, da je pri intervalih zaupanja alpha oznaceval verjetnost, da je prava
populacijska vrednost neke kolicine (npr populacijsko povprecje, varianca ali parameter)
izven intervala zaupanja. Torej sta definiciji alpha tu in tam kar se da skladni.

Pogosto pri testih dolo¢imo Se "vrednost-p" ("p-value"). "vrednost-p" je verjetnost, da
je vrednost nakljucne spremenljivke tako ekstremna ali bolj kot je bila ob meritvi, kjer
te verjetnosti doloCimo ob predpostavki da je HO pravilna. Vrednosti-p, ki je manjsa od
izbranega a botruje zavrnitvi hipoteze HO. Pogosto uporabljeni kolicini a in p-value sta
tako tesno povezani.

Dobljeno vrednost p-value se pogosto pretvori v ekvivalentno stevilsko vrednost
standardnih deviacij normalne porazdelitve N(0,1). Na primer, dobljeni vrednosti 3.5
standardnih deviacij pri zavrnitvi HO, pravimo zavrnitev s significanco 3.5 gaussovih
sigma (ker se sigma nanasa na gausovo porazdelitev). Namen slednje pretvorbe je lazja
primerjava signifikanc pri razlicnih porazdelitvah. Odkritje novega delca, na primer,
lahko trdimo, ¢e nicelno hipotezo HO (kjer novega delca ni) zavrnemo s signifikanco 5
gausovih sigma, kar ustreza p-value=1-F[5]=2.8*10" ali dvakrat toliko

10.3 Test za vrednost populacijskega povprecja v primeru normalno porazdeljenih spremenljivk
(10.2.1 v knjigi)

Posvetimo se hipotezam ki govorijo o vrednosti populacijskega povprecja mu0

Ce poznamo vzoréno povpreéje barX in populacijsko varianco sigma, bomo presojali po
statistiki spremenljivke Z, ki je porazdeljena normalno N(0,1)

X — o

=

fz(Z) = N(0,1)

Ce poznamo vzoréno povpreéje barX in nepristransko vzoréno varianco sX, bomo presojali po
statistiki spremenljivke T, ki je porazdeljena po Studentovi porazdelitvi

X — po
T = :
Sx/\/ﬁ

fr(tv=n—1)

Opomba: za primere, ko je nu dovolj velik (npr nu>=30), je Studentova porazdelitev
prakticno enaka N(0,1) in lahko uporabimo tudi normalno.

Dogovorimo se, da z, 0znacCuje vrednost, pod katero se nakljucna spremenljivka z nahaja z
verjetnostjo p, torej p-ti kvantil porazdelitve:
P(z<=z,)=p oziroma drugimi besedami z,=F(p)=InverseCDF[NormalDistribution[0,1],p]

Podobno naj t, oznacuje vrednost pod katero se t nahaja z verjetnostjo p, torej p-ti kvantil:
P(t<=t,)=a oziroma t,=F(p)=InverseCDF[StudentTDistribution[n-1],p]

£ N(oa) fie)

W P p glej tabele
X | 4 kvantilov na ucilnici

3,
§ |£?t




ﬁgled: Z dvanajstimi enakimi termometri (n=12) izmerimo temperature \
x ={13.6, 13.8, 13.9, 13.3, 13.9, 14.7, 13.7, 13.5, 14.5, 12.7, 12.2, 16.3}
Glede na razprsenost rezultatov so termometri precej slabe kakovosti ...
Preden se lotimo hipotez, dolocimo

xbar=13.84 C (vzorcno povprecje) , SX=1.03 (vzorcna varianca), sX/sqrt{n}=O.3O (var vz. povprecja)

Populacijsko povprecje mu torej pricakujemo v grobem na intervalu 13.84+-0.30
Zdaj testirajmo razne hipoteze pri stopnji zaupanja=1-alpha=CL=0.95,

a) HO: t = ptp =13 C AN(o)

H1: u + u

Ker poznamo vzorcno povprecje, uporabimo za test hipoteze HO Studentovo
porazdelitev z nu=12-1=11 prostostnimi stopnjami. O zavrnitvi ali sprejetju hipoteze HO
sklepamo ob predpostavki, da je ta pravilna, torej da je temperatura dejansko muO.
Tedaj z verjetnostjo alpha zavrnemo HO ce sg nakljucna spremenljivka t_vz za merjen
vzorec nahaja izven obmocja [t_{alpha/2},t_{1-alpha/2}]=[t_0.025,t_0.975]=[-2.2,2.2].
Dejanska izmerjena temperatura vzorca da vrednost t_vz=(xbar-mu0)/(sX/sqrt(n))=(xbar-
13)/(sX/sqrt(n))= 2.8 kar je izven zgornjega obmocja, zato hipotezo HO zavrnemo ob
stopnji zaupanja 0.95. p-vrednost je verjetnost da je t bolj ekstremna kot izmerjena

vrednost torej
vrednos /thI/)dt—0016 vrednost — p—2/N01)dz—>k—24

Ker je p-value pod privzeto vrednostjo alpha=0.05 tudi ta sklep vodi v zavrnitev HO; oba
sklepa sta pravzaprav enakovredna. Ta vrednost-p ustreza signifikanci 2.4 gausovih sigma.
Pravimo, da smo HO zavrnili z signifikanco 2.4 gausovih sigma (k=2.4).

b) HO: u = ug =13.6C
H1: u + u

0.02§ t 0.9%¢

Ista vzorcna temperatura da pri tej nicelni hipotezi t_vz=(xbar-mu0)/(sX/sqrt(n))= (xbar-
13.6)/(sX/sqrt(n))= 0.8 kar je tokrat znotraj obmocja [t_{alpha/2},t_{1-alpha/2}]=[-2.2,2.2]
in hipotezo HO ob stopnji zaupanja CL=0.96 sprejmemo, kar pravzaprav ne pomeni da je
temperatura res 13.6C temvec da dane meritve niso dovolj natancne da bi hipotezo HO

!avrnili. /
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Ce HO pri dani stopnji zapanja zavrzemo za najnizjo temperaturo muu iz oomocja pri Hu,
potem bo avtomaticno HO zavrzena tudi pri visjih temperaturah, saj je izmerjena povprecna
temperatura xbar=13.84 nizja od mejne temperature 14.5C. Testirajmo torej ali HO zavzemo
pri mejni temperaturi, kar se zgodi ce bo xbar mnogo manjsi od mu0, oziroma ce bot_vz
manjsi od mejnega t_alpha=-t_{1-alpha}=-1.8. Vrednost nakljucne spremenljivke t_izm ob
predpostavki da velja HO z mejno temperaturo je t_vz =(xbar-14.5)/(sX/sqrt(n))=-2.2, kar je
manjse od -1.8 zato HO zavzemo. To je v skladr z definicijo, da HO zavzemo pri mejni
temperaturi z verjetnostjo alpha=0.05. Vrednost-p, da je meritev temperature tako nizka kot
xbar ali se nizja pri mejnem primeru HO je vrednost-p=0.025 kar je manjse od alpha, tako da
tudi iz tega stalisca zavrnemo HO. Pravimo, da smo HO zavrnili z signifikanco 1.9 gausovih

sigma (k=1.9).

N
7

tos —k
vrednost —p :/ fr(t,v) dt =0.025, vrednost—p :/ N(0,1)dz — k=1.9

Bolj preprosto povedano: T visja ali enaka 14.5C dejansko ni zelo verjetna ob dani meritvi
povprecne temperature 13.84C z varianco povprecja 0.3 C. Je pa temperatura 14.5 vseeno
lahko prava temperatura “populacije” z verjetnostjo p-value=0.025, a je bila izmerjena
povprecna temperatura 13.84C tako nizka ker je bila meritev izpostavljena statisticni

\ fluktuaciji. /




/Zgled: rezultat za vrednost-p pri dejanskem eksperimentu ki poroca o pomembnem odkritj}

Observation of a new particle in the search for the Standard Model Higgs boson https://doi.org/10.1016/j.physletb.2012.08.020

with the ATLAS detector at the LHC*

ATLAS Collaboration* Spodaj so rezultati kolaboracije ATLAS (med soavtorji so tudi slovenski fiziki) Physics Letters B 716 (2012)

glbse]:“rl—\l/ét{ion of a new boson at a mass of 125 GeV with the CMS experiment at https://doi.org/10.1016/j.physletb.2012.08.021
e

CMS Collaboration*

vrednost—p = 1.7 x 1079 = N(0,1) dz
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ABSTRACT pri doloceni energiji E:
A search for the Standard Model Higgs boson in proton-proton collisions with the ATLAS detector at HO: N:N(b) stevilo dogodkov skladno z ozadjem
the LHC is presented. The datasets used correspond to integrated luminosities of approximately 4.8 fb~!
collected at /s =7 TeV in 2011 and 5.8 fb~! at /s =8 TeV in 2012. Individual searches in the channels B
H—2Z® > 4¢, H—>yy and H > WW® — evuv in the 8 TeV data are combined with previously (SM model brez nggsa)
published results of searches for H — ZZ®), WW®, bb and Tz~ in the 7 TeV data and results from S i ) X
improved analyses of the H — ZZ™ — 4¢ and H — yy channels in the 7 TeV data. Clear evidence for H1:N= N(b + S) ; s+b=ozadje+Higgsov signal
the production of a neutral boson with a measured mass of 126.0+0.4 (stat) 0.4 (sys) GeV is presented.
This observation, which has a significance of 5.9 standard deviations, corresponding to a background stevilo dogodkov skladno s pricakovanji SM modela
fluctuation probability of 1.7 x 109, is compatible with the production and decay of the Standard Model
Higesiboson. ki vsebuje Higgsov bozon

Ob hipotezi brez Higgsovega bozona je verjetnost za opazeno stevilo dogodkov ali se vecje

stevilo dogodkov enaka vrednosti-p=1.7x10, kar je iziemno malo. Hipotezo HO so zavrgli s
Qigniﬁkanco 5.9 gaussovskih sigma. J




10.4 Test za vrednost variance v primeru normalno porazdeljenih spremenljivk
(10.2.2 v knjigi)

Testirajmo komplementarni hipotezi za vrednost populacijske variance g2 , na primer
HO: 02 =0¢¢ ali  HO:0? <of
H1: 02 # of H1: 02 > of

Pri testiranju variance na podlagi vzorca x = {x1, x2, ..., xn } iz normalno porazdeljene
populacije X ~ N(u,02) spet lo¢imo dva primera: da je pravo populacijsko povprecje
znano ali ne.

« Ce pravega populacujskega povprecja i ne poznamo, hipotezo HO preverjamo s
statistiko chi2, ki je porazdeljen po porazdelitvi chi2 z n-1 prostostinimi stopnjami

n &3 (X - X)? — -

= =) s felPv=n-1) X = (1/n) S X,
0 i=1

«  Ce populacijski u poznamo, hipotezo HO preverjamo s statistiko chi2, ki je

porazdeljen po porazdelitvi chi2 z n prostostinimi stopnjami

QZZM : fo(Xzayzn)

a N

Zgled Za detektor potrebujemo veliko Stevilo Zi¢nih elektrod dolocene dolZine.

Najvecja dovoljena varianca dolZin je org = 100 (um)?. Natan¢na meritev dolZine

je zelo zahtevna, zato si lahko privoS¢imo le majhen vzorec n = 10 elektrod, v

katerem ugotovimo varianco s2 = 142 (um)?. S pomembnostjo &« = 0.05 preso-

dimo, ali dolzina vecine Zic v neraziskani “populaciji” ¢cezmerno fluktuira! Ho: 02 < gg
Nicelna hipoteza je Hy : 0% <= 0§, alternativna hipoteza je Hy : 02 > 0G. H;: 02 > of

Hipotezo Hj bi zavrgli, ¢e bi vzorcna varianca presegla kriticno varianco glede

na «. Vrednost testne statistike je x2 = ns2/0¢ = 10 - 142/100 = 14.2. Kriti¢ni

x? odcitamo iz tabele D.3, vrsticazav =n —1 = 9, stolpeczap =1 — « = 0.95:

enak je x2 = x3qs = 16.9. Ker velja x2 < x2, ob stopnji zaupanja 1 — & = 95%

nimamo razloga, da bi Hy zavrgli. Sklepamo thhko, da je varianca dolZin vseh

elektrod v okviru predpisane. <




10.5 Test HO proti H1 v primeru danih
splosnih porazdelitev fy (x| HO) in fy (x| H1)

Zdaj obravnavajmo primer, ko sta verjetnostni
porazdelitvi relevantne naklju¢ne spremenljivke x,

ki jo merimo, znani in to¢no doloceni za nic¢elno
hipotezo HO in alternativno hitopezo H1. Zopet imejmo
v mislih primere ko HO in H1 izcrpata vse moznosti. Da
bomo bolj nazorni imejmo v mislih konkreten primer

HO: pacient je zdav (ni okuzen z dolo¢enim virusom);
vrednosti opazljivke x pri krvnem testu x so
porazdeljene z verjetnostno gostoto f(x;th0)

H1: pacient je bolan (je okuzen z dolocenim virusom);
vrednosti opazljivke x pri krvnem testu x so
porazdeljene z verjetnostno gostoto f(x;th1)

Obe verjetnostni porazdelitvi tu torej pripadata
tocno dolocenima vrednostima parametra theta,
v tem primeru thetaO in thetal

(10.1 v knjigi)

S (x; 0p)
zdravi

f(x;0:)
bolni

Xx X —

Kako pri danem alpha izberemo mejno vrednost
X krvnega testa za presojo o tem ali je pacient

zdravi

PN bolni

PP

NN

NP

zdrav ali bolan Zze vemo: Ob predpostavki, da je pa
zdrav, mora biti verjetnost, da smo ga razglasili za
bolnega, enaka alpha. Temu ustreza zgorniji graf, kjer
pacienta s krvnim testom x pod mejno vrednostjo x*
razglasimo za zdravega. Z verjetnostjo alpha smo
seveda s tem zgresili napacno presojo, zato zelimo ¢im
manjsi alpha.

Ker tokrat alternativni hipotezi H1 pripada tocno
dolo¢ena verjetnostna porazdelitev za naklju¢no
spremenljivko x, dolo¢imo verjetnost, s katero
opredelimo bolnega paciena kot bolnega

_ R — ” ; obcutljivost testa
1=F= Xy Fx;01)dx, (sensitivity)

X x —

Verjetnostna gostota, ki ustreza
nicelni hipotezi s parametrom 90
(zgoraj) in alternativni hipotezi s
parametrom 91 (sredina). Sencenje
oznacuje obmodji zavrnitve pri
stopnjah pomembnosti a oziroma 8.
Kritina tocCka je oznaCena z x*.
spodaj: Primer: Porazdelitev po
izidih krvnega testa v zdravi in bolni
populaciji. Mozni so pravilni pozitivni
(PP), napacni negativni (NN), pravilni
negativni (PN) in napacni pozitivni
(NP) izidi.

zato seveda zZelimo, da je 1-beta ¢im vedji. To verjetnost moramo dolociti seveda po

porazdelitvi, ki ustreza H1.



Zelimo torej ¢&im vegji alpha in ¢&im vegji 1-beta. Oba odvisna od mejnega x*,

torej sta soodvisna. Tipicna soodvisnost je prikazana na spodniji sliki, ki kaze tako
imenovano krivuljo ROC (Receiver Operating Characteristics). V prej prikazanem
primeru se alpha in 1-beta manjsata z vecanjem x*. C “im bolj se krivulja pribliza
zgornjemu levemu kotu, tem vecjo napovedno moc ima test; v skrajnem primeru (tocka
(o, 1 - B) =(0, 1)) sta populaciji povsem loceni.

1
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Dodatek k poglavju o intervalih zaupanja:
Zgornje in spodnje meje na koliCine, ko signala ne zaznamo

Ce signala ne zaznamo, ali pa je merjena koli¢ina precej blizu napovedi za ozadje,
obicajno postavimo zgornjo ali spodnjo mejo na doloceno opazljivko.

~

Zgled

Oglejmo si kar preprost zgled kjer merimo Stevilo radioaktivnih jeder, a v ¢asu
meritve T ne zaznamo nobenega razpada, zato Zelimo doloditi spodnjo mejo za
razpadni Cas tau pri CL=1-alpha-95% stopnji zaupanja. Obravnavali bomo primer brez
ozadja in z ozadjem. Zaradi preprostosti imejmo v mislih, da je ¢as meritve T mnogo
manjsi od razpadnega casa tau.

(a) NO0=1000 (zacetno stevilo jeder)
T=100 s (cas opazovanja),
n,,=0 (opazeno stevilo razpadnih produktov v vzorcu)
predpostavimo da ni ozadja

- |  P(pN) = LAme N
Verjetnost je porazdeljena po poissonovi porazdelitvi n)
Ta podaja verjetnost za n razpadov ob pogoju, da je povprecno stevilo razpadov v
tem casu barN, kjer je povprecno stevilo razpadov edini parameter porazdelitve. Nasa
prva naloga je torej da dolocimo mejno vrednost parametra N,, pri katerem bo
verjetnost, da opazimo n_vz ali se manj dogodkov (torej tako ekstremno malo

dogodkov ali se manj) enaka alpha=0.05:
+

P(n<=n,, | N,) =«

V nasem primeru je v vzorcu n,, tako ali tako 0, tako da P(n=0 | N,) = a=0.05 =
exp(N,) — N, = 3.0. Ker nismo opazili nobenega dogodka, zakljucimo da je
dejansko pricakovano populacijsko povprecje N razadov v tem casu manjse od 3.0,
torej smo ob 95% stopnji zaupanja dobili interval zaupanja za opazljivki barN in tau

interval zaupanja N<=N, =3.0->7>=7.=9.3h  pri CL=95%

Pri tem smo uporabili, da je povprecno stevilo razpadov barN za T<<tau povezano s
tau preko zpodnjih zvez, kjer Npr(t) oznacuje preostalo stevilo nerazpadlih jeder:

Ny, (t) = Noe Y7, dN,, = —Noe~t/"dt /T ~ —Nydt/T

dt — T, dN,. — —N

~ NoT 1000 - 100s

— Ty i n =9.3h /

NoT
T

_ N=




/(b) NO=1000 (zacetno Stevilo jeder) \
T=100 s (cas opazovanja),
n,,=0 (opazeno stevilo razpadnih produktov v vzorcu)
Ny, = 0.5 : pri tej meritvi pricakujemo v povprecju 0.5 dogodkov ozadja —

to je zaznanih produktov, ki niso posledica razpada temvec suma, kozmicnih zarkov,

Tudi za ozadje pricakujemo Poissonovo porazdelitev stevila dogodkov n, okoli povprecne
vrednosti Ny: P(n_b| Np). Konvolucija dveh Poissonovih porazdelitev je poissonova
porazdeltive zato pricakujemo n dogodkov z verjetnostjo P(n [N+ Np) kjer

N se vedno oznacuje povprecno stevilo dejanskih razpadov. Po vzoru prejsnjega zgleda
zdaj dobimo meje

P(n<=nvz | N* + Nb) =a-> N* + Nb =30 - N* = 3.0 — Nb =3.0—-0.5

interval zaupanja N<=N, = 25->t>=7.=11.1h  pri CL=95%

(c) NO=1000 (zacetno stevilo jeder) +
T=100 s (cas opazovanja),
nvz=1 (opazeno stevilo razpadnih produktov v vzorcu zdaj ni nic a ni dosti vecje kot pricakujemo za ozadje)
N, = 0.5 : pri tej meritvi pricakujemo v povprecju 0.5 dogodkov ozadja —

to je zaznanih produktov, ki niso posledica razpada temvec suma, kozmicnih zarkov,
P(h<=n,, | Ny+ Np) =a ->P(n=0,1| N,+ N,)) =a->N,+ N, =47 > N, = 4.2

interval zaupanja N<=N, =4.2->t>=T1.=6.6h  pri CL=95%

Zgornji intervali zaupanja povedo da je z verjetnostjo CL=0.95 dejanski razpadni cas vecji
od danes spodnje meje T+, s cimer imamo v mislih: pri mngokratni meritvi vzorcev bo v

95% vzorcev dejanski razpadni cas nad vzorcno mejo t«. Pri tem je dejanski razpadni cas
od vzorca do vzorca nespremenjen, zpodnja mejat, pa se od vzorca do vzorca spreminja.

\ /




Zgled: rezultat za zgornjo mejo na relevanten parameter (moc signala mu)

pri dejanskem eksperimentu, ki poroca o pomembnem odkritju

Observation of a new particle in the search for the Standard Model Higgs boson

with the ATLAS detector at the LHC*
ATLAS Collaboration* Spodaj so rezultati kolaboracije ATLAS (med soavtorji so tudi slovenski fiziki)

Observation of a new boson at a mass of 125 GeV with the CMS experiment at
the LHC™

CMS Collaboration*

https://doi.org/10.1016/j.physletb.2012.08.020

Physics Letters B 716 (2012)

https://doi.org/10.1016/j.physletb.2012.08.021

~
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polna crna crta:

zgornja meja na moc signala u pri stopnji zaupnja 95%

the LHC is presented. The datasets used correspond to integrated luminosities of approximately 4.8 fb !
collected at /5 =7 TeV in 2011 and 58 " at /s=48 TeV in 2012. Individual searches in the channels
H—+Z2Z™ 4, H— yy and H — WW® — evu in the 8 TeV data are combined with peeviously
published results of searches for H — ZZ', WW'™), bb and 757" in the 7 TeV data and results from
improved analyses of the ¥ — ZZ'*' — 4¢ and 4 — yy channels In the 7 TeV data. Clear evidence for
the production of a neutral beson with & measured mass of 126.0.0.4 (stat) = 0.4 (sys) GeV is presented,
This observation. which has a significance of 59 standard deviations, corresponding to a background
fluctuation prebability of 1,7 x 10-7, is compatible with the production and decay of the Standard Model
Higgs boson.

N

u=1: SM Higgs

1 = 0: samo ozadje

definicija moci signala u Nexp = N + M N,

i

dogodki

ozadja

signalni dogodki
zaradi Higgsa v SM

/




13. Metoda Monte Carlo

Metoda oziroma simulacija Monte Carlo (MC) je generi¢no ime za kakersen koli postopek,
pri katerem s pomocjo zrebanja nakljucnih Stevil in statisti¢nih vzorcev priblizno
izvrednotimo neko matematicno koli¢ino ali izraz, na primer doloCeni integral ali sistem
enacb, z njim pa lahko reSujemo tudi bistveno splosnejse matematicnofizikalne probleme
[1]. Poudarek je na besedi ‘priblizno’: kakovost resitve je odvisna od velikosti vzorcey, ki si
jih pri racunu lahko privos¢imo. Vendar metoda Monte Carlo z vidika obvladljivosti in
natancnosti raCuna — zlasti pri integraciji v ve¢ dimenzijah z zapletenimi integracijskimi
mejami in pri kompleksnih matemati¢nih modelih — ponuja v primerjavi s standardnimi
numeri¢nimi metodami edino razumno pot.

Numeriéna integracija v ve¢ kot D=10 dimenzionalnem prostoru X z diskretizacijo in
obicajnim sestevanjem po vseh D dimenzijah prakticno ne pride v postev v svoji
najpreprostejsi obliki spodaj, pa tudi njene bolj dodelane razli¢ice v ta namen nikakor niso
smotrne

/g(;f) dF — Y .Y g@n"”, #=iqhP, &= (x1,.,zp), ii=(n,..np), €nN"
ni np

Premnogi fizikalni in nefizikalni problemi zahtevajo integracijo v mnogo vec
dimenzionalnem prostoru kot je na primer D=10. Pri statisti¢ni termodinamiki seStevamo
na primer po vseh konfiguracijah sistema in jih utezimo z Boltzmanovim faktorejm, kar
predstavlja neke vrste D-dimenzionalno vsoto ali integral. Fizikalni problemi, ki jih na
primer reSujem sama z namenom studija moc¢ne interakcije med kvarki, zahtevajo tipicno
integracijo v okoli D~10 000 000 dimenzionalnem prostoru (komentar: toliko je namrec
tock v diskretiziranem prostoru-¢asu, ki ga simuliramo pri obravnavi kvantne teorije polja
na mrezi). Dale¢ najpomembnesi in najbolj uporaben pristop k numericni integraciji v
D>10 dmenzionalnih prostorih je Mote Carlo metoda.

13.1. Numericna integracija in pomembnostno vzorcenje (13.2, 13.3 v knjigi )

Metoda Monte Carlo je klju¢na na najrazli¢nejsih podrocjih in pri najrazli¢nejsih
problemih, a oglejmo si jo na primeru numericne integracije. Kot je navedeno v uvodu, je
skoraj neobhodno potrebna pri integraciji v mnogo-dimenzionalnem prostoru, a zaradi
preprostosti si oglejmo njeno uporabo na primeru integracije v 1 dimenziji, ki jo lahko
sicer opravimo tudi druge preprostejse nacine, morda celo analiti¢no.

Izracunati Zelimo dolocen integral oblike

g — / e, /abg(:v)da:: / 9D e

p(z)

To z metodo Monte Carlo storimo tako, da ga najprej izrazimo z uporabo neke
verjetnostne gostote p(x), ki ji pravimo pomembnostna funkcija (importance function)
Ta ima obicajne lastnosti verjetnostne gostote p(x)>=n0 ter int_a”b p(x) dx=1.



Izbira p(x) je naceloma poljubna, a ucinkovitost Monte Carlo metode moc¢no zavisi od izbire
p(x). Pokazali pa bomo, da so za bolj ucinkovito dolocitev integrala primerni p(x) z vecjo
verjetnostno gostoto tam kjer je g(x) vecja, in p(x) z manjso verjetnostnostno gostoto tam
kjer je g(x) majhna.

Za priblizno dolocitev imntegrala izzrebamo N vrednosti x; (i=1,..,N) ki so porazdeljene v
skladu z verjetnostno gostoto p(x). Kako to napravimo je seveda poglavje zase, a primerne
metode so na primer povezane z verigami Markova (poglavje 13.4 in predvsem Metropolis
Hastingsov algoritem 13.4.1), nam pa to na primer omogoca tudi funkcija
ProbabilityDistribution[p[x], {x, a, b}] v Wolframovi Mathematici.

Integral theta ni nic drugega kot pricakovana vrednost funkcije 0 =F [M]
g(x)/p(x) glede na verjetnostno gostoto p p(z)
N
priblizno pa jo ocenjuje za vzorec z N elementi xi cenilka é o i Z g(%
N ~— p(z;

Lastnosti te cenilke theta: 1=1

(*) Cenilka je nepristranska saj
E[hat theta]=1/N sum_i E[g(xi)/p(xi)]=1/N N E[p(x)/g(x)]=theta

(*) predvsem nas zanima varianca cenilke, za katero zelimo da bo cim manjsa pri dani
velikosti vzorca, kar bo nase vodilo pri izbiri pomembnostne funkcije p(x)

o = T [20] - L e[ 2]

N2 p(X)

T2 (1)) A ) 3o

saj E[g(X)/p(X)]=theta. Zelimo najti p(x) ki minimizira to varianco. Kljuc v zmanjsanju
variance cenilke je v clenu E[g"2/p”2], spodnjo mejo tega clena pa narekuje Jensenova
neenakost

el = (5 ]) = (/o) = ([ o)

Spodnja meja E[g"2/p”2] oziroma enakost p(x) = l9(z)]
neenacbi je dosezena pri f lg(z")| da’

Toda toc¢ne vrednosti integrala vimenovalcu ne poznamo, sicer je sploh ne bi raunali! V
praksi zato iS¢emo funkcijo p(x), ki je ¢im bolj podobna funkciji|g(x) |, torej takSno p(x), da
je razmerje |g(x)|/p(x) po vsem integracijskem obmodju priblizno konstantno.
Pomembnostno funkcijo p(x) torej izberemo tako, da bo z vecjo verjetnostjo vzorcila
obmocja, kjer je |g| velik in manj vzorcila obmocja z majhnim |g| - temu pravimo
pomembnostno vzorcenje (importance sampling)



~

Z/gled (str 290): Kot preprost zgled za ucinkovitost Monte Carlo metode izracunajmo
integral z g(x)=cos(pi x/2)

6=Llcos(%)dx 0y = —

Tega tudi sicer tudi zlahka analiticno dolocimo, in njegova analiticna vrednost thetaD nam
bo sluzilo kot tocna referencna tocka

Najprej se ne menimo za pomembnostno funkcijo in delamo po starem: z vred-
nostmi {x;}; o ", enakomerno porazdeljene spremenljivke X ~ U(0, 1) izracunamo

~ - l »
- : o 2(nr,
0 E a(x;), N E g51(xy) » (13.13)

Varianco var[@ ] ocene 0 v limiti velikih N lahko celo analiti¢no izratunamo:
~ A 1 1 2
lim (62 - 6?) = J cos? (755 ) dx - U cos () dx] ~0.09472. (13.14)

Dobljeno vrednost log,,0.09472 =~ —1.0236 razberemo tudi iz zgornjega grafa
na sliki (desno), ki prikazuje pribliZzek za varianco v odvisnosti od N.

2 , . . : 0

rlogl(;(vafr‘“[é] -YN) '
racun z g(x)

racun z g(x)/p(x)
0.5}

() " A A A A A A A A

0 0.2 0.4 0.6 0.8 1 1 2 3 4 5 6 T 8
X log,, N

Slika 13.4 — UteZenje inlcgranda g s pomembnostno funkcijo p. [LEvo] Grafa funkcij

g(x) = cos(mx/2) in p(x) = —(l ~ x?). |[DEsNO] Varianca ocene MC brez uporabe

pomembnostne funkcije (zgornji graf) in s pomembnostno funkcijo p (spodnji graf).

Zdaj pa si izberimo Pomembnostno funkcijo p, ki je “cim bolj podobna” funkciji
g, denimo p(x) ). Funkcija p je na [0, 1] nenegativna in normirana
na 1, torej zadosca pogOJem za verjetnostno gostoto. Ker zdaj racunamo integral

g(x)
p(x) P ) 4%,

moramo vrednosti x; v vsotah

2
jolsax) &1l (ax)
0 = _NZ( ) ; (13.15)

\_ N & p(xi)’ P
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zrebati v skladu z gostoto p! (Nakljucne vrednosti v skladu s taksno porazdeli-
tvijo dobimo s kak$no metodo iz razdelka|C.2!) Caka nas prijetno presenecenje:

lim (62 - 82) = 0.000990 .
N o

S posreceno izbiro funkcije p smo torej dosegli priblizno stokrat manjso vari-

anco kot v primeru ocene (13.14); glej spodnji graf na sliki|13.4|(desno), ki se za

velike N ustali pri log,, 0.000990 = —3.0044. q

Preiskusimo odstopanje dobljenega integrala od prave vrednosti (theta-theta0)
za obe pomembnostni funkciji tudi z Mathematico, pri cemer v obeh primerih to
napravimo za 5 vzorcev: (gradiva: MC-str290.nb)

theta® = Integrate[Cos[Pi*x /2], {x, 0, 1}];
glx_ ] =Cos[Pixx/2];
Print["thetad=", thetad, "=", N[thetad]]

2
theta0=--0.63662
n

- n=10000;
pPl{x_] :=13
Do[dist = ProbabilityDistribution[pl([x], {x, 0, 1}];
xvec = RandomVariate[dist, n];
thetal =1/n+Sum[g[xvec[i]] /pl[xvec[il]l, {i, 1, n}];
Print["vzorec ", j, ": theta-theta0=", thetal - theta®], {(j, 1, 5}]
Print["Standardni odkon iz zgornje funkcije na sliki 13.4b:
~Sqrt[0.1]/Sqrt[n]=", Sqrt[0.1] /Sqrt([n]]
vzorec 1l: theta-theta0--0.002364
vzorec 2: theta-theta0-=-0.00565783
vzorec 3: theta-theta0-=-0.00350846
vzorec 4: theta-theta0-=0.00210052
vzorec 5: theta-theta0-=0.000517369

Standardni odkon iz zgornje funkcije na sliki 13.4b:
-Sqrt[0.1]/Sqrt[n]=0.00316228

:n=10000;
P2[x_] :=3/2% (1-x72);
Do[dist = ProbabilityDistribution[p2([x], {x, 0, 1}];
xvec = RandomVariate[dist, n];
theta2 = 1/n«Sum[g[xvec[i]] /p2[xvec[il]l, {i, 1, n}];
Print["vzorec ", j, ": theta-theta®=", theta2 - theta®)], {j, 1, 5)}]
Print["Standardni odkon iz spodnje funkcije na sliki 13.4b:
~Sqrt[0.001]/Sqrt[n]=", Sqrt[0.601] /Sqrt[n]]
vzorec 1: theta-theta0-0.0000408722
vzorec 2: theta-theta0-0.000339246
vzorec 3: theta-theta0-0.00052314
vzorec 4: theta-theta0-0.000362635
vzorec 5: theta-theta0-=0.000187948

Standardni odkon iz spodnje funkcije na sliki 13.4b:
~Sqrt[0.001]/Sqrt[n]=0.000316228




13.2 Metoda Monte Carlo na osnovi verig Markova

V prejsnjem razdelku smo opredelili zakaj bi potrebovali nacin kako izzrebamo nakjucne
vrednosti x, ki so porazdeljene v okviru poljubne porazdelitve p(x). Spodaj bomo
obravnavali primer kako izzrebati zvezne naklju¢ne vrednosti x na integracijskem intervalu
[a,b] v skladu s poljubno porazdelitvijo, ki je normirana na tem intervalu; primer ki bi bil
relevanten za zgled iz prejSnjega razdelka je interval [a,b]=[0,1] in verjetnostna gostota
p(x)=3/2 (1-x2).

V ta namen se napogosteje uporablja verige Markova (poglavje 12 v knjigi). V verigi
Markova obravnavamo zaporedje naklju¢nih spremenljivk ob zaporednih ¢asih

1, 2,..,  t1, t  t+l,..
fu(x;1) fx(%:2) fy(x;t-1) fy(x;t) fi(x;t+1)

Pri vsakem casu ima naklju¢na spremenljivka X neko porazdelitev po intervalu [a,b], in ta
porazdelitev fy(x;t) je od ¢asa odvisna. Posebnost Markovih verig je, da je verjetnost za
stanje sistema ob casu t odvisna le od njegovega stanja pri casu t-1, vsa prejSnja stanja pa
SO za razvoj sistema nepomembna — pravimo da gre za proces brez spomina. Pri teh
procesih je torej relevantna prehodna amplituda za dolocen korak P(x’|x), ki predstavlja
pogojno verjetnostno gostoto da vrednost x v naslednjem koraku preide v vrednost x’,
oboja pa sta v nasem primeru realni Stevili na intervalu [a,b]. P(x’ | x) pravimo tudi
prehodna amplituda oz tranzicijska amplituda in se v literaturi pogosto oznaci z T(x->x").
V naslednjem razdelku si bomo ogledali zgled metode kako izbrati P(x'|x), da bo Markova
veriga vodila k Zeljeni porazdelitvi naklju¢nih spremenljivk x.

Na osnovi verig Markova zasnujemo ucinkovito metodo za Zrebanje naklju¢nih vrednosti v
skladu s poljubno, lahko tudi zelo zapleteno verjetnostno porazdelitvijo (angl. Markov-
Chain Monte Carlo, MCMC) [9]. Bistvo metode je v tem, da izZzrebane vrednosti tvorijo
stanja verige Markova, katerih ravhovesna porazdelitev je ravno zahtevana verjetnostna
porazdelitev. Relevantne verige Markova namrec po dolo¢enem Casu dosezejo ravnovesno
porazdelitev - to je tisto pri kateri se verjetnostna gostota s Casom vec ne spreminja.
Ravnovestno porazdelitev se v literaturi pogosto oznaci s (x) in le ta je ravnovesna, ¢e
zadosca enacbam podrobnega ravnovesja (detailed balance equations)

P(x"|x) rt(x) = P(x|x’) m(x’), zavsakxinx’naintervalu [a,b]

saj se morajo biti prehodi iz x v x’ enako pogosti kot prehodi x” v x.

Za primer numeric¢ne integracije iz prejSnjega razdelka nas bi, na primer, zanimalo kako
dosedi ravnovesno porazdelitev i(x) z naslednjo odvisnostjo od x: 1t(x)=3/2 (1-x"2).

V naslednjem razdelku si bomo ogledali zgled metode kako izbrati P(x'|x), da bo Markova
veriga tezila k Zeljenemu ravnovesnemu stanju m(x).



Metropolis Hastingsov algoritm za tvorbo ravnovesne porazdelitve pi(x)

Po tem algoritmu po dolo¢enem casu tvorimo poljubno ravnovesno porazdelitev m(x),
ki zadosca zgornji enacbi podrobnega ravnovesja : P(x’|x) mt(x) = P(x|x’) rt(x’).

V mislih imejmo eno-dimenzionalno porazdelitev ri(x) nakljucne zvezne spremenljivke x
na intervalu [a,b].

Potrebni koraki, ki jih le v grobem navedemo:

Za celoten postopek izberemo tudi poljubno prehodno verjetnostno amplitudo q(x’|x),
na primer enakomerno, normalno,...

1) ob zacetnem casu izberi poljuben x0 na intervalu [a,b]
2) iz x pripravi za naslednji korak x’ tako da x’ izzrebas v skladu z izbrano q(x’ | x)

3) Izberi pripravljen x’ z verjetnostjo rho (acceptence probability)
q(x|x’)m(2)
q(@'|x)m(x)

Ce x’ niizbran, v naslednjem koraku obdrzi x.
Vrednosti x obdrzi tudi ce je x” izven intervala [a,b]

p(z',x) = min| 1,

4) pojdi na korak 2

Pripadajoca prehodna amplituda P(x’|x) =p(x’,x) q(x’ | x) zadosca enacbi podrobnega
ravnhovesja P(x’ | x) pi(x) = P(x|x’) pi(x’) za poljuben q(x’|x),
zato veriga Stevil po dolocenem ¢asu ustreza
ravnovesni porazdelitvi pi.

Algoritma generirata ravnovesno porazdelitev i, tudi ¢e ne poznamo njene
normalizacijske konstante, saj se ta v razmerju m(x’)/m(x) pokrajsa. Poleg tega je
fascinantno, da jo generirata ne glede na obliko funkcije q!

Zagotoviti moramo le, da imata 1t in g isto definicijsko obmocje. Kljub temu z

vidika ucinkovitosti in natancnosti algoritma ni vseeno, kaksno funkcijo q izberemo. Za
dodatne informacije glej [13].

Poudarimo, da je ta metoda izjemno dragocena za mnoge namene. Z njo lahko recimo
tvorimo konfiguracije sistema, kjer je verjetnostna porazdelitev raznih konfiguracij
Boltzmanova. Primer konfiguracije pri 1D spinski verigi je 1T ..n |,

torej gre za D=2"n dimenzionalen problem, Zeljena Markova veriga pa bi lahko tvorila
konfiguracije z verjetnostjo e”(-Ei/kT).



11. Informacija in informacijska entropija
11.1 Mere informacije in informacijske entropije

Informacija

Ena od mozZnih poti k definiciji entropije vodi prek pojma informacije. Osvetlimo
to zvezo z obravnavo diskretne nakljucne spremenljivke X, ki lahko zavzame
kon¢no mnogo vrednosti {x1,Xx2,...,Xn} Z verjetnostmi {p1, p2,...,Pn}, Kjer je
pi = P(X = x;) in X" | p; = 1. Predstavljamo si, da z vsakim izidom poskusa s
takSno naklju¢no spremenljivko, na primer z dogodkom (X = x), ki se zgodi z
verjetnostjo p = P(X = x), dobimo informacijo I(p). Vrednost x razumemo kot
“signal” ali “sporocilo”, ki nosi informacijo I(p).

Kako izmerimo njeno koli¢ino? Intuitivno je jasno, da mora imeti mera in-
formacije logaritemski znacaj [1,2]. Ce se namre¢ dogodka z verjetnostma p; in
p2 zgodita neodvisno drug od drugega (verjetnost p;p2), pricakujemo, da bo in-
formacija iz takSnega kombiniranega izida enaka vsoti informacij iz posameznih
izidov: stavka “snezi” in “danes je sreda” nosita skupaj natanko toliko informa-
cije kot stavek “snezi in danes je sreda”. Primerna mera informacije naj bi bila
torej aditivna,

I(p1p2) = 1(p1) +1(p2) .
Poleg tega si od funkcije I(p) Zelimo Se nenegativnost, I(p) > 0, monotonost,
p1 < p2 = I(p1) > I(p2), in zveznost: majhne spremembe v p pomenijo
majhne spremembe v I(p). Kar sama od sebe se ponuja funkcija

I(p) = —-Clog, p

in pokazati je mogoce, da je v resnici tudi edina mozna [3]. Tako definirana
mera ima tudi smiselni lastnosti I(1) = 0 (gotov dogodek ne prinasa nikakr-
Sne informacije) in lim,_o I(p) = « (zelo neverjeten dogodek nosi zelo veliko
informacije). Poljubno realno konstanto C lahko z zvezo log, x = logx/logb
skrijemo v bazo logaritma in je zato nepomembna. Ce se dogovorimo za b = 2
in C = 1, informacijo merimo v bitih, Ce izberemo b = e in C = 1, pa v natih, ki
jih od bitov loci zgolj faktor log 2.

koli¢ina informacije

I(p’b> = — log Di (definicija)
Informacijska entropija za diskretne nakljucne spremenljivke

Od informacije do informacijske entropije je od tod le e korak. Ce se po-
samezne vrednosti x; pojavljajo z verjetnostmi p;, i = 1,2,...,n, je povprecna
kolicina sprejete ali “nastale” informacije enaka

n
informacijska entropija
H za diskretne xi H(pl, ~7pn) = E[I] = —logp; = — Zpi logp; (11.1)
(definicija) =1

To “tehtnico” informacije po Shannonu [3] imenujemo entropija koncne verjet-
nostne porazdelitve.



Zgled Primetu poStenega kovanca sta grb in cifra LI
enako verjetna: p; = p2 = % Entropija nakljucne
spremenljivke s takSno porazdelitvijo je

H(pllp‘Z)

H=—(%log2%+%log2%)=l.

Z metom poStenega kovanca dobimo torej natanko

en bit informacije. Ce kovanec ni posten, tako da 0

je na primer p; = 29—0 in pp = %—(1), pa dobimo

0 0.5 1
p1=1-p2

9 9 , 11 11\
H = — (5 10gy o5 + 35 1og, 35) ~ 0.9928 < 1.

Entropija se je zmanjSala, saj je zaradi kovanca, ki “vlece” v eno stran, izid meta
manj negotov. Odvisnost H od p; = 1 — p» prikazuje slika. <

J

Kako lahko definirano entropijo H interpretiramo?

Bistvo slehernega nakljuCnega procesa je negotovost. 1zidi niso predvidljivi,
vendar se s sprejetjem signala (ene same vrednosti x; od n moznih) nekoliko
zmanjsa negotovost, v kateri smo bili pred sprejetjem. Izraz (11.1) smemo torej
razumeti kot merilo za takSno negotovost. Zavedati pa se moramo, da H meri
informacijsko entropijo, ki je ne smemo mesati s termodinamsko entropijo S. V
nadaljevanju izraz ‘entropija’ pomeni informacijsko entropijo.’

Mera entropije (11.1) ima vrsto ugodnih lastnosti. Negotovost gotovega do-
godka je ni¢, H(p = 1) = 0. Tudi negotovost nemogocega dogodka je nic,
H(p = 0) = 0, saj ni v dogodku, ki se nikoli ne zgodi, ni¢ nejasnega, poleg
tega je tudi formalno lim,_o plog p = 0. Vrednost entropije je odvisna izkljucno
od verjetnostne porazdelitve {p;} in od nobene druge lastnosti, ki bi jo utegnili
pripisati signalu. Je neodvisna od permutacij med p; in se ne spremeni, ¢e n
dogodkom dodamo nemogoc¢ dogodek, H(p1,p2,...,pPn) = H(p1,p2,...,Pn,0).
Entropija je maksimalna, ko smo “maksimalno negotovi”, to je tedaj, ko so vsi
izidi enako verjetni: p1 = p2 = - - - = pn = 1/n (enakomerna porazdelitev). Za
katero koli drugo porazdelitev ali ob kakrSnem koli pogoju za p; se entropija
zmanjsa (glej zgled na str. 250|in [5]).

Informacijska entropija za zvezne nakljucne spremenljivke

Entropijo zvezne verjetnostne porazdelitve definiramo po analogiji z (11.1). Ce
je X zvezna nakljucna spremenljivka z verjetnostno gostoto f, je entropija njene

porazdelitve enaka informacijska entropija H

H(X) = - ro f(x)log f(x)dx. zazveznex (11.3)
- (definicija)

Zgled Entropija enakomerne porazdelitve U(a, b) oziroma enakomerno poraz-
deljene zvezne nakljucne spremenljivke X ~ U(a, b) je

1
b-a

Rezultat je odvisen samo od razlike b — a. To pomeni, da imajo vse enakomerne
porazdelitve z isto Sirino intervala isto entropijo. <

H(X) =

b
logbiaja dx =log(b —a). (11.4)




11.2 Nacelo maksimalne informacijske entropije

Zapisali bomo nacelo maksimalne entropije, navedli nekaj primerov, in nato nasteli nekaj
razmislekov, ki so bili vodilo pri zapisu tega nacela.

Nacelo maksimalne informacijske entropije pravi: Sistemu, o katerem imamo nezadostne

podatke in spostuje dolocene vezi, je Zelimo pripisati verjetnostno porazdelitev nakljucnih
spremenljivk. Tedaj je po nacelu maksimalne entropije sistemu najbolj "smiselno" pripisati
verjetnostno porazdelitey, ki ji ustreza maksimalna informacijska entropija pri danih vezeh.

Gre za nacelo, ki se ga v sploSnem ne da matemati¢no dokazati, a vodi do mnogih izjemno
pomembnih verjetnostnih porazdelitev ki so realizirane v naravi. Navedimo nekaj primerov,
kjer pomembne porazdelitve sledijo pri danih "vezeh":

* enakomerna porazdelitev ima najvecjo entropijo med vsemi porazdelitvami, kjer so
vrednosti porazdeljene na koncnem intervalu. To velja za diskretne ali zveze
porazdelitve (knjiga 11.2, str 250).

- Kor primer smo ze obravnavali diskretno porazdelitev pri konancu, kjer maksimalno
entropijo dobimo za enakomerno porazdelitev p1=p2=1/2.
- Pri kocki da maksimalno entropijo p_i=1/6, kot bomo pokazali z zgledom spodaj.

* normalna porazdelitev ima najvecjo entropijo med vsemi zveznimi porazdelitvami z
danim povprecjem in varianco, kjer so vrednosti porazdeljene na celotnem intervalu
x=[-inf,inf]. (knjiga 11.4, str 257)

* Boltzmanova porazdelitev P(E;)=e" E ima najvecjo entropijo med vsemi z dano
pricakovano vrednostjo energije, kot bomo pokazali spodaj (knjiga str 253).

* Bose-Einsteinova in Fermi-Diracova porazdelitev tudi ustrezata nacelu maksimalne
entropije pri dolocenih vezeh (knjiga 11.3.5in 11.3.6)

Razmisleki, ki vodijo do zgornjega nacela:

Videli smo, da je v opazovanju nakljucnega procesa “negotovost” — torej infor-
macijska entropija — najvecja, ko so vsi njegovi izidi enako verjetni. To spo-
znanje je v preprosto obliko strnil Ze Laplace v nacelu nezadostnega razloga ali
indiferentnosti (angl. principle of insufficient reason / indifference). ¢e nimamo
razloga, da bi kakor koli razlikovali med dvema ali vec izidi, je najboljSa strate-
gija ta, da jih obravnavamo kot enako verjetne.

Nacelo maksimalne entropije to vodilo povzema in nadgrajuje: v kakrSnih
koli okoli§¢inah, kjer imamo na voljo nepopolno informacijo — na primer vzorec
izidov naklju¢nega poskusa — iSCemo za njihov kvantitativni opis verjetnostno
porazdelitev, ki je konsistentna z vso znano informacijo, obenem pa je karseda

“nezavezujoca”, “negotova”, “prosta” glede na neznano informacijo®, Laplaceov



11.3: Zgledi z maksimalno entropijo;
iskanje ekstrema pri danih vezeh z metodo Lagrangevih multiplikatorjev:

Marcun, matematika 2, poglavie 4.2.5

TRDITEV 4.29 (Lagrangeova metoda multiplikatorjev). Naj bo f : D — R
totalno odvedljiva skalarna funkcija n spremenljivk, definirana na odprti podmnoZici
D C R™, in naj bo g : £ — R™ zvezno odvedljiva vektorska funkcija n spremenljivk,
definirana na odprti podmnozZici £ C R™. Naj bo a € £ ND taksna tocka, da je
g(a) = 0 in da je rank(Dg)(a) = m. Ce ima funkcija f v tocki a vezan ekstrem pri
vezi g, potem obstajajo taksne realne konstante Ay, Aq, ..., A\, da velja

(Vf)(a ZA (Vg:)(a

V(f - Z Aigi) =0

iscemo ekstrem L=f— Z NiGi
)

Lagrangeve funkcije

Zgled Po Laplaceu metanju poStene kocke ustreza enakomerna porazdelitev
pi=1/6,1=1,2,...,6. Do iste ugotov1tve vodi tudi nacelo maksimalne entro-
pije. Maksimizirati moramo — Zl 1 pilog pi ob pogoju Zl 1 Pi = 1. Za to nalogo
se kar ponuja klasi¢na metoda Lagrangeevih multiplikatorjev iz variacijskega ra-
C¢una. Odvajamo Lagrangeevo funkcijo

6 6
L=-3.  pilogpi-A (Zi=1 pi - 1)

po p; in odvod postavimo na ni¢. Sledi 9L/0p; = —logpi—1-A = 0inp; = e A1,
Torej so p; neodvisni od i (z drugimi besedami, vsi enaki), njihova vsota pa
mora biti 1. Potemtakem p; = p2 = --- = pg = 1/6, glej sliko[11.2] (levo).
V nadaljevanju ta zgled razsSirimo v sploSnejSe orodje na osnovi Lagrangeevih
multiplikatorjev. <

0.3

0.2t
<
0.1¢

0

Slika 11.2 — Diskretna porazdelitev vrednosti pri metu igralne kocke in nacelo maksi-
malne entropije. [LEVO] Normirana porazdelitev brez omejitev (vezi).




4 Zgled N

11.3.3 Maxwell-Boltzmannova porazdelitev

Denimo, da so v fizikalnem sistemu na voljo energijski nivoji z enodel¢nimi ener-
gijami &, &2,..., &y, Ki jih delci zasedajo z verjetnostmi pi, p2,...,pn. Naj bo
pricakovana vrednost energije, &, predpisana. PoiS¢imo verjetnostno porazde-
litev delcev, ki je skladna s predpostavko maksimalne entropije. Maksimizirati
moramo entropijo z vezema

=

n
>pi=1, D piEi=¢, (11.15)
i=1 1

torej Lagrangeevo funkcijo

n / n n
L=- zi=1 pilogpi — (Ao — 1) (Zi=1 pi— 1) - A1 (Zi=1 Pi&i — E) ;

Dobimo 0L£/0p; = —log pi —Ag— A& = 0 oziroma p; = e Me A& = ge~M&i kjer
jei=1,2,...,n. To vstavimo v enacbi (11.15), od koder sledi
e—)\lfi Z?:l Ei e—/\lfi
A e TENAS NS —

Ce postavimo 1/A; = kgT, kjer je kg Boltzmannova konstanta, ta izraza podajata
KMaxwell-Boltzm::mnovo porazdelitev (glej tudi podrazdelek 11.3.4). )




