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Abstracts
Nuno A. M. Araujo, Optimal nets for self-folding Kirigami
Three-dimensional  shells  can  be  synthesized  from the  spontaneous  self-folding  of  two-
dimensional templates of interconnected panels, called nets. However, some nets are more
likely to self-fold into the desired shell under random movements. The optimal nets are the
ones that maximize the number of vertex connections, i.e., vertices that have only two of its
faces cut away from each other in the net.  Previous methods for finding such nets are
based on random search and thus do not guarantee the optimal solution. We proposed a
deterministic procedure [1]. Our method allows not only to design the self-assembly of much
larger shell structures but also to apply additional design criteria, as a complete catalog of
the nets with the maximum number of vertex connections is obtained.
[1] N. A. M. Araujo, R. A. da Costa, S. N. Dorogovtsev, J. F. F. Mendes, Physical Review
Letters 120, 188001 (2018).

Ginestra Bianconi, The dynamics of higher-order networks: the effect of topology and
triadic interactions
Higher-order  networks  capture  the  interactions  among  two  or  more  nodes  in  complex
systems ranging from the brain to chemical reaction networks. Here we show that higher-
order interactions are responsible for new dynamical processes that cannot be observed in
pairwise  networks.  We  will  cover  how  topology  is  key  to  define  synchronization  of
topological  signals,  i.e.  dynamical  signal  defined  not  only  on  nodes  but  also  on  links,
triangles and higher-dimensional simplices in simplicial complexes. Interesting topological
synchronization dictated by the Dirac operator can lead to the spontaneous emergence of a
rhythmic  phase  where  the  synchronization  order  parameter  displays  low  frequency
oscillations which might shed light on possible topological mechanisms for the emergence
of brain rhythms. We will also reveal how triadic interactions can turn percolation into a fully-
fledged dynamical process in which nodes can turn on and off intermittently in a periodic
fashion  or  even  chaotically  leading  to  period  doubling  and  a  route  to  chaos  of  the
percolation order parameter.

Stefano Boccaletti, Structure, processes and dynamics of networks with higher order
interactions
All  the  beauty,  richness  and  harmony  in  the  emergent  dynamics  of  a  complex  system
largely depend on the specific way in which its elementary components interact. The last
twenty years have seen the birth and development of the multidisciplinary field of Network
Science, wherein a variety of distributed systems in physics, biology, social sciences and
engineering have been modelled as networks of coupled units, in the attempt to unveil the
mechanisms underneath their observed functionality.
But there is a fundamental limit in such a representation: networks capture only pairwise
interactions,  whereas the function  of  many real-world  systems not  only  involves dyadic
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connections, but rather is the outcome of collective actions at the level of groups of nodes.
For  instance,  in  ecological  systems,  three  or  more  species  may  compete  for  food  or
territory, and similar multi-component interactions appear in functional and structural brain
networks,  protein  interaction  networks,  semantic  networks,  multi-Authors  scientific
collaborations, offline and online social networks, gene regulatory networks and spreading
of consensus or contagious diseases due to multiple, simultaneous, contacts. Such multi-
component  interactions  can  only  be  grasped  through  either  hypergraphs  or  simplicial
complexes, which indeed have recently found a huge number of applications in social and
biological contexts, as well as in engineering and brain science.
In my talk, I will describe a series of questions which arise when one goes beyond the limit
of pairwise interactions in a networked system. In particular,  I  will  try to focus on some
structural issues of these new objects, such as the need of properly redefining centrality and
rankings of nodes, as well as on a series of new emerging phenomenologies (such as the
setting of synchronization and game equilibria) that occur on top of such new objects.

Lucille Calmon, Dirac Synchronization: explosive transition and rhythmic phase
Recently topology has been shown to be key to capture higher-order network dynamics. In
particular,  topology provides the mathematical  tools to treat  the dynamics of  topological
signals: i.e. dynamical variables defined not only on nodes, but also links and higher-order
simplices in a simplicial complexes. Indeed it was found in [1] that topological signals of a
given dimension can synchronize,  and the dynamics  is  explosive  when the coupling  is
global and adaptive. This raises several important questions: how can we treat and couple
dynamics of signals of different dimensions? Can we define a local and topological coupling
between  phases  associated  to  simplices  of  different  orders?  Here  we  propose  Dirac
Synchronization  [2],  a  mathematical  framework  that  uses  the  recently  proposed  Dirac
operator [3] to couple locally and topologically oscillating phases associated to nodes and to
links  of  a  network.  This  general  framework  couples  topological  signals  of  different
dimensions introducing a phase lag in the dynamics of the phases that depends on the
upper and lower adjacent neighbouring signals. We find in [2] that the dynamics of Dirac
synchronization  is  explosive  for  signals  on  fully  connected  networks.  By  investigating
numerically  and  analytically  Dirac  synchronization,  we  reveal  that  the  phase  diagram
contains  a  discontinuous  forward  phase  transition,  and  the  backward  transition  is
continuous.  Our  theoretical  results  are  in  excellent  agreement  with  our  numerical
simulations and show that this hysteresis loop is thermodynamically stable. We also find
that  the  coherent  phase  of  this  dynamics  is  non-stationary,  and  the  complex  order
parameter coherently oscillates at an emergent non-zero frequency. This exotic rhythmic
phase is a very special feature of Dirac synchronization dynamics, which can shed light on
topological mechanisms for the emergence of brain rhythms. These results will be extended
in the future to reveal further interplay between real-world network topology and geometry
and dynamics.
[1] A.P Millan, J.J. Torres, and G. Bianconi, Explosive higher-order Kuramoto dynamics on
simplicial complexes, Phys. Rev. Let. 124, 218301 (2020).
[2]  L.  Calmon, J.G. Restrepo, J.J.  Torres, and G. Bianconi,  Topological  synchronization:
explosive transition and rhythmic phase, arXiv:2107.05107, (2021).
[3]  G.  Bianconi,  The  topological  Dirac  equation  of  networks  and  simplicial  complexes,
JPhys. Complexity 2, 035022 (2021).

Malajaya Chutani, Bosiljka Tadic and Neelima Gupte, Patterns of phase
synchronization on high-diemnsional simplicial complexes
We study the phase synchronization of simple Kuramoto oscillators attached to the nodes in
two  classes  of  high-dimensional  simplicial  complexes.  Specifically,  we  consider  (a)
simplexes of  different orders (up to 14-clique) attached to the brain hubs in the human
connectome; (b) mono-clique complex consisting of geometrically assembled 5-cliques. The
leading pairwise coupling promotes a continuous synchronization in both systems, leading
to complete synchrony for strong positive coupling. In contrast, a partial synchronization
occurs, with different order parameter values, when the pairwise coupling is negative. The
addition of the triangle-based interactions changes the synchronization curve and opens the
hysteresis  loop,  as  shown in  [1].  This  presentation  focuses  on  the  time  trajectories  of
individual phases, which are behind the observed partial synchronization, primarily for the
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negative pairwise couplings. We have observed co-evolving groups of nodes with partially
synchronized phases.  Interestingly,  these groups of  trajectories move around the phase
circle at different speeds in the case of the human connectome complexes; consequently,
such phase evolution patterns lead to temporal oscillations of the global order parameter.
More  precisely,  the  time fluctuations  of  the  order  parameter  possess multi-scale  fractal
features  and  long-range  temporal  correlations  [2].  The  oscillatory  patterns  and  the
corresponding  quantitative  indicators  of  multifractal  fluctuations  vary  with  the  coupling's
strength (and sign), which correlates with the number of partially-synchronized groups and
their phase evolution velocity. In contrast, the partial synchrony in the 5-cliques assembly
results in a dominant weakly synchronized group of nodes with uniformly moving phases,
resulting in steady order-parameter evolution. These results indicate the relevance of the
composition  of  simplicial  complexes  and  how  they  are  embedded  into  mesoscopic
communities and global network architecture, anatomically constrained in the case of the
human connectome.
[1]M. Chutani, B. Tadic, N. Gupte: Hysteresis and synchronization processes of Kuramoto
oscillators  on  high-dimensional  simplicial  complexes  with  competing  simplex-encoded
couplings, Phys. Rev. E 104, 034206 (2021)
[2] B. Tadic, M. Chutani, N. Gupte: Multiscale fractality in partial phase synchronization on
simplicial complexes around brain hubs, Chaos Solitons and Fractals, (in press) (2022)

Sergey Dorogovtsev, Rich phase diagrams for networks with overlapping layers
I  survey  a  set  of  percolation  problems  for  multilayer  networks  having  some  edges
overlapping with edges in other layers. For a mutually connected component problem, it is
well  understood  that  the  phase  transition  is  discontinuous  for  any  finite  fraction  of
overlapping edges, providing a simple phase diagram. This result  was derived by three
different techniques. On the other hand, a generalization of the $k$-core problem to such
networks provides a set of more complicated phase diagrams depending on the number of
layers and on how these layers are overlapped. These phase diagrams contain the lines of
continuous and discontinuous transitions connected in various ways.
[1] G. J.  Baxter,  G. Bianconi,  R. A. da Costa, S. N. Dorogovtsev, and J. F. F. Mendes,
Correlated edge overlaps in multiplex networks, Phys. Rev. E 94, 012303 (2016).
[2] N. Azimi-Tafreshi, J. Gómez-Gardenes, and S. N. Dorogovtsev, $k$-core percolation on
multiplex networks, Phys. Rev. E 90, 032816 (2014).
[3] G. J. Baxter, R. A. da Costa, S. N. Dorogovtsev, and J. F. F. Mendes, Weak Multiplex
Percolation (Cambridge University Press, Cambridge, 2021).

Dibakar Ghosh, Higher-order interactions promote chimera and synchronization states
We will discuss two collective states, namely chimera and synchronization states, in higher-
order  interaction  networks.  Since  the  discovery  of  chimera  states,  the  presence  of  a
nonzero phase lag parameter turns out to be an essential attribute for the emergence of
chimeras  in  a  nonlocally  coupled  identical  Kuramoto  phase  oscillators’  network  with
pairwise interactions. Recently, we report the emergence of chimeras without phase lag in a
nonlocally  coupled identical  Kuramoto network  owing to  the introduction  of  nonpairwise
interactions. The influence of added nonlinearity in the coupled system dynamics in the form
of simplicial complexes mitigates the requisite of a nonzero phase lag parameter for the
emergence of chimera states. For synchronization state, the interplay between higher-order
interactions topology and coupling configurations is not well  explored yet.  We study the
stability for synchronization state in simplicial  complexes with multiple interaction layers.
Although  more  recent  research  has  focused  on  static  networks  with  higher-order
interactions,  such  group  interactions  have  not  yet  been  considered  in  the  context  of
temporal  networks.  Recently,  we  derive  the  stability  for  synchronization  in  time-varying
higher-oredr interactions.
1. S Majhi, M Perc, and D Ghosh, Dynamics on higher-order networks: A review, Journal of
the Royal Society Interface 19 (188), 20220043 (2022)
2.  S  Kundu,  and  D Ghosh,  Higher-order  interactions  promote  chimera  states,  Physical
Review E 105 (4), L042202 (2022)
3. MS Anwar, and D Ghosh, Intralayer and interlayer synchronization in multiplex network
with higher-order interactions, Chaos: An Interdisciplinary Journal of Nonlinear Science 32
(3), 033125 (2022)
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4. MS Anwar and D Ghosh, Stability of synchronization in time-varying simplicial complexes
(in preparation) /font>

Polina I. Kakin, Self-organized criticality: renormalization group analysis of a simple
model that elucidates interplay between intrinsic dynamics and external disturbances
The Hwa-Kardar model of a “running sandpile” is a stochastic equation for a coarse-grained
field that describes evolution of anisotropic system with self-organized criticality [Phys. Rev.
Lett.  62,  1813  (1989);  Phys.  Rev.  A  45,  7002  (1992)].  Using  the  Martin-Siggia-Rose-
Janssen-de Dominicis formalism one can cast the equation into a field theory that can be
then studied with the renormalization group (RG) analysis. The latter allows one to explore
“critical” points (RG equations fixed points) that determine universality classes and related
critical exponents. We use this investigative setup to study competition between intrinsic
dynamics and external disturbances by adding random motion of the environment modelled
by Gaussian velocity ensembles or by the Navier-Stokes stochastic equation. While chaotic
external  flows are  known to  dramatically  affect  critical  behaviour,  we found that  it  is  a
contest between strongly anisotropic intrinsic dynamics and isotropic external disturbances
that produce the most interesting results. Isotropic flow may “wash away” the anisotropy of
the system altogether but surprisingly it does not always preclude the restoration of original
strong anisotropy via highly nontrivial  mechanism. New crossover universality  class can
also appear where the anisotropy survives, but becomes “weakened” in a sense that there
is no longer two independent dimensions corresponding to different directions. Anisotropic
flow, on the other hand, brings interesting results when Hwa-Kardar model is altered to
include a columnar (time-independent or spatially quenched) random noise instead of the
white noise. Fixed points in this case turn out to have overlapping stability regions; the
situation may be interpreted as a universality violation. It is especially interesting that the
same model without external flow does not predict this.

Jasper van der Kolk, M. Angeles Serrano, and Marian Boguna, Topological phase
transitions in the geometric configuration model
J The (soft) configuration model (CM) has been extremely successful as a null model for
real networks. Given a degree sequence from a real network, the CM is defined as the
maximally  random  graph  ensemble  with  that  given  (expected)  degree  sequence.  A
remarkable property of this model is the fact that interactions among nodes are pairwise. In
its  soft  version,  this  is  equivalent  to  say  that  any  pair  of  nodes  i,j  are  connected
independently with probability pij ~ κiκj/N, with κi and κj accounting for the expected degrees
of  nodes i  and j.  However,  the CM model  is  unable to generate finite  clustering in  the
thermodynamic  limit  because  the  connection  probability  is  inversely  proportional  to  the
system size. To overcome this problem, we introduced the network geometry paradigm [1],
which  main  hy-  pothesis  states  that  the  architecture  of  real  complex  networks  has  a
geometric origin. The nodes of the complex network can be characterized by their positions
in an underlying metric space so that the observable network topology—abstracting their
patterns of interactions—is then a reflection of distances in this space. This simple idea led
to  the  development  of  a  very  general  framework  able  to  explain  the  most  ubiquitous
topological  properties  of  real  networks,  namely,  degree  heterogeneity,  the  small-world
property, and high levels of clustering. Network geometry is also able to explain in a very
natural way other non-trivial  properties, like self-similarity and community structure, their
navigability  properties,  and  is  the  basis  for  the  definition  of  a  renormalization  group  in
complex  networks.  Quite  strikingly,  these  results  are  achieved  with  only  pairwise
interactions  among  nodes,  while  higher  order  structures  are  naturally  induced  by  the
underlying  metric  space.  Within  this  paradigm,  the  (soft)  geometric  configuration  model
(GCM) is defined as the maximally random ensemble of geometric random graphs able to
generate graphs with a given (expected) degree sequence that are simultaneously sparse,
small-world, clustered, and without degree-degree correlations [2]. Clustering in the GCM
undergoes a phase transition between a geometric phase with finite clustering coefficient in
the thermodynamic limit and a non-geometric phase where the clustering coefficient is zero.
This  transition,  however,  does  not  fit  within  the  Landau  symmetry  breaking  paradigm.
Instead, it is a topological phase transition between two different topological orders. Upon
mapping the network ensemble to a system of noninteracting fermions at temperature β−1,
we find an anomalous behavior for  the entropy of  the ensemble,  which diverges at  the
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critical  point.  This leads to an anomalous scaling behavior for finite systems and to the
definition of an effective system size scaling logarithmically with the number of nodes [3].
[1]M.  Boguna,I.  Bonamassa,M.  DeDomenico,S.  Havlin,  D.  Krioukov,  and  M.Angeles
Serrano. Network geometry. Nature Reviews Physics, 3:114–135, 2021.
[2]  M.  Boguna,  D.  Krioukov,  P.  Almagro,  and  M.Angeles  Serrano.  Smallworlds  and
clustering in spatial etworks.Phys.Rev.Research,2:023040,2020.
[3] J. van der Kolk, M. Angeles Serrano, and M. Boguna. An anomalous topological phase
transition in spatial random graphs. arXiv.2106.08030, 2021.

Jongshin Lee, and B. Kahng , (k,q)-core percolation of hypergraphs
Selecting  a  highly-connected  subgraph  from a  hypergraph,  analogous  to  k-core  in  the
ordinary graph with pairwise interactions, is an essential subject. Here, we consider (k, q)-
core percolation in hypergraphs. The (k,q)-core is the largest subgraph in which vertices
have at least k hypergraph degree, and hyperedges contain at least q vertices. To obtain
the dynamic equation for (k,q)-core and the percolation threshold, we construct an analytic
framework to understand the (k,q)-core percolation transition. We find that a hybrid phase
transition occurs for k ≥ 3 or q ≥ 3 at a finite transition point. We also quantify the critical
slowing down that appears at this critical point.

Matteo Marsili, Simplicity calls for higher order interactions in statistical learning
Occam razor, as applied to learning, suggests that learning should satisfy principles that are
rather  different  from  those  on  which  popular  learning  machines,  such  as  Restricted
Boltzmann Machines, are based. The internal representation of a learning machine trained
on a complex dataset should be as parsimonious as possible. Internal states should not be
assumed if they are not necessary and features should not be introduced unless they are
needed  ("Pluralitas  non  est  ponenda  sine  necessitate").  This  entails  a  hierarchical
organisation of features, which is consistent with a recently proposed principle of maximal
relevance  and  that  can  only  be  realised  only  within  models  going  beyond  pairwise
interactions.  I  will  illustrate  this  point  with  two  special  cases:  the  inability  of  Gaussian
learning machines to describe complex datasets and a simple (exactly soluble) hierarchical
spin model that is consistent with Occam razor. (joint work with Rongrong Xie and Roberto
Mulet).

Marija Mitrovic Dankulov & Bosiljka Tadic, Higher-distance connectivity portraits and
spectral dimension of human connectomes
Research into the functional architecture of the human connectome has been enabled by
massive  brain  imaging  data  and  the  mapping  onto  brain  networks.  Evolutionary
developments lead to the robust anatomical structure of the human brain but with variations
in the number of fibre bundles connecting different anatomical areas in the female and male
connectomes,  thus  supporting  the  differences  in  the  entire  activity,  psychology  and
behaviour.  In  particular,  the  quantitative  analysis  of  the  female  and  male  consensus
connectomes revealed different connectivity in the hidden geometry consisting of higher-
order simplicial complexes [1,2] and at the underlying graph level [3]. Here, we present an
analysis of the network portraits, a graph invariant independent of the labelling of the nodes.
We consider the consensus female connectome (with the edges common to 100 female
individuals) and the maile connectome (common to 100 male individuals). Based on the HC
imaging data, it is constructed [1] at the Budapest connectome server. The network portrait
is particularly suitable for comparing these two anatomically similar structures based on the
higher-distance connectivity. Our results revealed that, despite the visually close profiles of
the female and male connectomes, the KS distance between them can be substantial and
varies with the shortest-path distance across the brain and the weight threshold for the
edges. Furthermore, we have found that the female and male connectomes have the same
spectral  dimension  ds~2,  based  on  the  1-distance  connections  related  to  the  standard
diffusion  operator  in  these  networks  [4].  These  findings  suggest  that  the  evolutionary
developments led to the robustly designed structures of the human connectomes to support
fundamental dynamic processes; meanwhile, the nuanced differences may manifest in the
collective-dynamic fluctuations.
[1] B. Tadic, M. Andjelkovic, R. Melnik, Functional Geometry of Human Connectomes, Sci.
Rep. 9, 12060 (2019)
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[2] M. Andjelkovic, B. Tadic, R. Melnik,The topology of higher-order complexes associated
with brain hubs in human connectomes, Sci. Rep. 10, 17320 (2020)
[3] B. Szalkai, B. Varga, V. Grolmusz, Graph theoretical analysis reveals: Women’s brains
are better connected than men’s. PLoS One 10(7), 1–30, 07 (2015).
[4]  M.  Mitrovic  Dankulov,  B.  Tadic,  R.  Melnik,  Spectral  properties  of  hyperbolic
nanonetworks with tunable aggregation of simplexes, Phys. Rev. E 100, 012309 (2019)

Geza Odor, Higher-order interactions generate mixed order phase transition and
Griffiths phases on heterogeneous complex networks
In  d>2  dimensional,  homogeneous  threshold  models  discontinuous  phase  transition
emerge, but the mean-field solution provides 1/t power-law activity decay and other power
laws, and thus it is called mixed-order or hybrid type. This is in contrast with simple unary
reaction  spreading  models,  where  continuous  transition  occur  [1].  Quasi-static  network
heterogeneity can cause dynamical criticality below the transition point if the dimension is
d<4  [1].  We  provide  numerical  evidence  that  even  in  case  of  high  graph  dimensional
hierarchical modular networks a Griffiths phase in the K=2 threshold model is present below
the hybrid phase transition. This is due to the fragmentation of the activity propagation by
modules, which are connected via single links. This delivers a widespread mechanism in
the case of  the threshold type of  heterogeneous systems, modeling the brain,  socio or
epidemic spreading for the occurrence of dynamical criticality in extended Griffiths phase
parameter spaces [3].
[1]  G.  Odor,  Universality  classes  in  nonequilibrium lattice  systems Rev.  Mod.  Phys.  76
(2004) 663.  Phase transition classes in  triplet  and quadruplet  reaction-diffusion models,
Phys. Rev. E 67 (2003) 056114.
[2]  M. A.  Munoz,  R.  Juhasz,  C.  Castellano,  and G, Odor,  Griffiths Phases on Complex
Networks, Phys. Rev. Lett. 105, 128701 (2010)
[3] Geza Odor and Beatriz de Simoni, Heterogeneous excitable systems exhibit Griffiths
phases below hybrid phase transitions, Phys. Rev. Res. 3 (2021) 013106.

Gergely Palla, The inherent community structure of hyperbolic networks
Hyperbolic network models are centred around the idea of placing nodes at random into a
hyperbolic space and connecting node pairs according to a probability that is decreasing as
a function of the hyperbolic distance. Remarkably, the random graphs generated this way
are usually small-world, highly clustered and scale-free, allowing these models to reproduce
the most important universal features of real networks in a natural way, without any further
exogenous mechanisms. A recently discovered further feature of hyperbolic networks is that
they can also display a rather strong community structure in a wide range of the model
parameters,  in  spite  any  explicit  community  formation  actions  built  into  the  network
generation procedure. In the talk I will discuss the background and consequences of this
intrinsic  modular  structure,  including  also  analytical  results  related  to  the  modularity  of
growing hyperbolic networks.

Alexander Shapoval, Random transport of stress to provide the prediction efficiency
in sandpiles
Substantiated  explanations  of  the  unpredictability  regarding  sandpile  models  of  self-
organized criticality (SOC) gave way to efficient forecasts of extremes in few models. The
appearance  of  extremes  requires  a  preparation  phase  which  ends  up  with  general
overloading of the system and spatial clustering of the local stress. The prediction problem
successfully tackled by scholars can be formulated as the identification in advance of short
alarm intervals such that extreme events occur within these intervals. The efficiency of the
prediction posed with such formulation is  naturally  estimated with the fail-to-predict  and
alarm  rates.  Prediction  algorithms  designed  for  practical  applications  should  avoid  the
information regarding the current amount of stress in the system, as this information is not
observable in practice. Historical records back up the prediction instead. According to the-
state-of-the-art, a low rate of large events results in overloading. This property is possible to
quantify into the precursor of extremes. A few such attempts resulted in efficient predictions
in the BTW and Manna sandpiles, which are the fundamental models of SOC producing
power-law distributions with the deterministic and random transport of stress respectively.
The purpose of this presentation is to exhibit  the comparative analysis of the prediction
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efficiency in the BTW and Manna sandpiles. I will choose a single algorithm predicting the
occurrence of extremes in both models. While the system size is small, the efficiency attains
similar values. However the algorithm is more efficient with the Manna model as soon as
the system volume enlarges. I’ll show that the efficiency is characterized by the scaling with
respect to the system volume. The exponents describing the scaling are 2.75 and 3 in the
thermodynamic limit for the Manna and BTW sandpiles respectively. This result indicates
that  only  the  largest  events,  non-observable  within  any  reasonable  time  interval,  are
predictable in the BTW model in the case of a large system volume. On the contrary, all
events located to the right of the power-lower segment of events’ probability distribution are
characterized by the efficient prediction in the Manna model. The efficiency increases with
events’ size. A small correction to the scaling in the Manna model related to the system
volume coincides with that required to collapse the power-law segment of events’ probability
distribution over sizes. The mechanism, responsible for a more efficient prediction in the
Manna than BTW sandpile, is yet unknown. The presentation is based on results obtained
with D. Savostianova (Gran Sasso Sci- ence Institute), D. Sapozhnikov (HSE University), M.
Shnirman (Institute of Earthquake Prediction Theory and Mathematical Geophysics).

Deborah Sulem, Henry Kenlay, Mihai Cucuringu, Xiaowen Dong, Graph similarity
learning for change-point detection in dynamic networks
Dynamic networks are ubiquitous for modelling sequential graph-structured data, e.g., brain
connectome, population flows and messages exchanges. In this work, we consider dynamic
networks that are temporal sequences of graph snapshots, and aim at detecting abrupt
changes in their structure. This task is often termed network change-point detection and has
numerous applications, such as fraud detection or physical motion monitoring. Leveraging a
graph neural network model, we design a method to perform online network change-point
detection that can adapt to the specific network domain and localise changes with no delay.
The main novelty of our method is to use a siamese graph neural network architecture for
learning a data-driven graph similarity  function,  which allows to  effectively  compare the
current  graph  and  its  recent  history.  Importantly,  our  method  does  not  require  prior
knowledge on the network generative distribution and is agnostic to the type of change-
points; moreover, it can be applied to a large variety of networks, that include for instance
edge weights and node attributes. We show on synthetic and real data that our method
enjoys a number of benefits: it  is able to learn an adequate graph similarity function for
performing online network change-point detection in diverse types of change-point settings,
and requires a shorter data history to detect changes than most existing state-of-the-art
baselines.
[1]  Yu  Y,  Padilla  OHM,  Wang  D,  et  al  (2021)  Optimal  network  online  change  point
localisation. arxiv.2101.05477
[2]  Ktena  SI,  Parisot  S,  Ferrante  E,  et  al  (2017)  Distance  metric  learning  using  graph
convolu-  tional  networks:  Application  to  functional  brain  networks.  In:  International
Conference on Medical Image Computing and Computer- Assisted Intervention, Springer,
pp 469–477

Michael Small, Link prediction and fault detection for structured engineered networks
This is joint  work with KeKe Shang.  We address the problem of  applying measures of
network  structure  to  networks  that  have  been  deliberately  engineered  to  serve  some
purpose. Often, network design rules are microscopic - such as preferential attachment. We
consider the situation where a network is deliberately designed to serve some large scale
purpose - and fit some macroscopic objective function. Engineered transport networks are
an example of such system, and we specifically focus our attention on the metropolitan
potable  and  sewage  water  distribution  networks  for  Perth,  Western  Australia.  First,  we
observe  that  cliques  and higher-rder  structures  in  the  network  and useful  predictors  of
assortative  component  failure  in  the  network  .  Second,  we  show  that  a  randomised
comparison of microscopic networks structures in the engineered network and idealised
proxies can be used to predict nascent component failure in the system. Third, we introduce
link prediction algorithm tailored for networks with inherent large-scale structures - either
large loopy networks, or tree-like networks. We show how this can be applied to engineered
networks  to  learn  about  how  best  to  improve  the  robustness  and  efficiency  of  these
networks.
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Hanlin Sun, Higher-order percolation processes on multiplex hypergraphs
Abstract: Higher-order interactions are increasingly recognised as a fundamental aspect of
complex systems ranging from the brain to social contact networks. Hypergraph as well as
simplicial complexes capture the higher-order interactions of complex systems and allow to
investigate the relation between their higher-order structure and their function. In this work,
we  establish  a  general  framework  for  assessing  hypergraph  robustness  and  we
characterize the critical properties of simple and higher-order percolation processes. This
general framework builds on the formulation of the random multiplex hypergraph ensemble
where each layer is characterized by hyperedges of given cardinality. We reveal the relation
between  higher-order  percolation  processes  in  random  multiplex  hypergraphs,
interdependent  percolation  of  multiplex  networks  and  K-core  percolation.  The  structural
correlations of the random multiplex hypergraphs are shown to have a significant effect on
their percolation properties. The wide range of critical behaviors observed for higher-order
percolation processes on multiplex hypergraphs elucidates the mechanisms responsible for
the emergence of discontinuous transition and uncovers interesting critical properties which
can be applied to the study of epidemic spreading and contagion processes on higher-order
networks.
[1]  Hanlin  Sun  and  Ginestra  Bianconi,  Higher-order  percolation  processes  on  multiplex
hypergraphs, Phys. Rev. E 104, 034306 (2021)

Bosiljka Tadic, Spin-reversal dynamics on simplicial complexes: Impact of the
geometric frustration and higher-order couplings
Geometric frustration effects often occur in the magnetization reversal driven by the external
magnetic  field  on  nano-assemblies  with  complex  architecture.  We  study  the  collective
magnetization fluctuations on model systems grown by the geometric aggregation of cliques
of different sizes [1] and Ising spins attached to nodes. Then the antiferromagnetic pairwise
couplings among spins ideally support the geometric frustration on the triangle faces of the
embedded cliques. Moreover, these structures can support the higher-order spin couplings
based on the exact topology faces of all orders up to the highest clique (the order of the
simplicial complex). Considering the spin-reversal process on an assembly with distributed
cliques order in the range from 1 to 9, we show that this topology, in conjunction with the
antiferromagnetic pairwise interactions, leads to a characteristic slim hysteresis loop with
multiple  plateaus.  The  transition  between  these  plateaus  is  characterized  by  collective
fluctuations with a multifractal structure and magnetization avalanches. The scale-invariant
distributions of  the avalanches are observed,  characteristic  of  the self-organized critical
dynamics [2]. Furthermore, we consider competition between the antiferromagnetic pairwise
and tri-spin interactions embedded on exact  triangles on an assembly consisting of  the
aggregated triangles [3]; We show how the higher-order coupling changes the shape of the
hysteresis loop. However, the collective fluctuations and avalanches are robustly present,
with the scaling exponents and the multifractal spectra depending on the parameter that
balances these competing  interactions.  These findings  suggest  that,  while  the  topology
descriptors (clique sizes) are relevant to the hysteresis-loop shape, the long-range effects of
the geometric frustration induced by the leading antiferromagnetic interactions are critical
for the collective fluctuations.
[1]  M.  Suvakov,  M.  Andjelkovic,  B.  Tadic,  Hidden  geometry  of  networks  arising  from
cooperative self-assembly, Sci.Rep. 8, 1987 (2018)
[2] B. Tadic, R. Melnik: Self-organized criticality as a key feature for complexity in physical,
biological, and social networks, Dynamics 1(2), 181-197 (2021)
[3] B. Tadic, N. Gupte: Hidden geometry and dynamics of complex networks: spin reversal
in  nanoassemblies  with  pairwise  and  triangle-based  interactions,  Europhys.  Lett.  132,
60008 (2021)
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