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Theoreti
al Physi
s Department, Jo�zef Stefan Institute, Box 3000, SI-1001Ljubljana, SloveniaTopologi
al heterogeneity of stru
tured networks e�e
ts 
ourse of dynami
 pro
esses onthem by 
ausing uneven fun
tion of nodes and/or links. Within the model of informationtraÆ
 we demonstrate how dynami
ally relevant topology emerges on 
y
li
 s
ale-free Webgraph. The dynami
 
entrality measures are quantitatively 
hara
terized through analysisof traÆ
 
ow and multi
hannel noise. The dynami
ally generated heterogeneity of links isrepresented by maximum spanning tree. Flu
tuations of noise at individual nodes in traÆ
 onthe original graph and on its maximum spanning tree (optimal transport) reveal universals
aling features that are related to the underlying link stru
ture and driving 
onditions.Furthermore, we give some eviden
es for sto
hasti
 ergodi
ity breaking in traÆ
 on networks.x1. Introdu
tionStru
tured networks, in parti
ular s
ale-free topologies, in
uen
e the dynami
pro
esses whi
h take part on these networks. In re
ently studied transport of in-formation on stru
tured networks1) we have shown that in general more eÆ
ientpro
esses o

ur on networks with higher stru
tural 
omplexity. The stru
tural in-homogeneity of the underlying network 
auses uneven fun
tion of di�erent nodes orlinks. Therefore, fun
tionally relevant topology may di�er 
onsiderably from puregeometry of links on the network.Here we dis
uss how the fun
tional topology emerge within a numeri
al modelof information transport on a 
y
li
 s
ale-free graph.1) In parti
ular, we fo
us onthe dynami
 analogue of the topologi
al betweenness and betweenness-
entrality(betweenness of nodes and links). In real fun
tional networks these properties areknown as multi
hannel noise and network 
ow.2) By detailed analysis of traÆ
 
owand noise we show that these dynami
 
entrality measures exhibit 
ertain universalfeatures that 
an be related to the network stru
ture. Furthermore, analysis of theo

upation probability of nodes reveals eviden
e of a sto
hasti
 ergodi
ity breakingdue to network stru
ture and intera
tion between traÆ
 streams.x2. Stru
ture and TraÆ
 on the Web graphWe fo
us on traÆ
 of information pa
kets on one 
lass of 
y
li
 s
ale-free networks|the Web graph.1),4) On this 
lass of graphs we have shown earlier that eÆ
ient traÆ
emerges when the next-neighbour sear
h rule is applied to navigate pa
kets throughthe graph. This topology{dynami
s mat
hing enables us to study the details of thedynami
 pro
ess in mu
h wider range of parameters (i.e., posting rate) than on anyother s
ale-free stru
ture. In parti
ular, the traÆ
 remains jamming free until alarge density of pa
kets is rea
hed. Some details of stru
ture and traÆ
 rules aredes
ribed below and in Ref.1),3), 4)
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2.1. Web graph stru
tureThe Web graph that we 
onsider belongs to 
ausal type of networks, whi
h aregrown in time by adding a node and a link at ea
h time step.5) The added node islinked to the pre
eding group of nodes with probabilisti
 rules introdu
ed in Ref.4)The linking rules 
onsist of preferential atta
hment and rewiring during the graphgrowth, whi
h leads to the s
ale-free stru
ture of both in-
oming and out-going links.The parameter � (initial attra
tiveness of nodes) and ~� (rewiring probability) 
ontrolthe emergent degree distribution for in- and out-links qin and qout a

ording to4)P (qin) � q�(2+�)in ; P (qout) � q�(1+(1+�)=(1�~�))out ; (2.1)and graph 
exibility � � (1� ~�)=~�. Here we use the original one-parameter model4)with ~� = �. For � = 1=4 the stru
ture appears to have two powerful hub nodes,similar to the real Web (see4) for details). A part of the stru
ture is shown in Fig. 1.Other stru
tural 
hara
teristi
s of the Web graph are des
ribed in the litera-ture.1),4), 7) Here we mention the 
onne
tivity pro�le qin(s) � s�
in for in-linking,and similarly qout(s) � s�
outfor out-linking 
onne
tivity, that vary with node's ad-dition time s (proportional to node rank). The exponents relation �in = 1 + 
�in1and �out = 1+ 
out holds. In addition, the network's inhomogeneity is 
hara
terizedby the 
lustering pro�le, whi
h measures number of elementary triangles atta
hedto a node. It varies throughout the network as n�(s) � 1=s. The Web graph is also
lassi�ed as a 
orrelated s
ale-free stru
ture in whi
h 
orrelation between in-
omingand out-going links at neighbouring nodes i; j o

urs as < qout(j) >� qin(i)��, with� � 0:45.7)For the analysis of traÆ
 on the Web graph, the stru
ture of the graph is deter-mined by its adja
en
y matrix and kept �xed throughout the simulations.

Fig. 1. Core of the Web graph near the main hubs with most often used links shown with stronglines (left) and the maximum spanning tree of the giant 
omponent (right) for N = 1000 nodesand links and pa
ket 
reation rate R = 0:005. [Plots using Pajek.6)℄
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ture & Dynami
s 32.2. Information TraÆ
 ModelTransport of information pa
kets on network of a given ar
hite
ture1),3) 
onsistsof the following steps:� (i) 
reation of a pa
ket at a random node and assignation of an address (desti-nation) as another node on the network where it should arrive;� (ii) navigation of a pa
ket through the network, where a visited node dire
tsthe pa
ket towards its address using lo
ally available links;� (iii) delivery by arrival at its destination, pa
ket is removed from the traÆ
.In step (ii) we apply an advan
ed lo
al sear
h (CS) in whi
h ea
h node explores itssurrounding within next-nearst neighborhood sear
hing for the best dire
tion for apa
ket to be pro
essed.1) The pa
kets are 
reated with a �xed rate R and movesimultaneously, making queues at nodes along the path. We employ last-in-�rst-outqueue (LIFO) and impose �nite queue 
apa
ity H = 1000 pa
kets. Details of thenumeri
al 
ode implementation is given in Ref.7)Within the simulations we monitor motion of ea
h pa
ket simultaneously. Inparti
ular, we re
ord pa
ket destination, 
urrent position on the network and positionin the queue, as well as waiting time that a pa
ket spent on ea
h node along its pathbefore arrival to its destination. From these data we make the statisti
s of the traÆ
both on global (network) level and on lo
al (individual node and link) level. Forinstan
e, the transit time T of ea
h pa
ket is then given by sum of all waiting timesalong its path from the 
reation node to delivery at its address, Tk =Pki tw(i), wheretw(i) is waiting time at node i on the path of length k. The a
tual path dependson the network stru
ture and the sear
h algorithm. In addition, the waiting timesat ea
h node are 
reated when the pa
ket density in
reases. The queue lengths areunevenly distributed through the network3) with longer queues at more importantnodes. We �rst dis
uss properties of the traÆ
 at lo
al level.x3. TraÆ
 Flow and NoiseThe information traÆ
 on the Web graph with the rules des
ribed above wasshown to be stationary for a large range of 
reation rates R � R
 � 0:4.1),3) Inthe stationary regime, as lo
al measures of the traÆ
 we determine the traÆ
 
owfijand noise hi. Flow is de�ned as number of pa
ket traversing a given link inthe network within a given time window TWIN . Similarly, we de�ne (multi
hannel)noise as number of pa
kets that are pro
essed by a given node within TWIN . Inthis way, fij and hi are the dynami
 measures of the topologi
al propeties known asbetweenness-
entrality of links and nodes respe
tively.3.1. Dynami
 weights and maximum spanning treeThe re
ords of 
ow on links yield di�erent \weights" to links that pro
essed dif-ferent number of pa
ket within the monitoring time. This is an example of emergentweighted network where weights appear dynami
ally through the network fun
tion.In Fig. 1 we show an example with most weighted links appearing near the mainhubs of the Web graph.
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Uneven distribution of traÆ
 
ow on the links of networks 
an be studied inmore quantitative details. One way to 
hara
terize the emergent weighted topologyis to 
onstru
t the maximum spanning tree, whi
h is the tree stru
ture spanning the
onne
ted part of the graph and 
onsisting of strongest links. In Fig. 1 we also showthe maximum spanning tree 
orresponding to the traÆ
 on the Web graph when theposting rate is R = 5 � 10�3. It appears to be the s
ale-free tree, suggesting thatthe 
ow on the links is distributed in a

ordan
e8) with the original topology of thegraph. This supports the idea of mat
hing between the stru
ture of the Web graphand transport with the advan
ed-lo
al sear
h algorithm.1)
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Fig. 2. Universal relations between dispersion �i and average o

upation < hi > of nodes i =1; � � � ; N within time window TWIN = 1000 time steps for traÆ
 on the Web graph's giant
omponent and on its maximum spanning tree at driving rate R and for spe
i�ed sear
h rule.3.2. Universality of traÆ
 noiseWe further study the properties of traÆ
 noise by monitoring in parallel thenumber of pa
kets pro
essed by ea
h node within a �xed time window TWIN = 1000steps. (One time step 
onsists of one parallel update of the whole network.) Thenumber of pa
kets registered within the spe
i�ed time window 
u
tuates betweendi�erent nodes and at the same node at di�erent times. However, the ratio ofthe 
u
tuations to the number of pro
essed pa
kets shows some universal features,similar to real transport networks. In parti
ular, the relation�i �< hi >�T ; (3.1)holds, where with � takes two values � = 1=2 or � = 1 in di�erent networks.9) InFig. 2 we show the standard deviation �i against the average o

upation number< hi > of a node i, where the average is over the �xed time window TWIN . Di�erent
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urves are for di�erent driving rates R and navigation rules, i.e., advan
ed nnn-sear
h(AS) or random di�usion (RD). On ea
h 
urve a point represents one node of thenetwork. As the Fig. 2 shows, di�erent nodes follow the behavior with the slopes� = 1=2 or � = 1, whi
h are indi
ated by lines. For low-density traÆ
 on the Webgraph most of the nodes are in the 
lass � = 1=2, whereas the hub node is on the linewith � = 1. For higher pa
ket density (larger R), however, more nodes experien
elarger traÆ
 and higher 
u
tuations of the traÆ
 and 
onsequently align along the� = 1 
urve. Hen
e the s
aling exponent in the ralation (3.1) depends on the driving
onditions (pa
ket density), whi
h exploit the network's heterogeneity in di�erentways. Qualitatively same behavior was found in the 
ase of random di�usion (RD)but with di�erent posting rates, where the stationary 
ow 
onditions are ful�lled.For 
omparison, we also run the pa
ket traÆ
 along the maximum-spanningtree of the Web graph (results are also shown in Fig. 2). In this respe
t, the pa
ketmotion 
an be 
onsidered as subje
t of a 
onstraint to only maximum-
ow links onthe original graph. We �nd that the 
onstraint does not violate the universal relation(3.1), however, all nodes align along the � = 1 slope independently on driving rate.

10
0

10
1

10
2

10
3

10
4

10
5

T

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
[T

]

 wg traffic: R=0.005 (CS)
 wgMSTree(R=0.005CS) traffic: R=0.1 (CS)

Fig. 3. Distribution of transit times T of pa
kets on the Web graph (wg) and on its maximumspanning tree (wgMSTree) for �xed driving rate R as indi
ated and advan
ed lo
al sear
h (CS).Slopes �T = 3=2 and �T = 1 are indi
ated by broken lines.3.3. Transit times distributionAs traÆ
 
hara
teristi
s on global (network) level we 
onsider here the distri-bution of tranist times and 
orrelations in node a
tivity.1),3) Di�eren
es in thetransport details on the 
y
li
 Web graph and in traÆ
 on its maximum spanningtree (MST) a

umulate in the overall time that a pa
ket spends on the way before itarrives to its destination address. In Fig. 3 we show the distributions of the transit
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times of pa
kets for �xed rate R at the Web graph and its MST. For traÆ
 on theoriginal Web graph the distribution P (T ) has a power-law tail P (T ) � T��T , withthe exponent �T = 1:5 (within numeri
al error bars).1) The observed deviation fromthe power-law at small times T is due to in
reased eÆ
ien
y of the super-stru
tureasso
iated to the hub, when the the destination nodes are at the distan
e 2|3 nodes,whi
h 
oin
ide with the sear
hed depth in the advan
ed sear
h rule (CS). We alsoshow the results when the transport is 
onstrainted along the maximum 
ow links
orresponding to that rate on the Web graph (traÆ
 on MST). As the Fig. 3 shows,the traÆ
 along the MST intends to have in
reased probability of larger times 
om-pared to the original 
y
li
 graph. This is mainly due to larger distan
es on the treeand also larger waiting times at the main hub when the traÆ
 density in
reases. Theslope of the 
urve P (T ) for the 
ase of tree is 
lose to �T = 1. This ndi
ates anotheruniversality 
lass of the transport pro
esses 
onstrainted on the graph's maximumspanning tree, 
ompared to the underlying original graph with 
y
les.
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Fig. 4. Part of the time series of the numebr of a
tive nodes n(t) (left) and their power-spe
tralog-binned 
urves (right) for traÆ
 on the Web graph (lower 
urve) and traÆ
 on web-graph'smaximum spanning tree (upper 
urve) for �xed posting rate R = 5� 10�3.3.4. Noise 
orrelations at network levelMore s
aling features in the traÆ
 noise 
an be found when the transport islooked at the global network level. In parti
ular, the network stru
ture supple-mented with the navigation rule indu
es the 
orrelations among the pa
ket streams,a property whi
h was found both in real network traÆ
10) and in the traÆ
 mod-els.1),3), 11)Here we 
onsider only the 
orrelations that arise in the number of simultaneouslya
tive nodes n(t) on the network at time t. The time series fn(t)g shows the antiper-
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ture & Dynami
s 7sistent 
orrelations, as shown in Fig. 4. The exponents of the power-spe
trum of thetime signalfn(t)g is 
hara
teristi
 for the networks stru
ture. We �nd � = 1:26 fortraÆ
 on the Web graph and � = 1:56 for traÆ
 on its maximum spanning tree forthe driving rate R as indi
ated on the Fig. 4. More detailed analysis of the s
alingproperties of noise and the stru
ture of the underlying graph and driving 
onditionsfor a 
lass of s
ale-free graphs 
an be found in Ref.? As a rule, less 
orrelations arefound in less stru
tured graph and larger traÆ
 density.12)3.5. Eviden
es of sto
hasti
 ergodi
ity breaking in transport on networksDetailed analysis of traÆ
 at individual node level reveals additional features of
omplex systems behavior that we address in the following. Transport of a pa
keton the network is a (guided) random walk pro
ess. Compared to a 
ompa
t en-vironment, network's topology makes severe 
onstraints to the walker. Hen
e, by
onsidering the number of hits of a walker to ea
h node in the network one 
an inferdetails of the network stru
tural properties, whi
h 
an be used for exploring 
omplexstru
tures.13){16)From the dynami
 point of view, the number of hits at a node depends not onlyon the topology but also on the time window in whi
h it is measured. Therefore,it gives information about how the pro
ess goes in parti
ular parts of the graph.In Fig. 5 we display the distributions of the o

upation numbers of ea
h node onthe Web graph, 
olle
ted within a �xed time window TWIN = 1000 steps. Thedistribution shows a power-law tail, whi
h is well pronoun
ed at low traÆ
 densityR. As expe
ted,14) in this limit the power �h = 2:28 is roughly in agreement with thedistribution of betweenness of nodes.17) Betweenness of a node is pure geometri
al
hara
teristi
 of the graph, whi
h is de�ned as the number of shortest paths betweenpairs of nodes on the graph that go through that node.2),17)At large driving rates, however, the distribution develops peaks at spe
i�
 o
-
upation numbers. In parti
ular, the peak at highest o

upation 
orresponding toh = TWIN appears, whi
h indi
ates a 
onstantly a
tive hub node. Similarly, one
an expe
t that other peaks that appear at lower o

upation numbers 
orrespond togroups of nodes whi
h play a spe
ial role in spe
i�
 parts of the graph or 
ommunitiesat large traÆ
 density.The broad distribution of the o

upation numbers hi re
orded within the timewindow TWIN , or equivalently of the o

upation probabilities of nodes de�ned aspi � hi=TWIN , suggests that a dynami
 ergodi
ity breaking o

urs in the transportpro
ess on networks. Rre
ently su
h ergodi
ity breaking in the 
ase of a 
ontinuous-time random-walk has been dis
ussed and 
lassi�ed in terms of o

upation times inRef.18) In our 
ase, the inhomogeneity and sparseness of the underlying networkindu
es spread of the frequen
y of the node o

upation, as shown in Fig. 5. In lowtraÆ
 density the ergodi
ity breaking appears where it 
an be related to the geometryof the network alone. At higher rates R , i.e., higher traÆ
 density, additional e�e
tso

ur due to nontrivial waiting times3) of pa
kets in queues at parti
ular nodesin the network. These waiting times are also related to the stru
ture{dynami
sinterply.1),3) A more detailed analysis of the dynami
 ergodi
ity breaking and roleof di�erent network topologies will be given elsewhere.19)
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Fig. 5. Distribution of o

upation numbers of nodes hi o

urring within a �xed time windowTWIN = 103 steps for di�erent posting rates R. Solid lines slope �h = 2:28 within error bars.x4. Con
lusionsWe have demonstrated emergen
e of a fun
tional topology in traÆ
 of informa-tion pa
kets on the 
y
li
 s
ale-free graph (Web graph). Here we have shown resultsfor traÆ
 in the 
ase of 
onstant posting rates R. These topologies are quantitativelydes
ribed through the statisti
al properties of the network 
ow and traÆ
 noise.Study of the network 
ow enables the dynami
 di�erentiation between linksand their role in the dynami
 pro
ess. The systemati
 re
ord of the traÆ
 
owon the Web graph, as it is done here, represents an example where \weights" onthe links are dynami
ally generated, in 
ontrast to ad ho
 implementation whi
h is
ommonly used in study of weighted networks.8),20) The fun
tional heterogeneity ofthe network is then built in the maximum spanning tree. We have shown that thedynami
ally generated weights result in a s
ale-free tree in the 
ase of the traÆ
 withthe advan
ed nnn-sear
h rule on the Web graph. Hen
e the spanning tree preservesthe main property of the original graph, suggesting that the network topology isused eÆ
iently by the traÆ
 navigation.Network's inhomogeneity is further represented by di�erent roles that nodes playin the transport pro
ess. The multi
hannel noise analysis reveals universal noisefeatures, whi
h are expressed by Eq. (3.1). The s
aling exponent � 
an be related tothe underlying graph stru
ture and to traÆ
 density and driving 
onditions. This ismost strikingly demonstrated by 
omparing the traÆ
 on the graph with the traÆ
on thereby generated maximum spanning tree. In the 
ase of maximum spanningtree, the traÆ
 
an be viewed as traÆ
 on the original graph with applied 
onstraint,in whi
h pa
kets are systemati
ally restri
ted to the available maximum-
ow links.
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ture & Dynami
s 9This 
onstraint results in noise properties whi
h are typi
al for a tree stru
ture.In parti
ular, the s
aling relation in Eq. (3.1) hold with � = 1 independently onthe pa
ket density. In addition, generally larger distan
es on the tree result inin
reased probability of longer transit times 
ompared to the original 
y
li
 graph.Therefore the transit time distribution on the maximum spanning tree of the Webgraph appears in a new 
lass of sto
hasti
 limit pro
esses21) with the power �T � 1,
ompared to �T � 3=2 for the Web graph itself.Finally, a detailed analysis of the o

upation probabilities of nodes reveals thatthe sto
hasti
 ergodi
ity breaking o

urs in the traÆ
 on networks. The origin of abroad distribution of the o

upation numbers of nodes is in the network topologi
alinhomogeneity, as demonstrated for traÆ
 at low posting rates. Additional e�e
tsare due to stru
turally indu
ed intera
tion between pa
ket streams, whi
h lead tonontrivial waiting-time statisti
s at higher posting rates.A
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