
Progress of Theoretial Physis Supplement 1Struture of Flow and Noise on Funtional Sale-Free NetworksBosiljka Tadi�Theoretial Physis Department, Jo�zef Stefan Institute, Box 3000, SI-1001Ljubljana, SloveniaTopologial heterogeneity of strutured networks e�ets ourse of dynami proesses onthem by ausing uneven funtion of nodes and/or links. Within the model of informationtraÆ we demonstrate how dynamially relevant topology emerges on yli sale-free Webgraph. The dynami entrality measures are quantitatively haraterized through analysisof traÆ ow and multihannel noise. The dynamially generated heterogeneity of links isrepresented by maximum spanning tree. Flutuations of noise at individual nodes in traÆ onthe original graph and on its maximum spanning tree (optimal transport) reveal universalsaling features that are related to the underlying link struture and driving onditions.Furthermore, we give some evidenes for stohasti ergodiity breaking in traÆ on networks.x1. IntrodutionStrutured networks, in partiular sale-free topologies, inuene the dynamiproesses whih take part on these networks. In reently studied transport of in-formation on strutured networks1) we have shown that in general more eÆientproesses our on networks with higher strutural omplexity. The strutural in-homogeneity of the underlying network auses uneven funtion of di�erent nodes orlinks. Therefore, funtionally relevant topology may di�er onsiderably from puregeometry of links on the network.Here we disuss how the funtional topology emerge within a numerial modelof information transport on a yli sale-free graph.1) In partiular, we fous onthe dynami analogue of the topologial betweenness and betweenness-entrality(betweenness of nodes and links). In real funtional networks these properties areknown as multihannel noise and network ow.2) By detailed analysis of traÆ owand noise we show that these dynami entrality measures exhibit ertain universalfeatures that an be related to the network struture. Furthermore, analysis of theoupation probability of nodes reveals evidene of a stohasti ergodiity breakingdue to network struture and interation between traÆ streams.x2. Struture and TraÆ on the Web graphWe fous on traÆ of information pakets on one lass of yli sale-free networks|the Web graph.1),4) On this lass of graphs we have shown earlier that eÆient traÆemerges when the next-neighbour searh rule is applied to navigate pakets throughthe graph. This topology{dynamis mathing enables us to study the details of thedynami proess in muh wider range of parameters (i.e., posting rate) than on anyother sale-free struture. In partiular, the traÆ remains jamming free until alarge density of pakets is reahed. Some details of struture and traÆ rules aredesribed below and in Ref.1),3), 4)



2 B. Tadi�2.1. Web graph strutureThe Web graph that we onsider belongs to ausal type of networks, whih aregrown in time by adding a node and a link at eah time step.5) The added node islinked to the preeding group of nodes with probabilisti rules introdued in Ref.4)The linking rules onsist of preferential attahment and rewiring during the graphgrowth, whih leads to the sale-free struture of both in-oming and out-going links.The parameter � (initial attrativeness of nodes) and ~� (rewiring probability) ontrolthe emergent degree distribution for in- and out-links qin and qout aording to4)P (qin) � q�(2+�)in ; P (qout) � q�(1+(1+�)=(1�~�))out ; (2.1)and graph exibility � � (1� ~�)=~�. Here we use the original one-parameter model4)with ~� = �. For � = 1=4 the struture appears to have two powerful hub nodes,similar to the real Web (see4) for details). A part of the struture is shown in Fig. 1.Other strutural harateristis of the Web graph are desribed in the litera-ture.1),4), 7) Here we mention the onnetivity pro�le qin(s) � s�in for in-linking,and similarly qout(s) � s�outfor out-linking onnetivity, that vary with node's ad-dition time s (proportional to node rank). The exponents relation �in = 1 + �in1and �out = 1+ out holds. In addition, the network's inhomogeneity is haraterizedby the lustering pro�le, whih measures number of elementary triangles attahedto a node. It varies throughout the network as n�(s) � 1=s. The Web graph is alsolassi�ed as a orrelated sale-free struture in whih orrelation between in-omingand out-going links at neighbouring nodes i; j ours as < qout(j) >� qin(i)��, with� � 0:45.7)For the analysis of traÆ on the Web graph, the struture of the graph is deter-mined by its adjaeny matrix and kept �xed throughout the simulations.

Fig. 1. Core of the Web graph near the main hubs with most often used links shown with stronglines (left) and the maximum spanning tree of the giant omponent (right) for N = 1000 nodesand links and paket reation rate R = 0:005. [Plots using Pajek.6)℄



Networks: Struture & Dynamis 32.2. Information TraÆ ModelTransport of information pakets on network of a given arhiteture1),3) onsistsof the following steps:� (i) reation of a paket at a random node and assignation of an address (desti-nation) as another node on the network where it should arrive;� (ii) navigation of a paket through the network, where a visited node diretsthe paket towards its address using loally available links;� (iii) delivery by arrival at its destination, paket is removed from the traÆ.In step (ii) we apply an advaned loal searh (CS) in whih eah node explores itssurrounding within next-nearst neighborhood searhing for the best diretion for apaket to be proessed.1) The pakets are reated with a �xed rate R and movesimultaneously, making queues at nodes along the path. We employ last-in-�rst-outqueue (LIFO) and impose �nite queue apaity H = 1000 pakets. Details of thenumerial ode implementation is given in Ref.7)Within the simulations we monitor motion of eah paket simultaneously. Inpartiular, we reord paket destination, urrent position on the network and positionin the queue, as well as waiting time that a paket spent on eah node along its pathbefore arrival to its destination. From these data we make the statistis of the traÆboth on global (network) level and on loal (individual node and link) level. Forinstane, the transit time T of eah paket is then given by sum of all waiting timesalong its path from the reation node to delivery at its address, Tk =Pki tw(i), wheretw(i) is waiting time at node i on the path of length k. The atual path dependson the network struture and the searh algorithm. In addition, the waiting timesat eah node are reated when the paket density inreases. The queue lengths areunevenly distributed through the network3) with longer queues at more importantnodes. We �rst disuss properties of the traÆ at loal level.x3. TraÆ Flow and NoiseThe information traÆ on the Web graph with the rules desribed above wasshown to be stationary for a large range of reation rates R � R � 0:4.1),3) Inthe stationary regime, as loal measures of the traÆ we determine the traÆ owfijand noise hi. Flow is de�ned as number of paket traversing a given link inthe network within a given time window TWIN . Similarly, we de�ne (multihannel)noise as number of pakets that are proessed by a given node within TWIN . Inthis way, fij and hi are the dynami measures of the topologial propeties known asbetweenness-entrality of links and nodes respetively.3.1. Dynami weights and maximum spanning treeThe reords of ow on links yield di�erent \weights" to links that proessed dif-ferent number of paket within the monitoring time. This is an example of emergentweighted network where weights appear dynamially through the network funtion.In Fig. 1 we show an example with most weighted links appearing near the mainhubs of the Web graph.



4 B. Tadi�Uneven distribution of traÆ ow on the links of networks an be studied inmore quantitative details. One way to haraterize the emergent weighted topologyis to onstrut the maximum spanning tree, whih is the tree struture spanning theonneted part of the graph and onsisting of strongest links. In Fig. 1 we also showthe maximum spanning tree orresponding to the traÆ on the Web graph when theposting rate is R = 5 � 10�3. It appears to be the sale-free tree, suggesting thatthe ow on the links is distributed in aordane8) with the original topology of thegraph. This supports the idea of mathing between the struture of the Web graphand transport with the advaned-loal searh algorithm.1)
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Fig. 2. Universal relations between dispersion �i and average oupation < hi > of nodes i =1; � � � ; N within time window TWIN = 1000 time steps for traÆ on the Web graph's giantomponent and on its maximum spanning tree at driving rate R and for spei�ed searh rule.3.2. Universality of traÆ noiseWe further study the properties of traÆ noise by monitoring in parallel thenumber of pakets proessed by eah node within a �xed time window TWIN = 1000steps. (One time step onsists of one parallel update of the whole network.) Thenumber of pakets registered within the spei�ed time window utuates betweendi�erent nodes and at the same node at di�erent times. However, the ratio ofthe utuations to the number of proessed pakets shows some universal features,similar to real transport networks. In partiular, the relation�i �< hi >�T ; (3.1)holds, where with � takes two values � = 1=2 or � = 1 in di�erent networks.9) InFig. 2 we show the standard deviation �i against the average oupation number< hi > of a node i, where the average is over the �xed time window TWIN . Di�erent



Networks: Struture & Dynamis 5urves are for di�erent driving rates R and navigation rules, i.e., advaned nnn-searh(AS) or random di�usion (RD). On eah urve a point represents one node of thenetwork. As the Fig. 2 shows, di�erent nodes follow the behavior with the slopes� = 1=2 or � = 1, whih are indiated by lines. For low-density traÆ on the Webgraph most of the nodes are in the lass � = 1=2, whereas the hub node is on the linewith � = 1. For higher paket density (larger R), however, more nodes experienelarger traÆ and higher utuations of the traÆ and onsequently align along the� = 1 urve. Hene the saling exponent in the ralation (3.1) depends on the drivingonditions (paket density), whih exploit the network's heterogeneity in di�erentways. Qualitatively same behavior was found in the ase of random di�usion (RD)but with di�erent posting rates, where the stationary ow onditions are ful�lled.For omparison, we also run the paket traÆ along the maximum-spanningtree of the Web graph (results are also shown in Fig. 2). In this respet, the paketmotion an be onsidered as subjet of a onstraint to only maximum-ow links onthe original graph. We �nd that the onstraint does not violate the universal relation(3.1), however, all nodes align along the � = 1 slope independently on driving rate.
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Fig. 3. Distribution of transit times T of pakets on the Web graph (wg) and on its maximumspanning tree (wgMSTree) for �xed driving rate R as indiated and advaned loal searh (CS).Slopes �T = 3=2 and �T = 1 are indiated by broken lines.3.3. Transit times distributionAs traÆ harateristis on global (network) level we onsider here the distri-bution of tranist times and orrelations in node ativity.1),3) Di�erenes in thetransport details on the yli Web graph and in traÆ on its maximum spanningtree (MST) aumulate in the overall time that a paket spends on the way before itarrives to its destination address. In Fig. 3 we show the distributions of the transit



6 B. Tadi�times of pakets for �xed rate R at the Web graph and its MST. For traÆ on theoriginal Web graph the distribution P (T ) has a power-law tail P (T ) � T��T , withthe exponent �T = 1:5 (within numerial error bars).1) The observed deviation fromthe power-law at small times T is due to inreased eÆieny of the super-strutureassoiated to the hub, when the the destination nodes are at the distane 2|3 nodes,whih oinide with the searhed depth in the advaned searh rule (CS). We alsoshow the results when the transport is onstrainted along the maximum ow linksorresponding to that rate on the Web graph (traÆ on MST). As the Fig. 3 shows,the traÆ along the MST intends to have inreased probability of larger times om-pared to the original yli graph. This is mainly due to larger distanes on the treeand also larger waiting times at the main hub when the traÆ density inreases. Theslope of the urve P (T ) for the ase of tree is lose to �T = 1. This ndiates anotheruniversality lass of the transport proesses onstrainted on the graph's maximumspanning tree, ompared to the underlying original graph with yles.
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Fig. 4. Part of the time series of the numebr of ative nodes n(t) (left) and their power-spetralog-binned urves (right) for traÆ on the Web graph (lower urve) and traÆ on web-graph'smaximum spanning tree (upper urve) for �xed posting rate R = 5� 10�3.3.4. Noise orrelations at network levelMore saling features in the traÆ noise an be found when the transport islooked at the global network level. In partiular, the network struture supple-mented with the navigation rule indues the orrelations among the paket streams,a property whih was found both in real network traÆ10) and in the traÆ mod-els.1),3), 11)Here we onsider only the orrelations that arise in the number of simultaneouslyative nodes n(t) on the network at time t. The time series fn(t)g shows the antiper-



Networks: Struture & Dynamis 7sistent orrelations, as shown in Fig. 4. The exponents of the power-spetrum of thetime signalfn(t)g is harateristi for the networks struture. We �nd � = 1:26 fortraÆ on the Web graph and � = 1:56 for traÆ on its maximum spanning tree forthe driving rate R as indiated on the Fig. 4. More detailed analysis of the salingproperties of noise and the struture of the underlying graph and driving onditionsfor a lass of sale-free graphs an be found in Ref.? As a rule, less orrelations arefound in less strutured graph and larger traÆ density.12)3.5. Evidenes of stohasti ergodiity breaking in transport on networksDetailed analysis of traÆ at individual node level reveals additional features ofomplex systems behavior that we address in the following. Transport of a paketon the network is a (guided) random walk proess. Compared to a ompat en-vironment, network's topology makes severe onstraints to the walker. Hene, byonsidering the number of hits of a walker to eah node in the network one an inferdetails of the network strutural properties, whih an be used for exploring omplexstrutures.13){16)From the dynami point of view, the number of hits at a node depends not onlyon the topology but also on the time window in whih it is measured. Therefore,it gives information about how the proess goes in partiular parts of the graph.In Fig. 5 we display the distributions of the oupation numbers of eah node onthe Web graph, olleted within a �xed time window TWIN = 1000 steps. Thedistribution shows a power-law tail, whih is well pronouned at low traÆ densityR. As expeted,14) in this limit the power �h = 2:28 is roughly in agreement with thedistribution of betweenness of nodes.17) Betweenness of a node is pure geometrialharateristi of the graph, whih is de�ned as the number of shortest paths betweenpairs of nodes on the graph that go through that node.2),17)At large driving rates, however, the distribution develops peaks at spei� o-upation numbers. In partiular, the peak at highest oupation orresponding toh = TWIN appears, whih indiates a onstantly ative hub node. Similarly, onean expet that other peaks that appear at lower oupation numbers orrespond togroups of nodes whih play a speial role in spei� parts of the graph or ommunitiesat large traÆ density.The broad distribution of the oupation numbers hi reorded within the timewindow TWIN , or equivalently of the oupation probabilities of nodes de�ned aspi � hi=TWIN , suggests that a dynami ergodiity breaking ours in the transportproess on networks. Rreently suh ergodiity breaking in the ase of a ontinuous-time random-walk has been disussed and lassi�ed in terms of oupation times inRef.18) In our ase, the inhomogeneity and sparseness of the underlying networkindues spread of the frequeny of the node oupation, as shown in Fig. 5. In lowtraÆ density the ergodiity breaking appears where it an be related to the geometryof the network alone. At higher rates R , i.e., higher traÆ density, additional e�etsour due to nontrivial waiting times3) of pakets in queues at partiular nodesin the network. These waiting times are also related to the struture{dynamisinterply.1),3) A more detailed analysis of the dynami ergodiity breaking and roleof di�erent network topologies will be given elsewhere.19)



8 B. Tadi�
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Fig. 5. Distribution of oupation numbers of nodes hi ourring within a �xed time windowTWIN = 103 steps for di�erent posting rates R. Solid lines slope �h = 2:28 within error bars.x4. ConlusionsWe have demonstrated emergene of a funtional topology in traÆ of informa-tion pakets on the yli sale-free graph (Web graph). Here we have shown resultsfor traÆ in the ase of onstant posting rates R. These topologies are quantitativelydesribed through the statistial properties of the network ow and traÆ noise.Study of the network ow enables the dynami di�erentiation between linksand their role in the dynami proess. The systemati reord of the traÆ owon the Web graph, as it is done here, represents an example where \weights" onthe links are dynamially generated, in ontrast to ad ho implementation whih isommonly used in study of weighted networks.8),20) The funtional heterogeneity ofthe network is then built in the maximum spanning tree. We have shown that thedynamially generated weights result in a sale-free tree in the ase of the traÆ withthe advaned nnn-searh rule on the Web graph. Hene the spanning tree preservesthe main property of the original graph, suggesting that the network topology isused eÆiently by the traÆ navigation.Network's inhomogeneity is further represented by di�erent roles that nodes playin the transport proess. The multihannel noise analysis reveals universal noisefeatures, whih are expressed by Eq. (3.1). The saling exponent � an be related tothe underlying graph struture and to traÆ density and driving onditions. This ismost strikingly demonstrated by omparing the traÆ on the graph with the traÆon thereby generated maximum spanning tree. In the ase of maximum spanningtree, the traÆ an be viewed as traÆ on the original graph with applied onstraint,in whih pakets are systematially restrited to the available maximum-ow links.
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