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Topological heterogeneity of structured networks effects course of dynamic processes on
them by causing uneven function of nodes and/or links. Within the model of information
traffic we demonstrate how dynamically relevant topology emerges on cyclic scale-free Web
graph. The dynamic centrality measures are quantitatively characterized through analysis
of traffic flow and multichannel noise. The dynamically generated heterogeneity of links is
represented by maximum spanning tree. Fluctuations of noise at individual nodes in traffic on
the original graph and on its maximum spanning tree (optimal transport) reveal universal
scaling features that are related to the underlying link structure and driving conditions.
Furthermore, we give some evidences for stochastic ergodicity breaking in traffic on networks.

§1. Introduction

Structured networks, in particular scale-free topologies, influence the dynamic
processes which take part on these networks. In recently studied transport of in-
formation on structured networks?) we have shown that in general more efficient
processes occur on networks with higher structural complexity. The structural in-
homogeneity of the underlying network causes uneven function of different nodes or
links. Therefore, functionally relevant topology may differ considerably from pure
geometry of links on the network.

Here we discuss how the functional topology emerge within a numerical model
of information transport on a cyclic scale-free graph.”) In particular, we focus on
the dynamic analogue of the topological betweenness and betweenness-centrality
(betweenness of nodes and links). In real functional networks these properties are
known as multichannel noise and network flow.?) By detailed analysis of traffic flow
and noise we show that these dynamic centrality measures exhibit certain universal
features that can be related to the network structure. Furthermore, analysis of the
occupation probability of nodes reveals evidence of a stochastic ergodicity breaking
due to network structure and interaction between traffic streams.

§2. Structure and Traffic on the Web graph

We focus on traffic of information packets on one class of cyclic scale-free networks
the Web graph.!):% On this class of graphs we have shown earlier that efficient traffic
emerges when the next-neighbour search rule is applied to navigate packets through
the graph. This topology dynamics matching enables us to study the details of the
dynamic process in much wider range of parameters (i.e., posting rate) than on any
other scale-free structure. In particular, the traffic remains jamming free until a
large density of packets is reached. Some details of structure and traffic rules are
described below and in Ref.1):3):4)
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2.1. Web graph structure

The Web graph that we consider belongs to causal type of networks, which are
grown in time by adding a node and a link at each time step.”) The added node is
linked to the preceding group of nodes with probabilistic rules introduced in Ref. Y
The linking rules consist of preferential attachment and rewiring during the graph
growth, which leads to the scale-free structure of both in-coming and out-going links.
The parameter « (initial attractiveness of nodes) and & (rewiring probability) control
the emergent degree distribution for in- and out-links g;, and g,y according to?)

P(Qm) ~ QZn(2+a) ; P(Qout) ~ q()iu,(t1+(1+a)/(lid)) 3 (2'1)

with @ = a. For @ = 1/4 the structure appears to have two powerful hub nodes,
similar to the real Web (see?) for details). A part of the structure is shown in Fig. 1.

Other structural characteristics of the Web graph are described in the litera-
ture.!*):7) Here we mention the connectivity profile g;,(s) ~ s~ %» for in-linking,
and similarly qu¢(s) ~ s~ 7»tfor out-linking connectivity, that vary with node’s ad-
dition time s (proportional to node rank). The exponents relation 75, = 1 +7,,1
and 7oyt = 1 4 Youe holds. In addition, the network’s inhomogeneity is characterized
by the clustering profile, which measures number of elementary triangles attached
to a node. It varies throughout the network as na(s) ~ 1/s. The Web graph is also
classified as a correlated scale-free structure in which correlation between in-coming
and out-going links at neighbouring nodes 7, j occurs as < goui(j) >~ ¢in(7) ", with
K~ 0.45.7

For the analysis of traffic on the Web graph, the structure of the graph is deter-
mined by its adjacency matrix and kept fixed throughout the simulations.

s

Fig. 1. Core of the Web graph near the main hubs with most often used links shown with strong
lines (left) and the maximum spanning tree of the giant component (right) for N = 1000 nodes
and links and packet creation rate R = 0.005. [Plots using Pajek.ﬁ)]
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2.2. Information Traffic Model

Transport of information packets on network of a given architecture’)3) consists
of the following steps:

e (i) creation of a packet at a random node and assignation of an address (desti-

nation) as another node on the network where it should arrive;

e (ii) navigation of a packet through the network, where a visited node directs

the packet towards its address using locally available links;

e (iii) delivery by arrival at its destination, packet is removed from the traffic.
In step (ii) we apply an advanced local search (CS) in which each node explores its
surrounding within next-nearst neighborhood searching for the best direction for a
packet to be processed.!) The packets are created with a fixed rate R and move
simultaneously, making queues at nodes along the path. We employ last-in-first-out
queue (LIFO) and impose finite queue capacity H = 1000 packets. Details of the
numerical code implementation is given in Ref.”)

Within the simulations we monitor motion of each packet simultaneously. In
particular, we record packet destination, current position on the network and position
in the queue, as well as waiting time that a packet spent on each node along its path
before arrival to its destination. From these data we make the statistics of the traffic
both on global (network) level and on local (individual node and link) level. For
instance, the transit time 7" of each packet is then given by sum of all waiting times
along its path from the creation node to delivery at its address, Ty = Zf tw (i), where
ty (1) is waiting time at node ¢ on the path of length k. The actual path depends
on the network structure and the search algorithm. In addition, the waiting times
at each node are created when the packet density increases. The queue lengths are
unevenly distributed through the network® with longer queues at more important
nodes. We first discuss properties of the traffic at local level.

§3. Traffic Flow and Noise

The information traffic on the Web graph with the rules described above was
shown to be stationary for a large range of creation rates R < R, ~ 0.4.":3) 1In
the stationary regime, as local measures of the traffic we determine the traffic flow
fijand noise h;. Flow is defined as number of packet traversing a given link in
the network within a given time window Ty ;y. Similarly, we define (multichannel)
noise as number of packets that are processed by a given node within Ty ry. In
this way, f;; and h; are the dynamic measures of the topological propeties known as
betweenness-centrality of links and nodes respectively.

3.1. Dynamic weights and maximum spanning tree

The records of flow on links yield different “weights” to links that processed dif-
ferent number of packet within the monitoring time. This is an example of emergent
weighted network where weights appear dynamically through the network function.
In Fig. 1 we show an example with most weighted links appearing near the main
hubs of the Web graph.
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Uneven distribution of traffic flow on the links of networks can be studied in
more quantitative details. One way to characterize the emergent weighted topology
is to construct the mazimum spanning tree, which is the tree structure spanning the
connected part of the graph and consisting of strongest links. In Fig. 1 we also show
the maximum spanning tree corresponding to the traffic on the Web graph when the
posting rate is R = 5 x 1073, It appears to be the scale-free tree, suggesting that
the flow on the links is distributed in accordance® with the original topology of the
graph. This supports the idea of matching between the structure of the Web graph
and transport with the advanced-local search algorithm."
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Fig. 2. Universal relations between dispersion o; and average occupation < h; > of nodes 7 =
1,--+, N within time window Twrn = 1000 time steps for traffic on the Web graph’s giant
component and on its maximum spanning tree at driving rate R and for specified search rule.

3.2.  Universality of traffic noise

We further study the properties of traffic noise by monitoring in parallel the
number of packets processed by each node within a fixed time window Ty 7y = 1000
steps. (One time step consists of one parallel update of the whole network.) The
number of packets registered within the specified time window fluctuates between
different nodes and at the same node at different times. However, the ratio of
the fluctuations to the number of processed packets shows some universal features,
similar to real transport networks. In particular, the relation

o ~< h; >; ; (3-1)

holds, where with u takes two values u = 1/2 or gy = 1 in different networks.?) In
Fig. 2 we show the standard deviation o; against the average occupation number
< h; > of a node i, where the average is over the fixed time window Tyy;n. Different
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curves are for different driving rates R and navigation rules, i.e., advanced nnn-search
(AS) or random diffusion (RD). On each curve a point represents one node of the
network. As the Fig. 2 shows, different nodes follow the behavior with the slopes
@ =1/2 or p = 1, which are indicated by lines. For low-density traffic on the Web
graph most of the nodes are in the class p = 1/2, whereas the hub node is on the line
with g = 1. For higher packet density (larger R), however, more nodes experience
larger traffic and higher fluctuations of the traffic and consequently align along the
= 1 curve. Hence the scaling exponent in the ralation (3-1) depends on the driving
conditions (packet density), which exploit the network’s heterogeneity in different
ways. Qualitatively same behavior was found in the case of random diffusion (RD)
but with different posting rates, where the stationary flow conditions are fulfilled.
For comparison, we also run the packet traffic along the maximum-spanning
tree of the Web graph (results are also shown in Fig. 2). In this respect, the packet
motion can be considered as subject of a constraint to only maximum-flow links on
the original graph. We find that the constraint does not violate the universal relation
(3-1), however, all nodes align along the u = 1 slope independently on driving rate.
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Fig. 3. Distribution of transit times T of packets on the Web graph (wg) and on its maximum
spanning tree (wgMSTree) for fixed driving rate R as indicated and advanced local search (CS).
Slopes 77 = 3/2 and 70 = 1 are indicated by broken lines.

3.3. Transit times distribution

As traffic characteristics on global (network) level we consider here the distri-
bution of tranist times and correlations in node activity.!):?) Differences in the
transport details on the cyclic Web graph and in traffic on its maximum spanning
tree (MST) accumulate in the overall time that a packet spends on the way before it
arrives to its destination address. In Fig. 3 we show the distributions of the transit



6 B. Tadié

times of packets for fixed rate R at the Web graph and its MST. For traffic on the
original Web graph the distribution P(T') has a power-law tail P(T) ~ T~ ", with
the exponent 77 = 1.5 (within numerical error bars).!) The observed deviation from
the power-law at small times T' is due to increased efficiency of the super-structure
associated to the hub, when the the destination nodes are at the distance 2—3 nodes,
which coincide with the searched depth in the advanced search rule (CS). We also
show the results when the transport is constrainted along the maximum flow links
corresponding to that rate on the Web graph (traffic on MST). As the Fig. 3 shows,
the traffic along the MST intends to have increased probability of larger times com-
pared to the original cyclic graph. This is mainly due to larger distances on the tree
and also larger waiting times at the main hub when the traffic density increases. The
slope of the curve P(T) for the case of tree is close to 7p = 1. This ndicates another
universality class of the transport processes constrainted on the graph’s maximum
spanning tree, compared to the underlying original graph with cycles.
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Fig. 4. Part of the time series of the numebr of active nodes n(¢) (left) and their power-spectra
log-binned curves (right) for traffic on the Web graph (lower curve) and traffic on web-graph’s
maximum spanning tree (upper curve) for fixed posting rate R =5 x 1072,

3.4. Noise correlations at network level

More scaling features in the traffic noise can be found when the transport is
looked at the global network level. In particular, the network structure supple-
mented with the navigation rule induces the correlations among the packet streams,
a property which was found both in real network traffic!?) and in the traffic mod-
els. 1):3):11)

Here we consider only the correlations that arise in the number of simultaneously
active nodes n(t) on the network at time ¢. The time series {n(t)} shows the antiper-
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sistent correlations, as shown in Fig. 4. The exponents of the power-spectrum of the
time signal{n(t)} is characteristic for the networks structure. We find ¢ = 1.26 for
traffic on the Web graph and ¢ = 1.56 for traffic on its maximum spanning tree for
the driving rate R as indicated on the Fig. 4. More detailed analysis of the scaling
properties of noise and the structure of the underlying graph and driving conditions
for a class of scale-free graphs can be found in Ref.” As a rule, less correlations are
found in less structured graph and larger traffic density.'?

3.5. Ewidences of stochastic ergodicity breaking in transport on networks

Detailed analysis of traffic at individual node level reveals additional features of
complex systems behavior that we address in the following. Transport of a packet
on the network is a (guided) random walk process. Compared to a compact en-
vironment, network’s topology makes severe constraints to the walker. Hence, by
considering the number of hits of a walker to each node in the network one can infer
details of the network structural properties, which can be used for exploring complex
structures.'3)-16)

From the dynamic point of view, the number of hits at a node depends not only
on the topology but also on the time window in which it is measured. Therefore,
it gives information about how the process goes in particular parts of the graph.
In Fig. 5 we display the distributions of the occupation numbers of each node on
the Web graph, collected within a fixed time window Ty rny = 1000 steps. The
distribution shows a power-law tail, which is well pronounced at low traffic density
R. As expected,'¥) in this limit the power 75, = 2.28 is roughly in agreement with the
distribution of betweenness of nodes.'” Betweenness of a node is pure geometrical
characteristic of the graph, which is defined as the number of shortest paths between
pairs of nodes on the graph that go through that node.?):17)

At large driving rates, however, the distribution develops peaks at specific oc-
cupation numbers. In particular, the peak at highest occupation corresponding to
h = Twrn appears, which indicates a constantly active hub node. Similarly, one
can expect that other peaks that appear at lower occupation numbers correspond to
groups of nodes which play a special role in specific parts of the graph or communities
at large traffic density.

The broad distribution of the occupation numbers h; recorded within the time
window Ty 7y, or equivalently of the occupation probabilities of nodes defined as
pi = hi/Tw N, suggests that a dynamic ergodicity breaking occurs in the transport
process on networks. Rrecently such ergodicity breaking in the case of a continuous-
time random-walk has been discussed and classified in terms of occupation times in
Ref.'® In our case, the inhomogeneity and sparseness of the underlying network
induces spread of the frequency of the node occupation, as shown in Fig. 5. In low
traffic density the ergodicity breaking appears where it can be related to the geometry
of the network alone. At higher rates R , i.e., higher traffic density, additional effects
occur due to nontrivial waiting times®) of packets in queues at particular nodes
in the network. These waiting times are also related to the structure dynamics
interply.!:3) A more detailed analysis of the dynamic ergodicity breaking and role
of different network topologies will be given elsewhere.'?)
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Fig. 5. Distribution of occupation numbers of nodes h; occurring within a fixed time window
Twin = 10° steps for different posting rates R. Solid lines slope 75, = 2.28 within error bars.

§4. Conclusions

We have demonstrated emergence of a functional topology in traffic of informa-
tion packets on the cyclic scale-free graph (Web graph). Here we have shown results
for traffic in the case of constant posting rates R. These topologies are quantitatively
described through the statistical properties of the network flow and traffic noise.

Study of the network flow enables the dynamic differentiation between links
and their role in the dynamic process. The systematic record of the traffic flow
on the Web graph, as it is done here, represents an example where “weights” on
the links are dynamically generated, in contrast to ad hoc implementation which is
commonly used in study of weighted networks.®):29) The functional heterogeneity of
the network is then built in the maximum spanning tree. We have shown that the
dynamically generated weights result in a scale-free tree in the case of the traffic with
the advanced nnn-search rule on the Web graph. Hence the spanning tree preserves
the main property of the original graph, suggesting that the network topology is
used efficiently by the traffic navigation.

Network’s inhomogeneity is further represented by different roles that nodes play
in the transport process. The multichannel noise analysis reveals universal noise
features, which are expressed by Eq. (3-1). The scaling exponent p can be related to
the underlying graph structure and to traffic density and driving conditions. This is
most strikingly demonstrated by comparing the traffic on the graph with the traffic
on thereby generated maximum spanning tree. In the case of maximum spanning
tree, the traffic can be viewed as traffic on the original graph with applied constraint,
in which packets are systematically restricted to the available maximum-flow links.
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This constraint results in noise properties which are typical for a tree structure.
In particular, the scaling relation in Eq. (3-1) hold with g = 1 independently on
the packet density. In addition, generally larger distances on the tree result in
increased probability of longer transit times compared to the original cyclic graph.
Therefore the transit time distribution on the maximum spanning tree of the Web

graph appears in a new class of stochastic limit processesm) with the power 70 = 1,

compared to 7p ~ 3/2 for the Web graph itself.

Finally, a detailed analysis of the occupation probabilities of nodes reveals that
the stochastic ergodicity breaking occurs in the traffic on networks. The origin of a
broad distribution of the occupation numbers of nodes is in the network topological
inhomogeneity, as demonstrated for traffic at low posting rates. Additional effects
are due to structurally induced interaction between packet streams, which lead to
nontrivial waiting-time statistics at higher posting rates.
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